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Abstract 

 

This paper discusses the challenges faced by current tree segmentation pipelines in accurately detecting and performing coarse-to-fine 

segmentation of individual trees from terrestrial laser scanning (TLS) point clouds acquired in fruit-bearing crops such as orange 

orchards. Most pipelines for tree detection and individual tree segmentation were originally developed for forest environments, 

particularly boreal and temperate forests. Consequently, tropical forests and trees with more complex structures pose a challenge. For 

instance, orange, coffee, and lime crops present dense and overlapping canopies, which differ from those of boreal and managed forests. 

Our discussion is supported by a study aiming to detect and segment trees in an orange orchard using raster-based, point cloud-based, 

and hybrid algorithms. The results highlight the advantages and disadvantages in performance across the pipelines. Although stem 

detection is generally a more stable and accurate method for identifying tree positions, we concluded that approaches based on canopy 

height models (CHM) for tree detection and raster-based segmentation tend to provide more comprehensive results for orange crop 

trees. These methods offer better performance in cases where the canopy structure is complex, compared to those that rely on stem 

detection and clustering segmentation techniques. 

 

1. Introduction 

The integration of advanced remote sensing techniques in digital 

agriculture enables continuous and reliable information for crop 

management and monitoring. For instance, close-range 

techniques based on terrestrial laser scanning (TLS) or mobile 

laser scanning (MLS) data offer high-resolution, three-

dimensional information that supports the analysis at the 

individual level. TLS can be used to obtain tree structural 

parameters (Rivera et al., 2023), such as canopy height, biomass, 

and canopy architecture (e.g. number of branches and fruits), 

among others (Hyyppä et al., 2001; Yrttimaa et al., 2024).  

 

Despite the substantial advances in close-range LiDAR data 

acquisition (e.g., TLS, MLS) and processing, especially for forest 

environments, challenges remain when applying tree detection 

and segmentation algorithms for agricultural trees, such as 

orchard trees (e.g., orange, coffee). One important task that 

requires greater precision is the segmentation of individual trees 

in point clouds for the estimation of accurate per-tree 

information, such as canopy structure parameters, which supports 

yield estimation, health monitoring, and targeted interventions 

(Castanheiro et al., 2023; Rivera et al., 2023, Silva et al., 2024). 

Therefore, several studies have presented automated methods for 

extracting individual trees from the LiDAR point clouds (Zhen et 

al., 2016). Most of the methods were developed and validated, 

particularly in boreal (Yrttimaa et al., 2019) and managed 

(Krisanski et al., 2021) forests. While these approaches have 

shown consistent results in such environments, their application 

in more complex vegetated structures, such as agricultural 

environments, remains challenging. 

 

Errors and noise resulting from the tree segmentation process are 

the main sources of inaccuracies when estimating tree parameters 

from point clouds, such as canopy height. In citrus orchard 

systems, where trees have irregular crown shapes and interlacing 

branches of neighbouring trees and occluded stems, traditional 

segmentation algorithms designed for boreal and temperate tree 

species may struggle to accurately delineate individual trees. 

 

In this work, we discuss the challenges associated with tree 

detection and individual tree segmentation for structurally 

complex trees, such as those found in fruit-bearing crops. Our 

focus is on raster-based, point cloud-based, and hybrid detection 

and segmentation algorithms. To support this discussion, we 

present a case study conducted in four orange orchard plots with 

varying tree spacing. The performance of the tree detection and 

segmentation algorithms was evaluated using one raster-based 

method (Point Cloud Tools), one point cloud-based method 

(3DFin), and one hybrid method (LiPheKit). 

 

2. Background 

According to Deng et al. (2024), tree segmentation methods can 

be grouped into three main categories: (1) raster-based methods 

(2D), (2) point cloud-based methods (3D), and (3) hybrid 

methods.  

 

Raster-based techniques rely on 2D representations derived from 

3D point clouds, such as the canopy height model (CHM). 

