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Abstract 
 
Root rot caused by fungi in the Heterobasidion spp. and Armillaria spp. is one of the most economically significant problems in the 
European forest industry. Early detection remains challenging due to the lack of external visual symptoms in infected trees. This study 
explores the potential of unmanned aerial vehicles (UAVs) equipped with multispectral and light detection and ranging (LiDAR) 
sensors for detecting spectral and structural differences between healthy and root rot-infected Norway spruce (Picea abies (L.) H. 
Karst.) trees growing in southern Sweden. Remote sensing data from a total of 110 trees, classified as healthy (n=59) or infected (n=51) 
based on post-harvest survey of stump decay, were analysed. Canopy multispectral reflectance values from red, green, red-edge and 
near-infrared (NIR) bands, as well as from the reflected intensity values from the point cloud of LiDAR data, were analysed based on 
pre-harvest remote sensing data. Statistical analysis revealed significant differences in spectral response between healthy and infected 
trees in both the NIR band from the multispectral data and the reflected intensity from the LiDAR point cloud. These results underscore 
the potential of UAV-based optical and LiDAR data for detecting forest pathogen damage, highlighting their value in supporting 
sustainable and effective forest management. 
 
 

1. Introduction 

Root rot has a significant economic impact and is estimated to 
cost the European forest industry at least 800 million Euro 
annually (Asiegbu et al., 2005). The damage is primarily caused 
by fungal pathogens from Heterobasidion spp. and Armillaria 
spp. (Solheim, 2010). Trees attacked by these fungi via roots 
exhibit symptoms such as crown thinning and decay in the 
heartwood and roots (Asiegbu et al., 2005; Dalponte et al., 2022; 
Kurkela 2002). When faced with pathogenic attacks, trees can 
divert resources from biomass production towards defence 
mechanisms. Tree defences against pathogens include both 
constitutive defences, such as bark and lignin, and inducible 
defences, like the production of pathogenesis-related proteins 
and the formation of traumatic resin ducts that are activated 
following infection (Mageroy et al., 2023). These strategies 
ensure both immediate and long-term protection. The trade-off 
between growth and defence may limit the competitive success 
of the trees (Herms and Mattson, 1992). Moreover, both decay 
and reduced biomass production can significantly diminish the 
economic profit from the affected forest stand. 
 
Early detection of infected trees is essential for effective forest 
management and mitigation strategies, as well as for estimating 
the financial impact of root rot damage before final harvesting. A 
major challenge in the early detection of rot infected trees lies in 
the absence of external visible symptoms (Vollbrecht and 
Agestam, 1995). Remote sensing techniques have shown 
promising results in identifying tree stress before visible signs 
appear, including water stress, nutrient levels, and bark beetle 
infestations (Behmann et al., 2014; Meddens et al., 2013; Peng et 
al., 2020). The red-edge band (680-750 nm), for example, can 
detect chlorophyll concentrations in leaves and pine needles 
(Gitelson et al., 1996). In the visible range, reflectance is largely 
influenced by the concentration of chlorophyll and other 
pigments. Chlorophyll absorbs blue and red wavelengths, 
resulting in low reflectance in these bands. As pigment 
absorption is minimal in the NIR, healthy vegetation typically 

exhibits high reflectance in this spectral band (Male et al., 2010). 
Although numerous remote sensing studies have focused on 
evaluating general vegetation health and stress levels, the 
application of these techniques for early detection of rot infected 
trees remains comparatively underexplored. Light detection and 
ranging (LiDAR) data can be used to estimate structural 
attributes of individual trees, such as crown width, diameter, 
volume, and height (Maltamo et al., 2004), but the reflected light 
from each point in the LiDAR point cloud could potentially also 
be used for detection of damage. The ability of LiDAR to capture 
three-dimensional canopy structure, along with spectral values of 
reflected light, opens new possibilities for detecting structural 
differences between healthy and infected trees. Thus, data 
acquisition using sensors mounted on unmanned aerial vehicles 
(UAVs) provides a potential method for assessing forest health 
on a large scale and at a low cost. This study explores whether 
root rot in Norway spruce (Picea abies (L.) H. Karst.) trees can 
be detected through spectral and structural differences captured 
by multispectral and LiDAR UAV data. 
 

