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Abstract

In precision agriculture, orchards present unique challenges for automated monitoring due to the dense foliage, complex tree struc-
tures, and frequent occlusions caused by branches, leaves, and overlapping fruits. To address these challenges, multi-object tracking
and segmentation (MOTS) has been explored in general computer vision domains, aiming to simultaneously track and segment
instance-level objects and maintain consistent identities across video frames. However, most existing studies focus on object-level
detection without considering the temporal continuity and spatial consistency required for robust fruit monitoring over time. In
this work, we implement one of the state-of-the-art MOTS methods, Grounded-SAM?2, in an orchardian environment for tracking
apples. In addition, four different UAV flight modes were conducted to explore the optimal solution for UAV-assisted MOTS. Our
proposed evaluation framework, which relies on spatio-temporal consistency metrics and instance association heuristics, enabled

the assessment of tracking performance without prior annotations.

1. Introduction

Precision horticulture increasingly relies on high-throughput and
automated monitoring tools to assess plant and fruit conditions
in the field. UAVs, as one of the efficient and significant tools,
offer flexible, non-invasive, and scalable solutions in precision
agriculture. Among various horticultural applications, orchards
present unique challenges for automated monitoring due to the
dense foliage, complex tree structures, and frequent occlusions
caused by branches, leaves, and overlapping fruits (Wang et
al., 2024). Thus, accurate detection and tracking of individual
fruit instances across continuous spatial and temporal condi-
tions from aerial imagery are essential for tasks such as yield
estimation, growth assessment, quality assessment, and robotic
harvesting (He et al., 2022).

Recent advances in computer vision, particularly in object de-
tection and instance segmentation, have shown promising res-
ults in agricultural results. However, most existing studies fo-
cus on object-level detection without considering the temporal
continuity and spatial consistency required for robust fruit mon-
itoring over time. In dynamic orchard environments, occlusions
and viewpoint variations further complicate the accurate asso-
ciation of fruit instances across consecutive frames, limiting the
reliability of existing detection methods.

To address these challenges, multi-object tracking and segment-
ation (MOTS) have been explored in general computer vision
domains, aiming to simultaneously track and segment instance-

level objects and maintain consistent identities across video frames

(Voigtlaender et al., 2019a). Nevertheless, the direct application
of these methods to UAV-based orchard scenarios remains un-
derexplored, primarily due to the unique characteristics of orch-
ard environments, such as irregular object distribution, heavy
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occlusions, and non-uniform lighting conditions. Furthermore,
the integration of aerial data acquisition with MOTS algorithms
introduces additional complexities, including motion blur, per-
spective distortions, and variations in flight altitude and speed.
Therefore, data acquisition with UAVs in the complex and clustered
orchard environment requires an optimal flight mode for better
performance. Moreover, MOTS evaluation with MOTSA (mul-
tiple object tracking and segmentation accuracy), SMOTSA (soft
MOTSA), and MOTSP (multiple object tracking and segmenta-
tion precision) requires a large number of annotations, which is
labor-intensive and time-consuming (Voigtlaender et al., 2019a).

In this work, we implement one of the state-of-the-art MOTS
methods, Grounded-SAM2, in an orchard environment for track-
ing apples. In addition, four different UAV flight modes were
conducted to explore the optimal solution for UAV-based MOTS
in orchards. Our main contributions are (1) evaluation of the
different flight modes for UAV-assisted MOTS, and (2) propos-
ing a novel method for MOTS evaluation without prior annota-
tions.

2. Study area and data collection

2.1 Study area

The field data collection was conducted within an apple orchard
located in Randwijk, Overbetuwe, the Netherlands (51.9376,
5.703057 in WGS84 UTM 31U), as illustrated in Fig. 1. The
study area of 0.083 ha, contains four rows of the apple variety
Elstar, Malus pumila ’Elstar’, with tree and row spacing of 1.1
m and 3.0 m, respectively. There were about 80 trees in each
row in the targeted study area.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-2-W11-2025-293-2025 | © Author(s) 2025. CC BY 4.0 License. 293



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Figure 1. The study area of the apple orchard in Randwijk, Overbetuwe, Gelderland in the Netherlands. The red rectangle represents
the selected region in the orchard.