Individual trees are segmented by applying a local maximum 

filter (Koch et al., 2006) or watershed segmentation (Yun et al., 

2021) on raster images derived from point clouds. Point Cloud 

Tools (Yrttimaa et al., 2021) and PyCrown (Zörner et al., 2028) 

are examples of raster-based approaches. These methods adapt 

classical image processing algorithms to delineate individual 

trees. An example is the marker-controlled watershed 

segmentation, which interprets the CHM as a surface where 

treetops are local maxima and crown boundaries follow ridge 

lines between adjacent canopy regions. This technique is 

implemented in Point Cloud Tools, where individual trees are 

automatically detected in forest environments. Another popular 

strategy is the application of region-growing algorithms.  

PyCrown identifies initial tree locations as local maxima in the 

CHM and applies a region-growing algorithm, expanding the 
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crown by adding neighbouring pixels according to four 

conditions: (i) the pixel height must be greater than 70% of the 

seed height, (ii) greater than 55% of the current crown's mean 

height, (iii) less than 105% of the seed height, and (iv) located 

within a maximum distance (typically 10 m) from the seed point. 

This region-growing approach continues until no additional 

pixels satisfy the conditions. However, the small tree covered by 

bigger trees cannot be detected in raster-based methods (Deng et 

al., 2024). 

 

PyCrown identifies initial tree locations as local maxima in the 

CHM and applies a region-growing algorithm, expanding the 

crown by adding neighbouring pixels that meet height and 

distance thresholds relative to the seed and crown mean height, 

until no more pixels satisfy the conditions. 

 

To address the limitations of raster-based methods, such as 

accuracy in tree positioning and limited subcanopy detection, 

point cloud-based methods operate directly in 3D space, for 

instance, using clustering algorithms (e.g., k-means, 

HDBSCAN), geometric model fitting to isolate tree structures, 

and voxel-based segmentation (e.g., 3DFin). More recently, 

deep-learning methods have been proposed, such as the Forest 

Structural Complexity Tool (FSCT). For instance, FSCT 

(Krisanski et al., 2021) uses PointNet++ for point cloud 

classification and extracts stem points, which are horizontally 

sliced and clustered using HDBSCAN. Then, cylinders are fitted 

using RANSAC, and trees are detected based on cylinder 

orientation and spatial proximity. Finally, the vegetation points 

are assigned to the nearest identified tree stem, completing the 

individual tree extraction process. However, point cloud-based 

methods are generally computationally demanding. This is 

especially true for deep learning models, which typically require 

thousands (or more) of labelled samples and significantly more 

processing time. 

 

Hybrid segmentation methods aim to combine the strengths of 

both 2D and 3D data sources to improve the detection and 

delineation of individual trees. Unlike raster-based or fully 3D 

approaches, hybrid methods often follow a coarse-to-fine 

strategy, where one representation provides an initial estimate 

that is later refined using the other. While some methods begin 

with CHM-based segmentation (Fu et al., 2024), others start with 

tree detection and localisation (Santos et al., 2024). This 

flexibility enables more robust handling of complex tree 

structures, mainly in scenarios where overlapping canopies and 

occlusions pose challenges that cannot be fully addressed by 

either 2D or 3D approaches alone. For instance, the LiPheKit 

package (Wittke et al., 2024) determines tree locations using a 

stem detection algorithm originally proposed by Liang et al. 

(2011), where stems are identified by analysing the flatness of a 

point and its neighbourhood, along with the orientation of its 

normal vector. The fine segmentation steps rely on the algorithm 

developed by Hakula et al. (2023), which performs layer-by-layer 

DBSCAN clustering on 2D projections of the point cloud at 

different heights. As such, this method can be considered hybrid, 

since part of the process is conducted in 2D space, while 

subsequent steps are carried out using the full 3D point cloud (see 

Section 3.2 for more details). 

 

The mentioned approaches were mostly tested for detecting and 

segmenting trees in forest and urban areas. In such environments, 

the tree stems are often fully mapped with a TLS. In the context 

of an agricultural environment, different crop types, such as fruit 

orchards and plantations, present high high-density canopy and 

interlacing branches that may require further studies about the 

segmentation strategies (Wang et al., 2025). 

3. Experiments 

3.1 Datasets 

Although close-range LiDAR data can be acquired by different 

methods, either static or mobile, we decided to use TLS to 

evaluate the segmentation algorithms, since it can provide higher 

spatial resolution and better stem mapping, which are often 

essential for most tree segmentation algorithms. Data collection 

was performed using a FARO Focus Premium 70 TLS, which has 

a field of view of 300° x 360°. The TLS was configured to collect 

up to 400,000 points per second (1/5 of the maximum possible), 

with a 4x quality to store the point coordinates. Figure 1 shows 

the FARO Focus Premium 70 TLS placed in an orange orchard.  