2. Materials and Methods 

2.1 Remote Sensing Data 

Multispectral images and LiDAR point cloud data were collected 
on October 6, 2024, using a DJI Mavic 3M drone equipped with 
a multispectral (four lenses) camera and an RGB camera (i.e., 
4×5 MP in green, red, red-edge, and near-infrared and 20 MP in 
RGB) (DJI, 2024a), and a DJI Matrice 350 RTK drone equipped 
with a DJI Zenmuse L2 sensor (i.e., a Livox LiDAR module and 
a 20 MP RGB camera) (DJI, 2024b), respectively. The UAV 
campaigns were conducted over a forest stand (~ 2 ha) prior to 
tree felling and post harvesting. The post-harvest campaign 
provided an overview of the harvested area and a background 
image for superimposing GNSS-measurements of tree stump 
positions (Figure 1). Weather conditions during all drone flights 
were sunny with some cloud cover. The flights in fall of 2024 
were carried out at an altitude of about 60 m above ground level 
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Figure 1. Post harvest UAV image of the study area at the estate 

Pukatorp 1:1 (March 2025). 
 
and at a speed of 4 m/s. The multispectral imagery was captured 
with a frontal overlap of 80% and a side overlap of 70%, while 
the LiDAR data were collected with a side overlap of 60%, 
ensuring high spatial resolution and a dense point cloud. The 
spatial resolution for the multispectral data was 2.77 cm (ortho 
ground sampling distance) and the density of the LiDAR point 
cloud reached about 250 points per square meter. 
 
2.2 Field Data 

This study was conducted on the estate Pukatorp 1:1, located 
about 20 km northeast of Växjö (56°59'11.0"N, 15°03'00.1"E) in  

southern Sweden. Field data were collected to classify healthy 
trees from trees with rot. Stumps were surveyed in March 2025, 
after tree harvesting to determine infection status (Figure 2), 
stump diameter, and stump position. The latter were measured 
with a high-precision GNSS receiver (Trimble R12i) in RTK 
mode to obtain sub-centimetre accuracy. The stump diameter was 
measured as an auxiliary variable to evaluate potential 
differences in UAV data between thinner (suppressed trees) and 
thicker (dominant) trees. 

 

 
 

Figure 2. Examples of a healthy (left) and a root rot-infected 
(right) Norway spruce (Picea abies (L.) H. Karst.) stump. 

 
Based on the stump survey, the spectral reflectance responses in 
the tree crowns could be compared between healthy and infected 
trees, focusing on the following wavelengths: green (G): 560 ± 
16 nm, red (R): 650 ± 16 nm, red-edge (RE): 730 ± 16 nm, and 
near-infrared (NIR): 860 ± 26 nm. In addition, reflected light 
from each point in the LiDAR point cloud was acquired at a 
wavelength of 905 nm. 

Figure 3. Near-infrared false colour composite image covering the forest stand, where lighter parts represent higher reflectance 
values and darker parts lower reflectance values. The circles are located around each selected tree crown used in this study. To the 

bottom left a magnified view of three of the circles are shown, where red circle is located on infected trees and blue circles are 
located on healthy trees.
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2.3 GIS and Statistical Analysis 

GIS-based spatial analysis was performed using ArcGIS Pro to 
compare spectral reflectance responses from the tree crowns 
across the mentioned wavelengths on the healthy and infected 
trees, determined from the stump survey, within the forest stand. 
Two buffer zones with a radius of 0.5 m and 1.0 m were created 
around each tree crown position using the GNSS-measured 
stump positions from the field survey post harvesting (see 
Figures 4 and 5). These buffer zones were then used to extract 
mean spectral reflectance values for each tree location. The 
values were extracted for the four spectral bands R, G, RE, and 
NIR, as well as for the LiDAR point cloud. A total of 59 healthy 
and 51 infected trees were included in the analysis. As a LiDAR 
point cloud can be used to delineate tree crowns, it was also used 
to assist in locating the 110 tree crowns assumed to be in the 
vicinity of the positions measured from the stump survey post 
harvesting using the GNSS-receiver, for extracting the spectral 
reflectance values (Reutebuch et al., 2003). Prior to statistical 
testing of differences between healthy and infected trees, a 
Levene’s test was conducted to assess the assumption of equal 
variances for both multispectral and LiDAR data. For the 
multispectral data, the assumption of equal variances was met 
and, therefore, a Student’s t-test was used to compare the mean 
spectral values between healthy and infected trees. As for the 
LiDAR data, the values showed unequal variance between the 
groups and, thus, a Welch two sample t-test, which does not 
assume equal variance, was used for those comparisons. Lastly, 
to further explore potential spectral differences, a closer 
examination was performed on the forty trees exhibiting the 
highest and lowest mean spectral values. 