2.2 UAV experimental setup

A commercial UAV equipped with a single high-resolution RGB
sensor was used for video data collection in the apple orchard
(Tab. 1). To find the optimal flight mode, four different UAV
flight modes were implemented during data collection (Fig. 2).
Flight mode A followed a straight line from one edge of the row
to another edge of the row, and the camera perspective was to
the side of the crops. Flight mode B followed an up-down tra-
jectory with a closer distance to the crops compared to flight A.
Flight modes C and D were flights between rows of fruit trees
at a higher altitude for safety, but the camera perspectives were
different, with C being a side view and D a front view.

2.3 Data collection and preparation

In the apple orchards, we collected videos with a UAV as men-
tioned above. In addition, we collected the height of the wooden
poles of the orchard, which support the growth of the apple trees
and the structure of the rows. The height of the wooden poles
was 2.7 meters, which were used to recover the scales during
the reconstruction.

To evaluate the performance of MOTS in the apple orchards,
we also annotated several frames in different flight modes. For
flight mode A, 1890 apple instances were labeled across 10 se-
quential frames. For flight mode B, 756 apple instances were
labeled within 10 frames. For flight mode C, 470 apple in-
stances were labeled across 10 frames. And 1015 apple in-
stances were annotated across 10 frames for flight mode D.

3. Method

The overall framework of this study contains Grounded-SAM2
for apple MOTS and structure-from-motion (SfM) for camera
poses and depth estimation, as shown in Fig. 3.

3.1 MOTS with Grounded-SAM2

We implemented Grounded-SAM?2 for the apple tracking and
segmentation in the four flight modes (Ravi et al., 2024, Ren
et al., 2024). To understand the preliminary MOTS results, we
evaluated the MOTS performance throuth three evaluation met-
rics (Voigtlaender et al., 2019b), as shown in Egs. 1, 2, 3, 4, and
5.

argmax IoU(h,m), if maxIoU(h,m) > 0.5
meM meM

0, otherwise.

M

TP = > ToU(h, c(h)) 2
heTP

voTsa — \TPL=FPI = |IDS| )
|N|

MOTSA — TP = FP|~|IDS| @
|N|
TP
MOTSP = ——

oTs TP )

where M = my,...,mn with m; € 0,1 are the ground truth
pixel masks, H = hi, ..., hx with h; € 0,1 are the non-empty
hypothesis masks, TP are true positives, TP are soft true pos-
itives, F'P are false positives, I D.S are instance ID switches, N
is the total number of ground truth masks.

3.2 Camera poses and depth estimation with SfM

We used Agisoft Metashape Pro! (Agisoft LLC, St. Petersburg,
Russia) to estimate the UAV camera poses and accurate dense
depth information. We imported the raw UAV frames at 3 FPS
into Agisoft and set a pair of marker points at the top and bottom
of the poles as a scale reference. The distance between two
points was set to 2.7 m. Then all frames were aligned with
“highest accuracy’ and ’source’ options under 40,000 key point
limit and 4,000 tie point limit. The reprojection error of the final
result is 0.691 pixels. After that, point clouds with "ultra high’
and "mild’ depth filtering were built. A depth export script? was
implemented to get the highly accurate depth maps from StM.
Finally, the depth and camera poses with metric scale can be
derived.

3.3 MOTS evaluation without prior-annotations

We propose a method to evaluate the MOTS performance without
annotations. The basic principle of this method is the com-
parison of the speed between camera movement and instance
movement. Therefore, we first extract camera poses from SfM
(Structure from Motion). Then, we split the whole frame num-
ber into [NV groups, each group containing 5 consecutive frames.
And we randomly sample 10 groups, which include 10 apple
instances for the first frame in each group. Then we track each
instance’s centroid over frames using segmentation masks from
Grounded-SAM?2 and depth maps from SfM. Compute 3D in-
stance displacements Vinstance,; Using depth at centroids and
camera intrinsics.

! https://www.agisoft.com/
2 https://github.com/agisoft-llc/metashape-scripts
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Figure 2. Four flight modes in orchards. Four different colors and line styles indicate four flight modes. The colors of the camera
views are also in line with the colors of four flight modes.

Table 1. Description of flight parameters and operation conditions during UAV data collection.