 

 
Figure 1. FARO Focus laser scanner in an orange orchard. 

 

The experimental data were collected from orange crops. Orange 

orchards are typically arranged in a systematic pattern. The 

canopy of a mature orange tree is quite dense, covering the whole 

tree, as shown in Figure 1. These characteristics are also present 

in other crops, such as lime and coffee. 

 

The test area consists of four orange crop plots located in Brazil. 

These selected plots show different tree spacing patterns, 

enabling the evaluation of methods in a complex agricultural 

environment. Figure 2 shows the TLS point clouds obtained in 

the test area: (a) plot A, (b) plot B, (c) plot C, (d) plot D, which 

were colourised considering the Z coordinates. Plot A presents 

mature trees, resulting in overlapping crowns, which increase the 

challenge in delineating the crown. Plots B and D contain trees 

of varying heights, including both young and mature individuals. 

In plot B, partial occlusion of trees located at the end of the row 

increases the challenge of detecting individual trees. Plot C 

shows a more regular distribution of similarly sized trees. 

 

To enable a comparative analysis of the methods’ performance in 

orange orchards versus forests, we also tested the selected 

algorithms in a boreal forest plot located in Evo, Finland 

(Yrttimaa et al. 2020). This dataset, which was made publicly 

available by the University of Eastern Finland (2021), was 

acquired using a Leica RTC360 3D laser scanner (Leica 

Geosystems, St. Gallen, Switzerland) with a field of view of 300° 

x 360°. A multi-scan approach with five separate scanning 

positions was used to capture a detailed point cloud of the plot-

level area analysed in this study (Plot 1002). This plot represents 

the type of environment for which most of these pipelines were 

originally developed and optimised. Unlike citrus orchards, 

boreal forests typically feature straight stems, sparse understory 

vegetation, and minimal canopy overlap. The forest plot used 

here contains a predominantly mature forest structure, with 92 

tall and dominant trees, 15 smaller trees, and 30 young trees at an 

early growth stage, many of which have only thin branches 

without developed foliage. Figure 3 shows the boreal forest plot 

used in the analysis. 
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Figure 2. Point clouds obtained with FARO Focus in (a) plot A, 

(b) plot B, (c) plot C, and (d) plot D. Z coordinate unit: meters. 

 

 
Figure 3. The EVO forest in Finland. 

 

3.2 Methods 

To support our discussion on the effectiveness of raster-based, 

point cloud-based, and hybrid methods in those challenging 

agricultural environments, we select three methods: Point Cloud 

Tools (Yrttimaa, 2021), 3DFin (Laino et al., 2024), and LiPheKit 

(Campos et al., 2024; Wittke et al., 2024). Before applying these 

segmentation approaches, preliminary processing steps were 

performed to generate the digital terrain model (DTM) and CHM 

using the cloth simulation filter (CSF) tool (Zhang et al., 2016) 

to segment ground points, which were used to generate the DTM 

with 20 cm resolution. The CHM was generated by subtracting 

the raw point cloud from the mesh. This preprocessing provided 

input data for the methods discussed in the following sections. 

 

3.2.1 Point Cloud Tools 

The Point Cloud Tools (Yrttimaa et al., 2021) approach employs 

a raster-based canopy segmentation approach. The tree top 

locations area was initially identified in CHM using a variable 

window filter approach. These tree tops are used as seeds for the 

subsequent watershed segmentation, which delineates individual 

crown segments. The method then employs a point-in-polygon 

approach in the XY-plane to extract points belonging to each 

crown segment, partitioning the point cloud into smaller samples 

that represent individual trees or groups of trees where crowns 

overlap.  

