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Abstract

This paper discusses the challenges faced by current tree segmentation pipelines in accurately detecting and performing coarse-to-fine
segmentation of individual trees from terrestrial laser scanning (TLS) point clouds acquired in fruit-bearing crops such as orange
orchards. Most pipelines for tree detection and individual tree segmentation were originally developed for forest environments,
particularly boreal and temperate forests. Consequently, tropical forests and trees with more complex structures pose a challenge. For
instance, orange, coffee, and lime crops present dense and overlapping canopies, which differ from those of boreal and managed forests.
Our discussion is supported by a study aiming to detect and segment trees in an orange orchard using raster-based, point cloud-based,
and hybrid algorithms. The results highlight the advantages and disadvantages in performance across the pipelines. Although stem
detection is generally a more stable and accurate method for identifying tree positions, we concluded that approaches based on canopy
height models (CHM) for tree detection and raster-based segmentation tend to provide more comprehensive results for orange crop
trees. These methods offer better performance in cases where the canopy structure is complex, compared to those that rely on stem

detection and clustering segmentation techniques.
1. Introduction

The integration of advanced remote sensing techniques in digital
agriculture enables continuous and reliable information for crop
management and monitoring. For instance, close-range
techniques based on terrestrial laser scanning (TLS) or mobile
laser scanning (MLS) data offer high-resolution, three-
dimensional information that supports the analysis at the
individual level. TLS can be used to obtain tree structural
parameters (Rivera et al., 2023), such as canopy height, biomass,
and canopy architecture (e.g. number of branches and fruits),
among others (Hyyppai et al., 2001; Yrttimaa et al., 2024).

Despite the substantial advances in close-range LiDAR data
acquisition (e.g., TLS, MLS) and processing, especially for forest
environments, challenges remain when applying tree detection
and segmentation algorithms for agricultural trees, such as
orchard trees (e.g., orange, coffee). One important task that
requires greater precision is the segmentation of individual trees
in point clouds for the estimation of accurate per-tree
information, such as canopy structure parameters, which supports
yield estimation, health monitoring, and targeted interventions
(Castanheiro et al., 2023; Rivera et al., 2023, Silva et al., 2024).
Therefore, several studies have presented automated methods for
extracting individual trees from the LiDAR point clouds (Zhen et
al., 2016). Most of the methods were developed and validated,
particularly in boreal (Yrttimaa et al., 2019) and managed
(Krisanski et al., 2021) forests. While these approaches have
shown consistent results in such environments, their application
in more complex vegetated structures, such as agricultural
environments, remains challenging.

Errors and noise resulting from the tree segmentation process are
the main sources of inaccuracies when estimating tree parameters
from point clouds, such as canopy height. In citrus orchard
systems, where trees have irregular crown shapes and interlacing
branches of neighbouring trees and occluded stems, traditional

segmentation algorithms designed for boreal and temperate tree
species may struggle to accurately delineate individual trees.

In this work, we discuss the challenges associated with tree
detection and individual tree segmentation for structurally
complex trees, such as those found in fruit-bearing crops. Our
focus is on raster-based, point cloud-based, and hybrid detection
and segmentation algorithms. To support this discussion, we
present a case study conducted in four orange orchard plots with
varying tree spacing. The performance of the tree detection and
segmentation algorithms was evaluated using one raster-based
method (Point Cloud Tools), one point cloud-based method
(3DFin), and one hybrid method (LiPheKit).

2. Background

According to Deng et al. (2024), tree segmentation methods can
be grouped into three main categories: (1) raster-based methods
(2D), (2) point cloud-based methods (3D), and (3) hybrid
methods.