UAV platform
Sensor
Sensor Type
Resolution
Focal length (mm)
Flight altitude (m)
Flight velocity (m/s)
Video Frame rate (fps)
Collection date & start time
Wind Speed (m/s)
Illumination conditions
Temperature (°C)

DIJI Phantom 4 RTK, Shenzhen, China

RGB FC6310R
CMOS
3840x2160
8.8
Around 2 to 4
Around 0.1 to 1.5
29.98

July 24th, 2024, from 10:01 AM to 10:41 AM (before apple harvesting)

2.8
Sunny
20

4. Result
4.1 MOTS performance in four flight modes

Table 2 presents the evaluation results of apple detection and
tracking performance using Grounding-SAM?2 across four dif-
ferent UAV flight modes, assessed using the MOTS metrics
defined in Egs. 1, 2, 3 4, and 5. Among the four modes, Flight
Mode A achieved the highest MOTSA score of 34.84%, in-
dicating superior overall segmentation and tracking perform-
ance. It also demonstrated the best sSMOTSA score (14.95%),
highlighting its effectiveness in handling segmentation accur-
acy while penalizing ID switches and false positives. Flight
Mode D outperformed others in terms of MOTSP (73.29%),
signifying higher precision in object segmentation and track-
ing. However, instead of tens of apples, which can be detec-
ted in flight modes A, B, and C, only seven apples were de-
tected in Flight Mode D (Fig. 4). Because the limited detec-
ted apple instances have more obvious features, which leads to
better detection and tracking performance. Conversely, flight
mode C exhibited the poorest performance across all metrics,
with negative MOTSA (-40.18%) and sSsMOTSA (-57.05%) val-
ues, suggesting significant challenges in maintaining accurate
object tracking and segmentation.

We also visualized the MOTS results in Fig. 4. In flight mode
A and B, most of the apple instances were detected, as shown
in Figs. 4(a) and 4(b). In flight mode C, more than half of

the apple instances were not detected by Grounded-SAM?2 (Fig.
4(c)). Flight mode D performed the worst, which almost cannot
detect any apple instances (Fig. 4(d)).

Table 2. Apple detection and tracking performance with
Grounding-SAM?2 under four different flight modes. The bold
numbers indicate the best results.

Flight MOTSA sMOTSA MOTSP

Mode  (%)T (%)t (%)t
A 34.84 14.95 71.98
B 2.72 -1.20 72.13
c -40.18 -57.05 66.96
D 1.99 1.25 73.29

4.2 MOTS performance without prior-annotations

The bubble chart (Fig. 5) illustrates the speed ratios between in-
stance movement and camera movement across sequential frames
by our random sampling methods in flight mode A. Most of the
speed ratio values remain close to 1.0, indicating that most de-
tected instances move at a rate similar to the camera, suggesting
a stable tracking performance. However, a few extreme values
are observed, where certain apple instances exhibit significantly
higher or lower speed ratios, as highlighted in the darker blue
and orange regions of the heatmap. The high speed ratios may
result from apple instance ID switches, occlusions, or tracking
inconsistencies in challenging orchard conditions. And the zero
value of speed ratios could be caused by the UAV hovering dur-
ing flight.
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Figure 3. The overall framework of the data collection, MOTS implementation, and evaluation. The top image shows the
reconstruction results of one apple row.

(a) Flight Mode A. (b) Flght Mode B.

(c) Flight Mode C. (d) Flight Mode D.

Figure 4. MOTS examples of four different flight.

We also evaluated three other flight modes with our evaluation detection rate and high ID switches during the MOTS (Tab. 2
method, but all of them provided a None value due to the low and Fig. 4). Thus, flight mode A would be an optimal solution
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Algorithm 1 MOTS Performance Evaluation Without An-
notations

Require: Total frames N, Masks M, Depth D, Camera poses
P, Intrinsic matrix K
Ensure: MOTS Performance Score
1: Extract camera positions P from XML file
2: Select 10 random frame windows S = {S1,52,...,510},
where each window compose by 5 sequential frames
3: Initialize empty list R for speed ratios
4: for each part S; € S do
5: Randomly select 10 apple instances Z in the first frame
of Si
6 Initialize empty lists Vinstance, Veamera
7: for each consecutive frame pair (¢,¢t + 1) € S; do
8: Load mask centroids C; and C;41 from M
9.
0
1

Load depth maps Z; and Z;, from D
Extract depth values Z; and Z,, at centroids
Compute apple instance speeds:

1%, — X |
Vinstance,j — Al , JET
12: Compute camera movement speed:
. _ NP1 — Pl
UAV, ¢ At
13: Append vyav ¢ t0 Veamera
14: Append all Vinstance,j tO Vinstance
15: end for
16: Compute average speed ratio:
R= E[Vinsmnce}
E[Vcamera]

17: Append Rto R

18: end for

19: Compute final MOTS performance score:
MOTS Score = E[R]

20: Return MOTS Score

to conduct MOTS in apple orchards with UAVs.

