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Abstract

Root rot caused by fungi in the Heterobasidion spp. and Armillaria spp. is one of the most economically significant problems in the
European forest industry. Early detection remains challenging due to the lack of external visual symptoms in infected trees. This study
explores the potential of unmanned aerial vehicles (UAVs) equipped with multispectral and light detection and ranging (LiDAR)
sensors for detecting spectral and structural differences between healthy and root rot-infected Norway spruce (Picea abies (L.) H.
Karst.) trees growing in southern Sweden. Remote sensing data from a total of 110 trees, classified as healthy (n=59) or infected (n=51)
based on post-harvest survey of stump decay, were analysed. Canopy multispectral reflectance values from red, green, red-edge and
near-infrared (NIR) bands, as well as from the reflected intensity values from the point cloud of LiDAR data, were analysed based on
pre-harvest remote sensing data. Statistical analysis revealed significant differences in spectral response between healthy and infected
trees in both the NIR band from the multispectral data and the reflected intensity from the LiDAR point cloud. These results underscore
the potential of UAV-based optical and LiDAR data for detecting forest pathogen damage, highlighting their value in supporting

sustainable and effective forest management.

1. Introduction

Root rot has a significant economic impact and is estimated to
cost the European forest industry at least 800 million Euro
annually (Asiegbu et al., 2005). The damage is primarily caused
by fungal pathogens from Heterobasidion spp. and Armillaria
spp.- (Solheim, 2010). Trees attacked by these fungi via roots
exhibit symptoms such as crown thinning and decay in the
heartwood and roots (Asiegbu et al., 2005; Dalponte et al., 2022;
Kurkela 2002). When faced with pathogenic attacks, trees can
divert resources from biomass production towards defence
mechanisms. Tree defences against pathogens include both
constitutive defences, such as bark and lignin, and inducible
defences, like the production of pathogenesis-related proteins
and the formation of traumatic resin ducts that are activated
following infection (Mageroy et al., 2023). These strategies
ensure both immediate and long-term protection. The trade-off
between growth and defence may limit the competitive success
of the trees (Herms and Mattson, 1992). Moreover, both decay
and reduced biomass production can significantly diminish the
economic profit from the affected forest stand.

Early detection of infected trees is essential for effective forest
management and mitigation strategies, as well as for estimating
the financial impact of root rot damage before final harvesting. A
major challenge in the early detection of rot infected trees lies in
the absence of external visible symptoms (Vollbrecht and
Agestam, 1995). Remote sensing techniques have shown
promising results in identifying tree stress before visible signs
appear, including water stress, nutrient levels, and bark beetle
infestations (Behmann et al., 2014; Meddens et al., 2013; Peng et
al., 2020). The red-edge band (680-750 nm), for example, can
detect chlorophyll concentrations in leaves and pine needles
(Gitelson et al., 1996). In the visible range, reflectance is largely
influenced by the concentration of chlorophyll and other
pigments. Chlorophyll absorbs blue and red wavelengths,
resulting in low reflectance in these bands. As pigment
absorption is minimal in the NIR, healthy vegetation typically

exhibits high reflectance in this spectral band (Male et al., 2010).
Although numerous remote sensing studies have focused on
evaluating general vegetation health and stress levels, the
application of these techniques for early detection of rot infected
trees remains comparatively underexplored. Light detection and
ranging (LiDAR) data can be used to estimate structural
attributes of individual trees, such as crown width, diameter,
volume, and height (Maltamo et al., 2004), but the reflected light
from each point in the LiDAR point cloud could potentially also
be used for detection of damage. The ability of LIDAR to capture
three-dimensional canopy structure, along with spectral values of
reflected light, opens new possibilities for detecting structural
differences between healthy and infected trees. Thus, data
acquisition using sensors mounted on unmanned aerial vehicles
(UAVs) provides a potential method for assessing forest health
on a large scale and at a low cost. This study explores whether
root rot in Norway spruce (Picea abies (L.) H. Karst.) trees can
be detected through spectral and structural differences captured
by multispectral and LiDAR UAV data.