Raster-based techniques rely on 2D representations derived from
3D point clouds, such as the canopy height model (CHM).
Individual trees are segmented by applying a local maximum
filter (Koch et al., 2006) or watershed segmentation (Yun et al.,
2021) on raster images derived from point clouds. Point Cloud
Tools (Yrttimaa et al., 2021) and PyCrown (Zorner et al., 2028)
are examples of raster-based approaches. These methods adapt
classical image processing algorithms to delineate individual
trees. An example is the marker-controlled watershed
segmentation, which interprets the CHM as a surface where
treetops are local maxima and crown boundaries follow ridge
lines between adjacent canopy regions. This technique is
implemented in Point Cloud Tools, where individual trees are
automatically detected in forest environments. Another popular
strategy is the application of region-growing algorithms.
PyCrown identifies initial tree locations as local maxima in the
CHM and applies a region-growing algorithm, expanding the
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crown by adding neighbouring pixels according to four
conditions: (i) the pixel height must be greater than 70% of the
seed height, (ii) greater than 55% of the current crown's mean
height, (iii) less than 105% of the seed height, and (iv) located
within a maximum distance (typically 10 m) from the seed point.
This region-growing approach continues until no additional
pixels satisfy the conditions. However, the small tree covered by
bigger trees cannot be detected in raster-based methods (Deng et
al., 2024).

PyCrown identifies initial tree locations as local maxima in the
CHM and applies a region-growing algorithm, expanding the
crown by adding neighbouring pixels that meet height and
distance thresholds relative to the seed and crown mean height,
until no more pixels satisfy the conditions.

To address the limitations of raster-based methods, such as
accuracy in tree positioning and limited subcanopy detection,
point cloud-based methods operate directly in 3D space, for
instance, using clustering algorithms (e.g., k-means,
HDBSCAN), geometric model fitting to isolate tree structures,
and voxel-based segmentation (e.g., 3DFin). More recently,
deep-learning methods have been proposed, such as the Forest
Structural Complexity Tool (FSCT). For instance, FSCT
(Krisanski et al., 2021) uses PointNet++ for point cloud
classification and extracts stem points, which are horizontally
sliced and clustered using HDBSCAN. Then, cylinders are fitted
using RANSAC, and trees are detected based on cylinder
orientation and spatial proximity. Finally, the vegetation points
are assigned to the nearest identified tree stem, completing the
individual tree extraction process. However, point cloud-based
methods are generally computationally demanding. This is
especially true for deep learning models, which typically require
thousands (or more) of labelled samples and significantly more
processing time.

Hybrid segmentation methods aim to combine the strengths of
both 2D and 3D data sources to improve the detection and
delineation of individual trees. Unlike raster-based or fully 3D
approaches, hybrid methods often follow a coarse-to-fine
strategy, where one representation provides an initial estimate
that is later refined using the other. While some methods begin
with CHM-based segmentation (Fu et al., 2024), others start with
tree detection and localisation (Santos et al., 2024). This
flexibility enables more robust handling of complex tree
structures, mainly in scenarios where overlapping canopies and
occlusions pose challenges that cannot be fully addressed by
either 2D or 3D approaches alone. For instance, the LiPheKit
package (Wittke et al., 2024) determines tree locations using a
stem detection algorithm originally proposed by Liang et al.
(2011), where stems are identified by analysing the flatness of a
point and its neighbourhood, along with the orientation of its
normal vector. The fine segmentation steps rely on the algorithm
developed by Hakula et al. (2023), which performs layer-by-layer
DBSCAN clustering on 2D projections of the point cloud at
different heights. As such, this method can be considered hybrid,
since part of the process is conducted in 2D space, while
subsequent steps are carried out using the full 3D point cloud (see
Section 3.2 for more details).

The mentioned approaches were mostly tested for detecting and
segmenting trees in forest and urban areas. In such environments,
the tree stems are often fully mapped with a TLS. In the context
of an agricultural environment, different crop types, such as fruit
orchards and plantations, present high high-density canopy and
interlacing branches that may require further studies about the
segmentation strategies (Wang et al., 2025).

3. Experiments
3.1 Datasets

Although close-range LiDAR data can be acquired by different
methods, either static or mobile, we decided to use TLS to
evaluate the segmentation algorithms, since it can provide higher
spatial resolution and better stem mapping, which are often
essential for most tree segmentation algorithms. Data collection
was performed using a FARO Focus Premium 70 TLS, which has
a field of view of 300° x 360°. The TLS was configured to collect
up to 400,000 points per second (1/5 of the maximum possible),
with a 4x quality to store the point coordinates. Figure 1 shows
the FARO Focus Premium 70 TLS placed in an orange orchard.