5. Discussion

5.1 Effectiveness of Grounded-SAM2 in orchard environ-
ment

The experimental results demonstrate that Grounded-SAM?2 can
detect and track apple instances across consecutive aerial frames
under some specific conditions. Compared to previous CNN-
based MOTS methods, such as PointTrack (Xu et al., 2020)
and Track-RCNN (Voigtlaender et al., 2019b), which required
a large amount of time for training and cannot easily adapt
to other domains, Grounded-SAM?2 can be implemented under
several text prompts without any pre-training.

However, occlusions from the orchards, dynamic illumination
conditions, and the dense homogeneous apple instances make
it challenging to get a good MOTS performance (de Jong et
al., 2022). In addition, the foregrounds (target objects) and
backgrounds from the practical implementation of conventional
MOTS methods have a large difference in motion patterns. Nor-
mally, the camera perspective and movement are fixed or slightly
moving, which makes it easy to distinguish foregrounds and
backgrounds. But when it comes to agricultural domains, the
target objects, such as crops and fruits, move with the back-
grounds in similar motion patterns, which makes it difficult.

Thus, the intregration of autonomous inspection with path plan-
ning methods and MOTS solutions would be a feasible direction
to address occlusion issues.

5.2 UAV flight modes impact

Our comparative analysis across different UAV flight modes re-
vealed notable variations in tracking stability and segmentation
consistency (Tab. 2). Specifically, the flight mode A with a
straight line in a side perspective provided more consistent de-
tection and tracking results (Figs. 5 and 4(a)). But for flight
modes C and D, they obtained the worst results from Grounded-
SAM2, which may be caused by the challenging camera per-
spectives. In flight mode C, the camera perspective leads to
more occlusions by leaves for the apple instances. And in flight
mode D, the higher flight altitude and slightly downward cam-
era angle result in higher image contrast, which makes it hard
to recognize the apple instances for the models. Therefore,
the stable illumination conditions and simple flight mode are
suitable for robust tracking performance in orchard settings.
Ideally, combination of the four flight modes would optimize
the visible areas to region of interest in the whole orchards.

5.3 MOTS annotations and evaluation

Currently, most of the MOTS algorithms were developed by
large public datasets such as BDD100K (Yu et al., 2020) and
KITTI MOTS (Voigtlaender et al., 2019b). Thus, the generaliz-
ation of the pre-trained models faces challenges when it is im-
plemented into other domains. The first challenge is the data ac-
quisition and annotations, which is a labor-intensive and time-
consuming task. The second challenge is, can current models
adapt to the new domains with new datasets?

Our proposed evaluation framework, which relies on spatio-
temporal consistency metrics and apple instances association
heuristics, enabled the assessment of tracking and segmenta-
tion performance without requiring prior manual annotations.
This approach is particularly valuable in large orchard deploy-
ments where annotating dense video data is prohibitively labor-
intensive. While the method showed strong alignment with
qualitative observations (Fig. 4), it is sensitive to initial de-
tection quality and may overestimate tracking performance in
sequences with static or slowly moving objects. Future work
could integrate synthetic data augmentation or domain adapta-
tion techniques to further calibrate the evaluation metrics.

6. Conclusion

In this study, we designed four UAV flight modes to explore
the optimal solution for MOTS in apple orchards. Meanwhile,
we implemented one of the state-of-the-art MOTS algorithms in
orchard environments. Flight mode A, with a simple straight-
line flight, obtained the best performance with our manual an-

notations (34.84% MOTSA, 14.95% sMOTSA, and 71.98% MOTSP).

Due to the workload of data annotations during the MOTS eval-
uation, we also proposed a novel algorithm to evaluate MOTS
performance without prior annotations.
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