2. Materials and Methods
2.1 Remote Sensing Data

Multispectral images and LiDAR point cloud data were collected
on October 6, 2024, using a DJI Mavic 3M drone equipped with
a multispectral (four lenses) camera and an RGB camera (i.e.,
4x5 MP in green, red, red-edge, and near-infrared and 20 MP in
RGB) (DJI, 2024a), and a DJI Matrice 350 RTK drone equipped
with a DJI Zenmuse L2 sensor (i.e., a Livox LiDAR module and
a 20 MP RGB camera) (DJI, 2024b), respectively. The UAV
campaigns were conducted over a forest stand (~ 2 ha) prior to
tree felling and post harvesting. The post-harvest campaign
provided an overview of the harvested area and a background
image for superimposing GNSS-measurements of tree stump
positions (Figure 1). Weather conditions during all drone flights
were sunny with some cloud cover. The flights in fall of 2024
were carried out at an altitude of about 60 m above ground level
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gure 1. Post harvest UAV image of the study area at the estate
Pukatorp 1:1 (March 2025).
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and at a speed of 4 m/s. The multispectral imagery was captured
with a frontal overlap of 80% and a side overlap of 70%, while
the LiDAR data were collected with a side overlap of 60%,
ensuring high spatial resolution and a dense point cloud. The
spatial resolution for the multispectral data was 2.77 cm (ortho
ground sampling distance) and the density of the LiDAR point
cloud reached about 250 points per square meter.

2.2 Field Data

This study was conducted on the estate Pukatorp 1:1, located
about 20 km northeast of Véxjo (56°59'11.0"N, 15°03'00.1"E) in

*

southern Sweden. Field data were collected to classify healthy
trees from trees with rot. Stumps were surveyed in March 2025,
after tree harvesting to determine infection status (Figure 2),
stump diameter, and stump position. The latter were measured
with a high-precision GNSS receiver (Trimble R12i) in RTK
mode to obtain sub-centimetre accuracy. The stump diameter was
measured as an auxiliary variable to evaluate potential
differences in UAV data between thinner (suppressed trees) and
thicker (dominant) trees.

Figure 2. Examples of a healthy (left) and a root rot-infected
(right) Norway spruce (Picea abies (L.) H. Karst.) stump.

Based on the stump survey, the spectral reflectance responses in
the tree crowns could be compared between healthy and infected
trees, focusing on the following wavelengths: green (G): 560 +
16 nm, red (R): 650 = 16 nm, red-edge (RE): 730 + 16 nm, and
near-infrared (NIR): 860 + 26 nm. In addition, reflected light
from each point in the LiDAR point cloud was acquired at a
wavelength of 905 nm.
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Figure 3. Near-infrared false colour composite image covering the forest stand, where lighter parts represent higher reflectance
values and darker parts lower reflectance values. The circles are located around each selected tree crown used in this study. To the
bottom left a magnified view of three of the circles are shown, where red circle is located on infected trees and blue circles are
located on healthy trees.
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2.3 GIS and Statistical Analysis