: L ke O s
. FARO Focus laser scanner in an orange orchard.
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The experimental data were collected from orange crops. Orange
orchards are typically arranged in a systematic pattern. The
canopy of a mature orange tree is quite dense, covering the whole
tree, as shown in Figure 1. These characteristics are also present
in other crops, such as lime and coftee.

The test area consists of four orange crop plots located in Brazil.
These selected plots show different tree spacing patterns,
enabling the evaluation of methods in a complex agricultural
environment. Figure 2 shows the TLS point clouds obtained in
the test area: (a) plot A, (b) plot B, (¢) plot C, (d) plot D, which
were colourised considering the Z coordinates. Plot A presents
mature trees, resulting in overlapping crowns, which increase the
challenge in delineating the crown. Plots B and D contain trees
of varying heights, including both young and mature individuals.
In plot B, partial occlusion of trees located at the end of the row
increases the challenge of detecting individual trees. Plot C
shows a more regular distribution of similarly sized trees.

To enable a comparative analysis of the methods’ performance in
orange orchards versus forests, we also tested the selected
algorithms in a boreal forest plot located in Evo, Finland
(Yrttimaa et al. 2020). This dataset, which was made publicly
available by the University of Eastern Finland (2021), was
acquired using a Leica RTC360 3D laser scanner (Leica
Geosystems, St. Gallen, Switzerland) with a field of view of 300°
x 360°. A multi-scan approach with five separate scanning
positions was used to capture a detailed point cloud of the plot-
level area analysed in this study (Plot 1002). This plot represents
the type of environment for which most of these pipelines were
originally developed and optimised. Unlike citrus orchards,
boreal forests typically feature straight stems, sparse understory
vegetation, and minimal canopy overlap. The forest plot used
here contains a predominantly mature forest structure, with 92
tall and dominant trees, 15 smaller trees, and 30 young trees at an
early growth stage, many of which have only thin branches
without developed foliage. Figure 3 shows the boreal forest plot
used in the analysis.
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Figure 2. Point clouds obtained with FARO Focus in (a) plot A,

(b) plot B, (c) plot C, and (d) plot D. Z coordinate unit: meters.

Figure 3. The EVO forest in Finland.

3.2 Methods

To support our discussion on the effectiveness of raster-based,
point cloud-based, and hybrid methods in those challenging
agricultural environments, we select three methods: Point Cloud
Tools (Yrttimaa, 2021), 3DFin (Laino et al., 2024), and LiPheKit
(Campos et al., 2024; Wittke et al., 2024). Before applying these
segmentation approaches, preliminary processing steps were
performed to generate the digital terrain model (DTM) and CHM
using the cloth simulation filter (CSF) tool (Zhang et al., 2016)
to segment ground points, which were used to generate the DTM
with 20 cm resolution. The CHM was generated by subtracting
the raw point cloud from the mesh. This preprocessing provided
input data for the methods discussed in the following sections.

3.2.1 Point Cloud Tools

The Point Cloud Tools (Yrttimaa et al., 2021) approach employs
a raster-based canopy segmentation approach. The tree top
locations area was initially identified in CHM using a variable
window filter approach. These tree tops are used as seeds for the
subsequent watershed segmentation, which delineates individual
crown segments. The method then employs a point-in-polygon
approach in the XY-plane to extract points belonging to each
crown segment, partitioning the point cloud into smaller samples
that represent individual trees or groups of trees where crowns
overlap.