3. Results 

A statistically significant difference was found in the NIR band 
between healthy and root rot-infected trees when using a 0.5 m 
buffer zone around the center points of the treetops (t108=2.3; 
p=0.0244). The red-edge and green bands showed a declining 
trend, but no significant difference was found between the 
infected and healthy trees (t108=1.5; p=0.1514; t108=1.5; 
p=0.1853, respectively), while the red band had the highest p-
value of all spectral bands (t108=0.5; p=0.6378). These patterns 
are visualised in Figure 6, which shows the mean spectral 
response distributions as a boxplot for each band. All 
multispectral p-values were higher when using the 1.0 m buffer 
and the NIR band was the only one with a significant difference 
(t108=2.0; p=0.0446). 
 
For the LiDAR data (Figure 7), the 1.0 m buffer resulted in a 
lower p-value (t108=2.2; p=0.0312), compared to the 0.5 m buffer 
(t108=1.6; p=0.1065). There was no significant difference in 
stump diameter between healthy and infected trees (t108=0.7; 
p=0.4509) (Figure 8). 
 
For NIR, out of the twenty trees with the highest mean spectral 
reflectance values for the 0.5 m buffer, thirteen were classified as 
healthy and nine out of the twenty trees with the lowest spectral 
reflectance values were also classified as healthy. When the same 
comparison was made for LiDAR using the 1.0 m buffer, half of 
the twenty trees with the highest mean spectral reflectance was 
healthy and five out of the twenty trees with the lowest mean 
spectral reflectance was healthy. 
 
 

 
Figure 4. LiDAR data intensity image covering the forest stand, where warmer colours (red) represent higher intensity and cooler 
colours (blue) indicating lower intensity. The two circles for each dot are the buffer zones retrieved from the GNSS-measured tree 

stumps representing the tree crowns. To the bottom left a magnified view of three of the buffer zones are shown, where yellow circle 
is the 0.5 m buffer zone, and green (infected) and blue (healthy) is the 1.0 m buffer zone used for spatial analysis of spectral 

reflectance. 
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Figure 5. NIR spectral reflectance image covering the forest stand, where lighter parts represent higher reflectance values and darker 

parts lower reflectance values. The two circles for each dot are the buffer zones retrieved from the GNSS-measured tree stumps 
representing the tree crowns. To the bottom left a magnified view of three of the buffer zones are shown, where yellow circle is the 

0.5 m buffer zone, and red (infected) and blue (healthy) is the 1.0 m buffer zone used for spatial analysis of spectral reflectance. 
 

 
Figure 6. Mean spectral reflectance values for healthy and root rot-infected trees across four spectral bands. Healthy trees (left) 

consistently show higher reflectance values compared to infected trees (right), particularly in the NIR band. The boxplots show the 
distribution of mean values within 0.5 m radius buffer zones around each tree crown. Each box represents the interquartile range (25th 

to 75th percentile), the horizontal line shows the median and the “x” is the mean value of the box plot. The whiskers extend to the 
minimum and maximum values within 1.5 times the interquartile range. Outliers beyond the whiskers are shown as dots. The 

statistical analysis for these boxplots was assessed using a Student’s t-test. 
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Figure 7. Left: Box plots for LiDAR mean spectral response for the 1.0 m buffer. While there was a significant difference between 

healthy and root rot-infected trees (t108=2.2; p=0.0312), the infected trees (n=51) showed a greater variation of spectral response 
compared to the healthy trees (n=59). Right: Box plots for LiDAR mean spectral response for the 0.5 m buffer. Unlike the 1.0 m 

buffer, there was no significant difference in spectral response (t108=1.6; p=0.1065), between healthy and infected trees. The 
statistical analysis for these boxplots was assessed using a Welch t-test. 