GIS-based spatial analysis was performed using ArcGIS Pro to
compare spectral reflectance responses from the tree crowns
across the mentioned wavelengths on the healthy and infected
trees, determined from the stump survey, within the forest stand.
Two buffer zones with a radius of 0.5 m and 1.0 m were created
around each tree crown position using the GNSS-measured
stump positions from the field survey post harvesting (see
Figures 4 and 5). These buffer zones were then used to extract
mean spectral reflectance values for each tree location. The
values were extracted for the four spectral bands R, G, RE, and
NIR, as well as for the LiDAR point cloud. A total of 59 healthy
and 51 infected trees were included in the analysis. As a LIDAR
point cloud can be used to delineate tree crowns, it was also used
to assist in locating the 110 tree crowns assumed to be in the
vicinity of the positions measured from the stump survey post
harvesting using the GNSS-receiver, for extracting the spectral
reflectance values (Reutebuch et al., 2003). Prior to statistical
testing of differences between healthy and infected trees, a
Levene’s test was conducted to assess the assumption of equal
variances for both multispectral and LiDAR data. For the
multispectral data, the assumption of equal variances was met
and, therefore, a Student’s t-test was used to compare the mean
spectral values between healthy and infected trees. As for the
LiDAR data, the values showed unequal variance between the
groups and, thus, a Welch two sample t-test, which does not
assume equal variance, was used for those comparisons. Lastly,
to further explore potential spectral differences, a closer
examination was performed on the forty trees exhibiting the
highest and lowest mean spectral values.
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Figure 4. LiDAR data intensity image co

d, wi

3. Results

A statistically significant difference was found in the NIR band
between healthy and root rot-infected trees when using a 0.5 m
buffer zone around the center points of the treetops (ti0s=2.3;
p=0.0244). The red-edge and green bands showed a declining
trend, but no significant difference was found between the
infected and healthy trees (tios=1.5; p=0.1514; ti0s=1.5;
p=0.1853, respectively), while the red band had the highest p-
value of all spectral bands (ti0s=0.5; p=0.6378). These patterns
are visualised in Figure 6, which shows the mean spectral
response distributions as a boxplot for each band. All
multispectral p-values were higher when using the 1.0 m buffer
and the NIR band was the only one with a significant difference
(t108=2.0; p=0.0446).

For the LiDAR data (Figure 7), the 1.0 m buffer resulted in a
lower p-value (t10s=2.2; p=0.0312), compared to the 0.5 m buffer
(tios=1.6; p=0.1065). There was no significant difference in
stump diameter between healthy and infected trees (tios=0.7;
p=0.4509) (Figure 8).

For NIR, out of the twenty trees with the highest mean spectral
reflectance values for the 0.5 m buffer, thirteen were classified as
healthy and nine out of the twenty trees with the lowest spectral
reflectance values were also classified as healthy. When the same
comparison was made for LiIDAR using the 1.0 m buffer, half of
the twenty trees with the highest mean spectral reflectance was
healthy and five out of the twenty trees with the lowest mean
spectral reflectance was healthy.
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here warmer colours (red) represent higher intensity and cooler

colours (blue) indicating lower intensity. The two circles for each dot are the buffer zones retrieved from the GNSS-measured tree
stumps representing the tree crowns. To the bottom left a magnified view of three of the buffer zones are shown, where yellow circle
is the 0.5 m buffer zone, and green (infected) and blue (healthy) is the 1.0 m buffer zone used for spatial analysis of spectral
reflectance.
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Figure 5. NIR spectral reflectance image covering the forest stand, where lighter parts represent higher reflectance values and darker
parts lower reflectance values. The two circles for each dot are the buffer zones retrieved from the GNSS-measured tree stumps
representing the tree crowns. To the bottom left a magnified view of three of the buffer zones are shown, where yellow circle is the
0.5 m buffer zone, and red (infected) and blue (healthy) is the 1.0 m buffer zone used for spatial analysis of spectral reflectance.
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Figure 6. Mean spectral reflectance values for healthy and root rot-infected trees across four spectral bands. Healthy trees (left)
consistently show higher reflectance values compared to infected trees (right), particularly in the NIR band. The boxplots show the
distribution of mean values within 0.5 m radius buffer zones around each tree crown. Each box represents the interquartile range (25"
to 75" percentile), the horizontal line shows the median and the “x” is the mean value of the box plot. The whiskers extend to the
minimum and maximum values within 1.5 times the interquartile range. Outliers beyond the whiskers are shown as dots. The
statistical analysis for these boxplots was assessed using a Student’s t-test.
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Figure 7. Left: Box plots for LIDAR mean spectral response for the 1.0 m buffer. While there was a significant difference between
healthy and root rot-infected trees (tios=2.2; p=0.0312), the infected trees (n=51) showed a greater variation of spectral response
compared to the healthy trees (n=59). Right: Box plots for LIDAR mean spectral response for the 0.5 m buffer. Unlike the 1.0 m