3.2.2 3DFin

3DFin (Laino et al., 2024) is a pipeline designed for forest
inventories using TLS. This pipeline consists of four steps: (1)
height-normalisation of the point cloud, (2) identification of
stems within the user-provided horizontal stripe, (3) tree
individualisation based on point-to-stem distances, and (4)
computation of stem diameters at different section heights. The
3DFin (Laino et al., 2024) pipeline includes denoising steps that
combine voxelization and DBSCAN clustering. Voxel grids with
varying resolution are employed to differentiate trunk-like
structures from noise or foliage, and clusters are selectively
retained based on their size and geometric consistency. This
enables robust estimation of tree height and structure while
minimising the inclusion of non-relevant points such as nearby
trees or canopy artefacts. At the end, small clusters are discarded,
and from the remaining voxels associated with each tree, a
cylindrical volume around the estimated trunk axis is defined.
The highest voxel within this volume is then used to determine
the tree height.

3.23 LiPheKit

LiPheKit is a point cloud processing package developed to
extract individual tree time series from a permanent laser
scanning (PLS) dataset, as described by Wittke et al. (2024). The
input for its coarse-to-fine tree segmentation algorithm is the tree
position, which is automatically identified using either stem or
canopy height detection. Since stem detection in orange orchards
is particularly challenging due to high levels of occlusion and low
stem continuity (Castanheiro et al., 2023), in this study, we
explored a canopy-based approach, in which tree positions are
detected based on local maxima in a CHM (similar to the Point
Cloud Tool pipeline). After tree detection, individual trees are
first coarsely segmented from the original point cloud using the
tree map and a cylinder-based clipping approach. This process
produces initial individual tree point clouds that may include
neighbouring noise, depending on the size of the cylinder buffer.
User input is required to define the optimal radius for the buffer
to minimise noise while preserving the tree structure. In a second
step, a fine-segmentation algorithm is performed considering the
points within the cylinder buffer of each tree, aiming to remove
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noise and neighbouring points from other trees. The fine
segmentation algorithm (Hakula et al, 2023) begins by dividing
the input point cloud into horizontal layers. Each layer is then
projected onto the XY-plane, and the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm is
applied independently to identify clusters. Tree locations are
estimated by fitting vertical lines through these clusters, using
local maxima of the Z-coordinates as auxiliary information. For
each detected tree, a corresponding set of points is extracted and
used as initial training data for a Fuzzy k-Nearest Neighbours
(FKNN) classifier, which then assigns all points belonging to the
target individual trees. This algorithm can be classified as a
hybrid method, as certain steps, such as DBSCAN clustering, are
performed in 2D space, while subsequent operations are carried
out in the 3D point cloud.

To evaluate the performance of the segmentation methods, we
compared the segmented tree with the reference trees that were
manually identified in each plot. If a tree is correctly detected, it
is a true positive (TP); if a tree is not detected but assigned to a
nearby tree, it is called a false negative (FN); and if a tree exists
but was partially segmented from the point cloud, it is called a
false positive (FP). Then, we calculated the recall (), precision
(p) and Fl-score (F) as shown in Equations 1, 2, and 3,
respectively.

TP
"TTPTFEN (1)
TP
P=Tp¥FpP )
2rp
F =
r+p 3)

4. Results and discussion
4.1 Tree detection

4.1.1 Method based on canopy detection

Both Point Cloud Tools and LiPheKit used the CHM to locate
individual trees on the orange crop plots. Despite the complexity
of the orange trees, their canopy is well represented in CHM,
allowing for a reliable detection of treetops. As a result, these
approaches were able to identify individual trees even with sparse
points due to partial occlusion. Overall, stem detection enables
more accurate tree position estimation, as stems are more stable
than canopies. Tree canopies are subject to constant changes due
to weather conditions (e.g., wind) and natural vertical and
horizontal growth (Zhen et al., 2016). Although canopy-based
detection may introduce greater bias in estimating the true
position of the tree and its stem, it still provides sufficiently
reliable input to serve as a seed for segmentation algorithms,
especially in complex tree structures, where the stem is occluded
due to high foliage density that hinders TLS laser beam
penetration. Figure 4 show example of three trees with varying
point densities due to TLS position: (a) a single tree mapped from
multiple scans, resulting in a complete crown mapping and higher
density point cloud, (b) a tree mapped mainly from the front, and
(c) a tree located at the end of the row with lower point density
due to occlusion by a neighbouring tree.