 

3.2.2 3DFin 

3DFin (Laino et al., 2024) is a pipeline designed for forest 

inventories using TLS. This pipeline consists of four steps: (1) 

height-normalisation of the point cloud, (2) identification of 

stems within the user-provided horizontal stripe, (3) tree 

individualisation based on point-to-stem distances, and (4) 

computation of stem diameters at different section heights. The 

3DFin (Laino et al., 2024) pipeline includes denoising steps that 

combine voxelization and DBSCAN clustering. Voxel grids with 

varying resolution are employed to differentiate trunk-like 

structures from noise or foliage, and clusters are selectively 

retained based on their size and geometric consistency. This 

enables robust estimation of tree height and structure while 

minimising the inclusion of non-relevant points such as nearby 

trees or canopy artefacts. At the end, small clusters are discarded, 

and from the remaining voxels associated with each tree, a 

cylindrical volume around the estimated trunk axis is defined. 

The highest voxel within this volume is then used to determine 

the tree height. 

 

3.2.3 LiPheKit 

LiPheKit is a point cloud processing package developed to 

extract individual tree time series from a permanent laser 

scanning (PLS) dataset, as described by Wittke et al. (2024). The 

input for its coarse-to-fine tree segmentation algorithm is the tree 

position, which is automatically identified using either stem or 

canopy height detection. Since stem detection in orange orchards 

is particularly challenging due to high levels of occlusion and low 

stem continuity (Castanheiro et al., 2023), in this study, we 

explored a canopy-based approach, in which tree positions are 

detected based on local maxima in a CHM (similar to the Point 

Cloud Tool pipeline). After tree detection, individual trees are 

first coarsely segmented from the original point cloud using the 

tree map and a cylinder-based clipping approach. This process 

produces initial individual tree point clouds that may include 

neighbouring noise, depending on the size of the cylinder buffer. 

User input is required to define the optimal radius for the buffer 

to minimise noise while preserving the tree structure. In a second 

step, a fine-segmentation algorithm is performed considering the 

points within the cylinder buffer of each tree, aiming to remove 
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noise and neighbouring points from other trees. The fine 

segmentation algorithm (Hakula et al, 2023) begins by dividing 

the input point cloud into horizontal layers. Each layer is then 

projected onto the XY-plane, and the DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise) algorithm is 

applied independently to identify clusters. Tree locations are 

estimated by fitting vertical lines through these clusters, using 

local maxima of the Z-coordinates as auxiliary information. For 

each detected tree, a corresponding set of points is extracted and 

used as initial training data for a Fuzzy k-Nearest Neighbours 

(FkNN) classifier, which then assigns all points belonging to the 

target individual trees. This algorithm can be classified as a 

hybrid method, as certain steps, such as DBSCAN clustering, are 

performed in 2D space, while subsequent operations are carried 

out in the 3D point cloud. 

 

To evaluate the performance of the segmentation methods, we 

compared the segmented tree with the reference trees that were 

manually identified in each plot. If a tree is correctly detected, it 

is a true positive (TP); if a tree is not detected but assigned to a 

nearby tree, it is called a false negative (FN); and if a tree exists 

but was partially segmented from the point cloud, it is called a 

false positive (FP). Then, we calculated the recall (r), precision 

(p) and F1-score (F) as shown in Equations 1, 2, and 3, 

respectively. 

 

 
𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
(1) 

 

 
𝑝 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(2) 

 

 𝐹 =
2𝑟𝑝

𝑟 + 𝑝
 (3) 

 

4. Results and discussion 

4.1 Tree detection  

4.1.1 Method based on canopy detection  

Both Point Cloud Tools and LiPheKit used the CHM to locate 

individual trees on the orange crop plots. Despite the complexity 

of the orange trees, their canopy is well represented in CHM, 

allowing for a reliable detection of treetops. As a result, these 

approaches were able to identify individual trees even with sparse 

points due to partial occlusion. Overall, stem detection enables 

more accurate tree position estimation, as stems are more stable 

than canopies. Tree canopies are subject to constant changes due 

to weather conditions (e.g., wind) and natural vertical and 

horizontal growth (Zhen et al., 2016). Although canopy-based 

detection may introduce greater bias in estimating the true 

position of the tree and its stem, it still provides sufficiently 

reliable input to serve as a seed for segmentation algorithms, 

especially in complex tree structures, where the stem is occluded 

due to high foliage density that hinders TLS laser beam 

penetration. Figure 4 show example of three trees with varying 

point densities due to TLS position: (a) a single tree mapped from 

multiple scans, resulting in a complete crown mapping and higher 

density point cloud, (b) a tree mapped mainly from the front, and 

(c) a tree located at the end of the row with lower point density 

due to occlusion by a neighbouring tree. 