buffer, there was no significant difference in spectral response (tios=1.6; p=0.1065), between healthy and infected trees. The
statistical analysis for these boxplots was assessed using a Welch t-test.
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Figure 8. Box plots showing the stump diameter of all healthy
and infected trees used in this study. No significant difference
(t10s=0.7; p=0.4509) was found between the two groups.

4. Discussion

In this study, we addressed the challenge of early detection of
fungal infections in Norway spruce trees. Due to the lack of clear
external symptoms in early stages, we explored whether spectral
and structural differences captured by UAV-based multispectral
and LiDAR data could be used to distinguish between healthy
and infected trees.

The significant difference observed in the NIR band suggests that
this wavelength is effective in discriminating between the
spectral reflectance values of healthy trees and those infested
with rot. The relatively low p-values in red-edge and green bands
further suggests that subtle differences in chlorophyll levels in
coniferous needles can be detected using these wavelengths
(Gitelson et al., 1996). An important spatial consideration in our
analysis was the influence of buffer size to extract spectral data
from UAV imagery. The lack of significance in the 1.0 m buffer
for multispectral data highlights the importance of spatial scale,
suggesting that a larger buffer may dilute the spectral response
from tree crowns due to mixed pixels from the sunlit and shaded
part of the tree crown. Interestingly, the opposite pattern was
observed from the spectral response of the LiDAR echo, where
the 1.0 m buffer zone yielded a lower p-value compared to the
0.5 m buffer zone. This suggests that structural differences
caused by root rot, such as reduced crown density, may be more
detectable when using a broader buffer for spatial analysis.

The lower reflectance values observed in NIR and LiDAR data
for infected trees may be explained by a reduction of reduced
needle mass. As trees with fewer needles have more visible twigs
and branches, it is reasonable to assume that the tree crowns have
lower spectral reflectance overall. LIDAR, through its sensitivity
to three-dimensional canopy structure, may capture early
responses to infection not visible in spectral data alone. As this
distribution suggests that while there may be a clear relationship
between spectral intensity and tree health, the distinction is not
always sufficiently clear to serve as a reliable indicator on its
own. While previous studies have used LiDAR data to determine
tree crown position and structure, none seem to have explored the
potential of using the reflected intensity from the LiDAR point
cloud data for detecting rot infection (Asiegbu et al., 2005;
Dalponte et al., 2022; Kurkela, 2002). This study, therefore,
contributes to an unexplored use of LiDAR data in detecting root
rot in Norway spruce trees.

5. Conclusions and Future Work

The results of our study demonstrate that UAV-based
multispectral imaging, particularly through NIR reflectance at
the tree crown level, and LiDAR spectral reflectance from the
point cloud can be used to detect signs of root rot in single trees
of Norway spruce. The sensitivity of LIDAR to both vertical and
horizontal structural variation in terms of canopy density, may
offer valuable insights into crown shape characteristics
associated with infection that could not be captured using optical
data.

Future research should further explore the predictive power of
NIR and LiDAR-based metrics, separate and in combination,
with the aim of identifying infected trees prior to tree felling.
Ultimately, this approach could contribute to the development of
effective mapping and monitoring of root rot in Norway spruce
using high-resolution remote sensing data within the European
forest industry. To ensure the operational utility of this approach
in forest health monitoring, future studies should also address the
critical need for non-destructive ground-truthing methods.
Developing and validating such techniques will be essential for
applying this methodology to live, standing forests, thereby
expanding its relevance for sustainable forest management. In
future work, we will also quantitatively compare the data from
the DJI Mavic 3M RGB camera and the RGB data from the DJI
Zenmuse L2 sensor to evaluate the additional value.
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