 
 

 
Figure 8. Box plots showing the stump diameter of all healthy 
and infected trees used in this study. No significant difference 

(t108=0.7; p=0.4509) was found between the two groups. 
 

4. Discussion 

In this study, we addressed the challenge of early detection of 
fungal infections in Norway spruce trees. Due to the lack of clear 
external symptoms in early stages, we explored whether spectral 
and structural differences captured by UAV-based multispectral 
and LiDAR data could be used to distinguish between healthy 
and infected trees. 
 
The significant difference observed in the NIR band suggests that 
this wavelength is effective in discriminating between the 
spectral reflectance values of healthy trees and those infested 
with rot. The relatively low p-values in red-edge and green bands 
further suggests that subtle differences in chlorophyll levels in 
coniferous needles can be detected using these wavelengths 
(Gitelson et al., 1996). An important spatial consideration in our 
analysis was the influence of buffer size to extract spectral data 
from UAV imagery. The lack of significance in the 1.0 m buffer 
for multispectral data highlights the importance of spatial scale, 
suggesting that a larger buffer may dilute the spectral response 
from tree crowns due to mixed pixels from the sunlit and shaded 
part of the tree crown. Interestingly, the opposite pattern was 
observed from the spectral response of the LiDAR echo, where 
the 1.0 m buffer zone yielded a lower p-value compared to the 
0.5 m buffer zone. This suggests that structural differences 
caused by root rot, such as reduced crown density, may be more 
detectable when using a broader buffer for spatial analysis. 
 
 

The lower reflectance values observed in NIR and LiDAR data 
for infected trees may be explained by a reduction of reduced 
needle mass. As trees with fewer needles have more visible twigs 
and branches, it is reasonable to assume that the tree crowns have 
lower spectral reflectance overall. LiDAR, through its sensitivity 
to three-dimensional canopy structure, may capture early 
responses to infection not visible in spectral data alone. As this 
distribution suggests that while there may be a clear relationship 
between spectral intensity and tree health, the distinction is not 
always sufficiently clear to serve as a reliable indicator on its 
own. While previous studies have used LiDAR data to determine 
tree crown position and structure, none seem to have explored the 
potential of using the reflected intensity from the LiDAR point 
cloud data for detecting rot infection (Asiegbu et al., 2005; 
Dalponte et al., 2022; Kurkela, 2002). This study, therefore, 
contributes to an unexplored use of LiDAR data in detecting root 
rot in Norway spruce trees. 
 

5. Conclusions and Future Work 

The results of our study demonstrate that UAV-based 
multispectral imaging, particularly through NIR reflectance at 
the tree crown level, and LiDAR spectral reflectance from the 
point cloud can be used to detect signs of root rot in single trees 
of Norway spruce. The sensitivity of LiDAR to both vertical and 
horizontal structural variation in terms of canopy density, may 
offer valuable insights into crown shape characteristics 
associated with infection that could not be captured using optical 
data. 
 
Future research should further explore the predictive power of 
NIR and LiDAR-based metrics, separate and in combination, 
with the aim of identifying infected trees prior to tree felling. 
Ultimately, this approach could contribute to the development of 
effective mapping and monitoring of root rot in Norway spruce 
using high-resolution remote sensing data within the European 
forest industry. To ensure the operational utility of this approach 
in forest health monitoring, future studies should also address the 
critical need for non-destructive ground-truthing methods. 
Developing and validating such techniques will be essential for 
applying this methodology to live, standing forests, thereby 
expanding its relevance for sustainable forest management. In 
future work, we will also quantitatively compare the data from 
the DJI Mavic 3M RGB camera and the RGB data from the DJI 
Zenmuse L2 sensor to evaluate the additional value. 
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