 

Point Cloud Tools was also able to detect young trees, which 

generally have smaller crowns. Therefore, this method could 

identify trees with variations in crown size. This is because, 

unlike forests with vertically stratified canopies, orange orchards 

exhibit lateral crown overlap. Trees are planted in very close 

proximity but do not significantly overshadow one another, 

which is often the main issue when applying raster-based 

methods on complex forests. In contrast, these small trees were 

not detected by LiPheKit as its parameters were set to consider 

only treetops more than 2 m in height to avoid the detection of 

non-vegetation objects such as humans and tripods presented in 

the scene. 

 

 
Figure 4. Example of trees with different dense canopies: (a) a 

single tree mapped with a complete crown mapping and higher 

density point cloud, (b) a tree mapped only from the front, and 

(c) a tree located at the end of the row with lower point density. 

 

To access the tree detection performance, we calculated recall (r), 

precision (p), and F1-score (F) based on the comparison between 

detected trees and reference data, as shown in Table 1. 

 

 Point Cloud Tools LiPheKit 

 A B C D A B C D 

r 0.90 0.90 0.88 0.90 0.93 0.86 0.90 1 

p 0.77 0.67 0.42 0.52 0.60 0.50 0.59 0.63 

F 0.83 0.76 0.56 0.65 0.73 0.63 0.71 0.77 

Table 1. Evaluation metrics (recall - r, precision - p, and F1-

score - F) for the Point Cloud Tool and LiPheKit approach, 

based on the comparison between the detected and reference 

tree positions. 

 

As shown in Table 1, the recall values remained high, indicating 

that most of the trees present in the point clouds were detected. 

However, precision values were lower due to over-segmentation. 

Over-segmentation means that multiple peaks were detected for 

a single tree. This can occur due to the structural characteristics 

of orange orchards, combined with the presence of trees of 

varying sizes (both young and mature) within the same plot, 

which makes parameterisation particularly challenging. A larger 

search window can result in the detection of trees with dominant 

peaks. In comparison, a smaller window allows the detection of 

smaller trees, but may confuse multiple peaks within a single 

large crown as separate trees. This issue is prevalent in orange 

orchards, where a single orange tree with irregular canopies may 

have more than one local maximum in the CHM due to the 

presence of two or more peaks in its crown. Additionally, small 

trees are present in these orchards, further increasing the 

challenge of parameter tuning for accurate segmentation. 

 

The F1-scores varied from 0.56 (Plot C) to 0.83 (Plot A). These 

results show that the method is effective at detecting existing 

trees, but it struggles with delineating individual tree crowns in 

such a complex environment as an orange orchard. Therefore, 

strategies need to be employed to improve the overall accuracy 

of the approach. Some works apply a technique to merge tops 

located within a distance from a stem, assuming they belong to 

the same tree, avoiding over-segmentation. For instance, Point 

Cloud Tools employs a filtering step based on stem positions and 

the detected canopy locations to merge trees. However, for crops 
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such as oranges, coffee and lemons, this strategy becomes 

difficult to employ since the stems are often not mapped in TLS 

data. 

 

In the forest plot, Point Cloud Tools detected 76 trees, while 

LiPheKit canopy-based approach identified 72 trees, capturing 

most of the dominant and mature trees. In this environment, the 

canopy-based detection methods tend to identify more dominant 

trees, while smaller trees are more frequently occluded in raster 

data by the canopy of taller trees. As a result, raster-based 

methods usually detect more than 80% of the trees in mature 

plots. In the tested methods, Point Cloud Tools detected 82% and 

LiPheKit 78% of these trees. 

 

4.1.2 Method based on stem detection 

A total of 7, 1, 11, and 9 trees were detected with 3DFin in plot 

A, plot B, plot C, and plot D, respectively. Furthermore, some 

confusion occurred in plot C, where humans present in the scene 

were detected as trees (e.g., trees 1, 3, 5, 6, 9, 11). The 

performance of 3DFin for tree detection was limited since this 

approach relies on detecting the stem. In orange orchards, the 

trunks are not vertical as in the boreal forest, and, due to the dense 

canopy, the trunks are not often visible in the point cloud, 

reducing the performance of stem-based tree detection. Figure 5 

shows the tree detected with 3DFin in (a) plot A, (b) plot B, (c) 

plot C, and (d) plot D. 