Point Cloud Tools was also able to detect young trees, which
generally have smaller crowns. Therefore, this method could
identify trees with variations in crown size. This is because,

unlike forests with vertically stratified canopies, orange orchards
exhibit lateral crown overlap. Trees are planted in very close
proximity but do not significantly overshadow one another,
which is often the main issue when applying raster-based
methods on complex forests. In contrast, these small trees were
not detected by LiPheKit as its parameters were set to consider
only treetops more than 2 m in height to avoid the detection of
non-vegetation objects such as humans and tripods presented in
the scene.

(a) (b) (c)
Figure 4. Example of trees with different dense canopies: (a) a
single tree mapped with a complete crown mapping and higher
density point cloud, (b) a tree mapped only from the front, and

(c) a tree located at the end of the row with lower point density.

To access the tree detection performance, we calculated recall (),
precision (p), and F1-score (F) based on the comparison between
detected trees and reference data, as shown in Table 1.

Point Cloud Tools LiPheKit

A B C D A B C D
r | 0.90]0.90 | 0.88 | 0.90 | 0.93 | 0.86 | 0.90 1
p 1077 1067 | 042 | 0.52 | 0.60 | 0.50 | 0.59 | 0.63
F 0831076 |056]0.65]0.73]0.63 |0.71]0.77
Table 1. Evaluation metrics (recall - r, precision - p, and F1-

score - F) for the Point Cloud Tool and LiPheKit approach,
based on the comparison between the detected and reference
tree positions.

As shown in Table 1, the recall values remained high, indicating
that most of the trees present in the point clouds were detected.
However, precision values were lower due to over-segmentation.
Over-segmentation means that multiple peaks were detected for
a single tree. This can occur due to the structural characteristics
of orange orchards, combined with the presence of trees of
varying sizes (both young and mature) within the same plot,
which makes parameterisation particularly challenging. A larger
search window can result in the detection of trees with dominant
peaks. In comparison, a smaller window allows the detection of
smaller trees, but may confuse multiple peaks within a single
large crown as separate trees. This issue is prevalent in orange
orchards, where a single orange tree with irregular canopies may
have more than one local maximum in the CHM due to the
presence of two or more peaks in its crown. Additionally, small
trees are present in these orchards, further increasing the
challenge of parameter tuning for accurate segmentation.

The F1-scores varied from 0.56 (Plot C) to 0.83 (Plot A). These
results show that the method is effective at detecting existing
trees, but it struggles with delineating individual tree crowns in
such a complex environment as an orange orchard. Therefore,
strategies need to be employed to improve the overall accuracy
of the approach. Some works apply a technique to merge tops
located within a distance from a stem, assuming they belong to
the same tree, avoiding over-segmentation. For instance, Point
Cloud Tools employs a filtering step based on stem positions and
the detected canopy locations to merge trees. However, for crops
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such as oranges, coffee and lemons, this strategy becomes
difficult to employ since the stems are often not mapped in TLS
data.

In the forest plot, Point Cloud Tools detected 76 trees, while
LiPheKit canopy-based approach identified 72 trees, capturing
most of the dominant and mature trees. In this environment, the
canopy-based detection methods tend to identify more dominant
trees, while smaller trees are more frequently occluded in raster
data by the canopy of taller trees. As a result, raster-based
methods usually detect more than 80% of the trees in mature
plots. In the tested methods, Point Cloud Tools detected 82% and
LiPheKit 78% of these trees.

4.1.2 Method based on stem detection

A total of 7, 1, 11, and 9 trees were detected with 3DFin in plot
A, plot B, plot C, and plot D, respectively. Furthermore, some
confusion occurred in plot C, where humans present in the scene
were detected as trees (e.g., trees 1, 3, 5, 6, 9, 11). The
performance of 3DFin for tree detection was limited since this
approach relies on detecting the stem. In orange orchards, the
trunks are not vertical as in the boreal forest, and, due to the dense
canopy, the trunks are not often visible in the point cloud,
reducing the performance of stem-based tree detection. Figure 5
shows the tree detected with 3DFin in (a) plot A, (b) plot B, (c)
plot C, and (d) plot D.