 

 
Figure 5. Trees detected with 3DFin in (a) plot A, (b) plot B, (c) 

plot C, and (d) plot D.  

 

Despite the limited performance, a few trees were detected in the 

orchard plots. Some of these detections were young trees, such 

as tree 7 in plot C and tree 9 in plot D, where the stems were 

visible and mapped. Additionally, trees with sparser canopies 

were also detected, since gaps in the canopy enabled some laser 

pulses to reach the trunk, enabling the 3DFin approach to detect 

the trees. Figure 6 shows two profiles of (a) a tree detected using 

3DFin, where the trunk is visible, and (b) a tree with a dense 

canopy, which was not detected. 

 

 
Figure 6. Example of (a) a tree with a sparse canopy and (b) a 

dense canopy. 

 

When applied in a forest environment, both 3DFin and LiPhekit 

stem-based approaches resulted in more consistent results. The 

LiPheKit pipeline, when using the stem detection approach, 

detected not only the dominant and mature trees but also the 

smaller trees and even young trees at early growth stages, 

resulting in 106 out of 111 trees (95.5% of the reference trees). 

3DFin was able to identify 88 trees, capturing most of the 

dominant trees but missing young trees at early growth stages, 

which would require better parameterisation to detect thinner 

stems. 

 

These findings show that when stems are visible, the stem 

detection can outperform the canopy-based approach, as it was 

able to detect smaller trees often occluded by the canopy of taller 

trees. Moreover, these results highlight how forest environments 

pose different challenges in terms of point cloud data processing 

compared to agricultural orchards. While citrus crops have more 

uniform and well-spaced trees, boreal forests present irregularly 

distributed trees with vertical structures and smaller trees in the 

understory. Figure 7 shows (a) a top view, in which the blue 

points are the tree detected by 3DFin, and (b) the detected 

sections along the detected stem. 

 

 
Figure 7. Tree detection in a boreal forest plot with (a) 3DFin 

and (b) LiPheKit stem-based approach. 

 

4.2  Segmentation  

4.2.1 Methods based on raster images  

Methods based on raster images provided better results for crop 

delineation. By using CHM and tree position based on canopy 

top detection, Point Cloud Tools delineate the tree crown, 

enabling better identification of individual tree boundaries and 

canopy structures. Figure 8 shows the tree detected using Point 

Cloud Tools in (a) plot A, (b) plot B, (c) plot C, (d) plot D. The 

dark blue points are from the original TLS point cloud, the green 

points correspond to the segmented tree points identified by the 
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Point Cloud Tools method, and the yellow boxes represent the 

bounding volumes assigned to each detected tree. 

 

Despite the consistent results achieved using raster images for 

segmentation, some challenges remain in accurately delineating 

individual tree crowns from point cloud data. Figure 9 show 

example of (a) over-segmentation, where a single tree was 

incorrectly divided into multiple segments due to multiple peaks 

in the canopy, as previously discussed in Section 4.1.1, (b) 

incorrect crown delineation, where parts of a tree's crown were 

assigned to a neighbouring tree and (c) under-segmentation, 

where two adjacent trees were grouped as a single tree. 

 

 
Figure 8. Point Cloud Tools results: the tree detected in (a) plot 

A, (b) plot B, (c) plot C, (d) plot D, in which the green points 

correspond to the segmented tree points identified by the Point 

Cloud Tools method, and the yellow boxes represent the 

bounding volumes assigned to each detected tree. 

 

 

 
Figure 9. Examples of (a) over-segmentation of a tree, (b) 

incorrect crown delineation of two trees, and (c) under-

segmentation. 

 

The incorrect delineation often occurred in lateral overlapping 

between canopies, which are common in densely orange 

orchards. This issue is illustrated in Figure 9(c), where parts of 

one crown were assigned to a neighbouring tree, despite the 

correct identification of both trees. This error can affect the 

individual tree volume estimation, for instance. Therefore, a post-

processing strategy is needed to correctly delineate the tree 

crown. 

 

Point Cloud Tools detected young trees, but in some cases, 

neighbouring small trees were grouped as a single tree; an 

example is shown in Figure 9(d). This under-segmentation 

typically occurred due to interlacing branches between 

neighbouring trees or high canopy proximity, making it difficult 

for a raster-based algorithm to separate them into distinct trees. 

In this case, conditions based on expected crown size can be 

incorporated into the algorithm. Since small trees tend to have 

smaller and less complex canopies, adapting the segmentation 

thresholds accordingly could avoid the merging of nearby small 

trees. 

 

The percentage of points from manually segmented trees that 

were correctly included within the boundaries of the 

segmentation generated by the algorithm was calculated. For 

trees whose segmentation was assessed as correct using Point 

Cloud Tools, approximately 99% of the points from the 

automatically segmented tree fell within the manually segmented 

tree. In contrast, for trees with segmentation errors, such as over- 

or under-segmentation, this percentage was approximately 65%. 

 

4.2.2 Methods based on point cloud 

Point cloud–based methods delineate the tree by analysing the 

spatial distribution and the characteristics of the 3D points. 

LiPheKit and 3DFin segmentation methods, which are based on 

clustering, rely on the assumption of vertical tree structures 

relative to the stem or canopy positions. 

 

For instance, in the case of LiPheKit, which applies Hakula et al. 

(2023) algorithm, after identifying tree locations using local 

maxima, a vertical line fitting algorithm is applied to the 

extended set of all clusters detected by DBSCAN at each layer. 

Each cluster is assigned a vertical line through its centre. Inliers 

are then identified by selecting clusters whose centres lie within 

half of their effective radius from the fitted line. However, in 

orange orchards, the trees tend to have a more pronounced 

horizontal structure than vertical, which can lead to multiple 

vertical lines being fitted to different clusters belonging to the 

same tree. This makes parameter tuning, such as setting 

appropriate thresholds for the maximum distance from the cluster 

centre to the line versus minimum distance between trees, 

particularly challenging in this context. 

 

Similarly, 3DFin relies on identifying potential stems represented 

by a vertical axis from the upward to the base point. This line 

becomes the reference for clustering points around the detected 

stem. Points are grouped based on their proximity to the stem 

axis, in which points falling within a given radial distance from 

the stem line are associated with that tree. The point cloud 

spacing both within and between orange trees is often similar, 

which poses more challenges for clustering points belonging to 

the same tree. 

 

In contrast, in the boreal forest environment, these methods 

performed well, as expected, due to the presence of well-defined 

vertical stems and more distinct spacing between individual trees. 

 

5. Conclusion 

This study presented a discussion and evaluated the performance 

of different tree detection and segmentation pipelines, originally 

developed for boreal and temperate forests, when applied to 

orange orchards. The results demonstrated that canopy-based 

methods outperform stem-based approaches in detecting 

individual mature trees in citrus environments. Stem-based 

approaches rely on the detection of stems and vertical structures 
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for segmenting trees, which are mostly occluded by the dense 

canopy of mature trees. On the other hand, when orange trees are 

still young and the canopy is sparse, stem-based methods can still 

identify individual trees, while canopy-based methods may not 

detect them, depending on the parameterisation of the window 

search. 

 

Although these challenges are well-known and have been 

discussed by the original developers, our findings highlight that 

further improvements are still needed in tree segmentation using 

point clouds from citrus orchards. These challenges must be 

considered when developing more robust and adaptable tree 

segmentation workflows for agricultural applications. An 

accurate tree segmentation can support subsequent steps such as 

calculating tree height, crown dimensions, and other structural 

metrics for monitoring and management.  

 

For future work, it is recommended to extend the analysis to more 

algorithms and agricultural environments with different crop 

structures. The evaluation of approaches for tree detection and 

segmentation across different crops with different algorithms can 

potentially help identify crop-specific challenges. In addition, 

different data acquisition methods, such as UAV-based, need to 

be considered in the discussion. For instance, terrestrial 

platforms, either static or mobile, tend to result in greater 

occlusion of treetops, while UAV-based data often has occlusion 

of trunks. Finally, based on our review and benchmark, we 

conclude that hybrid approaches that combine both stem and 

canopy information need to be further explored. This type of 

approach could provide a more robust and flexible solution, 

improving segmentation performance across the tree 

development stages in a citrus orchard. 
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