Coord. Z
124.40/

123.39)
122.37]
121.36

120.35'

o)
Figure 5. Trees detected with 3DFin in (a) plot A, (b) plot B, (c)
plot C, and (d) plot D.

Despite the limited performance, a few trees were detected in the
orchard plots. Some of these detections were young trees, such
as tree 7 in plot C and tree 9 in plot D, where the stems were
visible and mapped. Additionally, trees with sparser canopies
were also detected, since gaps in the canopy enabled some laser
pulses to reach the trunk, enabling the 3DFin approach to detect
the trees. Figure 6 shows two profiles of (a) a tree detected using

3DFin, where the trunk is visible, and (b) a tree with a dense
canopy, which was not detected.

o 2y

(a) (b)
Figure 6. Example of (a) a tree with a sparse canopy and (b) a
dense canopy.

When applied in a forest environment, both 3DFin and LiPhekit
stem-based approaches resulted in more consistent results. The
LiPheKit pipeline, when using the stem detection approach,
detected not only the dominant and mature trees but also the
smaller trees and even young trees at early growth stages,
resulting in 106 out of 111 trees (95.5% of the reference trees).
3DFin was able to identify 88 trees, capturing most of the
dominant trees but missing young trees at early growth stages,
which would require better parameterisation to detect thinner
stems.

These findings show that when stems are visible, the stem
detection can outperform the canopy-based approach, as it was
able to detect smaller trees often occluded by the canopy of taller
trees. Moreover, these results highlight how forest environments
pose different challenges in terms of point cloud data processing
compared to agricultural orchards. While citrus crops have more
uniform and well-spaced trees, boreal forests present irregularly
distributed trees with vertical structures and smaller trees in the
understory. Figure 7 shows (a) a top view, in which the blue
points are the tree detected by 3DFin, and (b) the detected
sections along the detected stem.

(a)
Figure 7. Tree detection in a boreal forest plot with (a) 3DFin
and (b) LiPheKit stem-based approach.

4.2 Segmentation

4.2.1 Methods based on raster images

Methods based on raster images provided better results for crop
delineation. By using CHM and tree position based on canopy
top detection, Point Cloud Tools delineate the tree crown,
enabling better identification of individual tree boundaries and
canopy structures. Figure 8 shows the tree detected using Point
Cloud Tools in (a) plot A, (b) plot B, (c) plot C, (d) plot D. The
dark blue points are from the original TLS point cloud, the green
points correspond to the segmented tree points identified by the
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Point Cloud Tools method, and the yellow boxes represent the
bounding volumes assigned to each detected tree.

Despite the consistent results achieved using raster images for
segmentation, some challenges remain in accurately delineating
individual tree crowns from point cloud data. Figure 9 show
example of (a) over-segmentation, where a single tree was
incorrectly divided into multiple segments due to multiple peaks
in the canopy, as previously discussed in Section 4.1.1, (b)
incorrect crown delineation, where parts of a tree's crown were
assigned to a neighbouring tree and (c) under-segmentation,
where two adjacent trees were grouped as a single tree.

(a)

(d)

Figure 8. Point Cloud Tools results: the tree detected in (a) plot
A, (b) plot B, (¢) plot C, (d) plot D, in which the green points
correspond to the segmented tree points identified by the Point
Cloud Tools method, and the yellow boxes represent the
bounding volumes assigned to each detected tree.

i g S is

(a) (b) (c)
Figure 9. Examples of (a) over-segmentation of a tree, (b)
incorrect crown delineation of two trees, and (c) under-
segmentation.

The incorrect delineation often occurred in lateral overlapping
between canopies, which are common in densely orange
orchards. This issue is illustrated in Figure 9(c), where parts of
one crown were assigned to a neighbouring tree, despite the
correct identification of both trees. This error can affect the
individual tree volume estimation, for instance. Therefore, a post-
processing strategy is needed to correctly delineate the tree
crown.

Point Cloud Tools detected young trees, but in some cases,
neighbouring small trees were grouped as a single tree; an
example is shown in Figure 9(d). This under-segmentation
typically occurred due to interlacing branches between
neighbouring trees or high canopy proximity, making it difficult
for a raster-based algorithm to separate them into distinct trees.
In this case, conditions based on expected crown size can be
incorporated into the algorithm. Since small trees tend to have
smaller and less complex canopies, adapting the segmentation
thresholds accordingly could avoid the merging of nearby small
trees.

The percentage of points from manually segmented trees that
were correctly included within the boundaries of the
segmentation generated by the algorithm was calculated. For
trees whose segmentation was assessed as correct using Point
Cloud Tools, approximately 99% of the points from the
automatically segmented tree fell within the manually segmented
tree. In contrast, for trees with segmentation errors, such as over-
or under-segmentation, this percentage was approximately 65%.

4.2.2  Methods based on point cloud
Point cloud-based methods delineate the tree by analysing the
spatial distribution and the characteristics of the 3D points.
LiPheKit and 3DFin segmentation methods, which are based on
clustering, rely on the assumption of vertical tree structures
relative to the stem or canopy positions.

For instance, in the case of LiPheKit, which applies Hakula et al.
(2023) algorithm, after identifying tree locations using local
maxima, a vertical line fitting algorithm is applied to the
extended set of all clusters detected by DBSCAN at each layer.
Each cluster is assigned a vertical line through its centre. Inliers
are then identified by selecting clusters whose centres lie within
half of their effective radius from the fitted line. However, in
orange orchards, the trees tend to have a more pronounced
horizontal structure than vertical, which can lead to multiple
vertical lines being fitted to different clusters belonging to the
same tree. This makes parameter tuning, such as setting
appropriate thresholds for the maximum distance from the cluster
centre to the line versus minimum distance between trees,
particularly challenging in this context.

Similarly, 3DFin relies on identifying potential stems represented
by a vertical axis from the upward to the base point. This line
becomes the reference for clustering points around the detected
stem. Points are grouped based on their proximity to the stem
axis, in which points falling within a given radial distance from
the stem line are associated with that tree. The point cloud
spacing both within and between orange trees is often similar,
which poses more challenges for clustering points belonging to
the same tree.

In contrast, in the boreal forest environment, these methods
performed well, as expected, due to the presence of well-defined
vertical stems and more distinct spacing between individual trees.

5. Conclusion

This study presented a discussion and evaluated the performance
of different tree detection and segmentation pipelines, originally
developed for boreal and temperate forests, when applied to
orange orchards. The results demonstrated that canopy-based
methods outperform stem-based approaches in detecting
individual mature trees in citrus environments. Stem-based
approaches rely on the detection of stems and vertical structures
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for segmenting trees, which are mostly occluded by the dense
canopy of mature trees. On the other hand, when orange trees are
still young and the canopy is sparse, stem-based methods can still
identify individual trees, while canopy-based methods may not
detect them, depending on the parameterisation of the window
search.

Although these challenges are well-known and have been
discussed by the original developers, our findings highlight that
further improvements are still needed in tree segmentation using
point clouds from citrus orchards. These challenges must be
considered when developing more robust and adaptable tree
segmentation workflows for agricultural applications. An
accurate tree segmentation can support subsequent steps such as
calculating tree height, crown dimensions, and other structural
metrics for monitoring and management.

For future work, it is recommended to extend the analysis to more
algorithms and agricultural environments with different crop
structures. The evaluation of approaches for tree detection and
segmentation across different crops with different algorithms can
potentially help identify crop-specific challenges. In addition,
different data acquisition methods, such as UAV-based, need to
be considered in the discussion. For instance, terrestrial
platforms, either static or mobile, tend to result in greater
occlusion of treetops, while UAV-based data often has occlusion
of trunks. Finally, based on our review and benchmark, we
conclude that hybrid approaches that combine both stem and
canopy information need to be further explored. This type of
approach could provide a more robust and flexible solution,
improving segmentation performance across the tree
development stages in a citrus orchard.
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