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Abstract

This paper introduces a fully autonomous quadcopter developed for the safe and efficient exploration of indoor environments in
crisis and disaster management scenarios. These environments are typically partially destroyed, entirely unknown, and suffer from
restricted visibility. During exploration, multiple mapping layers are generated and transmitted to human operators in real-time,
delivering critical insights into the structure. These layers include geometric, semantic, and thermal maps, each contributing distinct
information: the geometric layer provides a precise volumetric layout; the semantic layer enriches this layout with contextual under-
standing of different structural classes; the thermal layer highlights relevant signatures — e.g., humans — that support timely and
informed intervention. Successful tests in controlled and simplified real-world environments demonstrate the system’s robustness
and its practical value in operational contexts.

1. Introduction

Despite significant progress in rescue robotics, human in-
volvement remains crucial in Crisis and Disaster Management
(CDM) scenarios (Murphy et al., 2016), even though it can be
hazardous — particularly during chemical or biological incid-
ents. This paper introduces a fully autonomous quadcopter that,
although tested only in simplified and controlled environments,
is designed to explore complex indoor spaces characterised by
the absence of GNSS, limited visibility, and challenging geo-
metries. As illustrated in Figure 1, the system delivers multiple
mapping layers in real-time to support first responders. These
layers include:

• A geometric map, representing the building’s internal
structure and layout, which helps identify key features
such as potential entrances.

• A semantic map, computed by processing the point cloud
in batches. Ceilings, walls, floors, doors, and windows
are assigned distinct class labels, while all other elements
are categorised as clutter. This helps clarify ambiguous
clusters of points in the geometric map.

• A thermal map, in which each point contains thermal
information obtained by fusing thermal imagery with
LiDAR data. This enables accurate localisation of heat
signatures — such as people — within the spatial map,
providing valuable context.

Due to potential hazards in the building and the difficulty
of manually piloting a quadcopter indoors, complete mission
autonomy is critical. To achieve this, the drone requires a suit-
able sensor suite (Figure 3, Section 3.1) to enable SLAM (Koide
et al., 2024), autonomous exploration and safe motion plan-
ning (Bolz et al., 2024), as well as point cloud (Bournez et al.,
2024) and thermal image semantic understanding.
∗ Corresponding author

Figure 1. The various mapping layers. From top to bottom:
geometric, semantic, thermal. The geometric layer is

colour-coded based on the z value, the semantic based on each
point’s class, and the thermal on its temperature. The maps have

been obtained by manually flying the drone.
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The main contributions to the literature are:

• The implementation and testing on a real drone of a com-
plete algorithmic suite for autonomous exploration, com-
posed of an exploration logic and motion planning module
and a multi-layered mapping framework;

• The development of a novel LiDAR/thermal camera fu-
sion module that works in real-time, providing globally
referenced thermal signatures;

• The validation of this system in a controlled and simplified
real-world environment;

• A framework designed to advance the development of ro-
bust Active-SLAM systems for UAVs operating in un-
structured, uncooperative indoor environments.

2. Related Work

2.1 Autonomous CDM Quadcopters

Quadcopters have proven to be the ideal platform for collecting
data in indoor environments. Their agility and manoeuvrability
make them the preferred choice for first responders operating in
hazardous indoor settings during rescue missions. This poten-
tial was highlighted during the 2023 First Responder UAS 3D
Mapping Challenge 1, hosted by the National Institute of Stand-
ards and Technology (NIST), where multiple teams demon-
strated their drone-based mapping solutions for such scenarios.
While the presented approaches were highly capable, they all
depended on manual piloting.

Some solutions for complete autonomous exploration of indoor
environments are already commercially available, albeit at dif-
ferent readiness levels. Representative examples are Exyn’s
Nexys 2, Fixar 3, and Skydio 4.

Ongoing efforts by various researchers aim to tackle this prob-
lem (Zhang et al., 2024, Zhang et al., 2022), however these
solutions rely on depth cameras, which are not suitable sensors
for CDM scenarios since the environment could be filled with
smoke or be completely dark. Furthermore, the use of cam-
eras reduces the efficiency of the autonomous exploration lo-
gic, which benefits from having a 360° view of the surround-
ings - as provided by hemispherical LiDARs. (Yao and Li-
ang, 2024) presents a quadcopter designed for LiDAR-based
autonomous forest exploration. Because the UAV operates un-
der the forest’s canopy, GNSS signals are unavailable, so the
scenario closely mirrors the conditions studied in this paper.
The authors employ an Ouster OS1 5 — a more sophisticated
but also far more expensive and heavy LiDAR sensor than the
Livox Mid-360 — making their solution unsuitable for mis-
sions in which the drone must be lightweight and expendable
(e.g., operations in areas contaminated by biological or chem-
ical agents). Moreover, the paper reports no indoor test results.
The work most similar to ours is FAEM (Zhang et al., 2025),
which likewise uses the Livox Mid-360 for autonomous indoor
exploration.

1 https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-
prize-challenges/2023-first-responder-uas-3d-mapping

2 https://www.exyn.com/products/exyn-nexys
3 https://fixar.pro/products/fixar-indoor/
4 https://www.skydio.com/
5 https://ouster.com/products/hardware/os1-lidar-sensor

Autonomous quadcopters intended for CDM rely not only on
robust flight and navigation capabilities but also on the abil-
ity to construct accurate, real-time maps of their surroundings.
In particular, operating in degraded environments — such as
smoke-filled or dark buildings — demands mapping solutions
that do not depend on visual cues. This makes LiDAR-based
indoor mapping a critical enabling technology for autonomous
CDM-focused UAVs, motivating a closer look at the state of the
art in this domain.

2.2 Autonomous Indoor Mapping

LiDAR–Inertial SLAM Due to the limited payload capacity
of aerial vehicles — especially those operating indoors — most
have historically relied on vision-based SLAM techniques (El-
mokadem and Savkin, 2021). In contrast, LiDAR-based sys-
tems were typically developed for ground use, where weight
and power are less constrained (Zhu et al., 2024). Modern
lightweight sensors such as the Livox Mid-360, however, now
make it feasible to equip indoor aerial robots with LiDAR. In
this context, two characteristics become important for robust
tracking: incorporating accelerometer data to capture the high-
frequency motion typical of indoor flight, and handling the low
point density inherent to the Mid-360’s scans. In our earlier
work (Vultaggio et al., 2023), we analysed the impact of low
point cloud density and IMU data on LiDAR SLAM in simu-
lated environments. While some approaches (Xu et al., 2022,
Dellenbach et al., 2022, Shan et al., 2020) showed promising
results, these methods didn’t generalize in our real world tests.
For this reason, this work employs GLIM (Koide et al., 2024), a
tightly coupled range–inertial SLAM framework that advances
the state of the art in three key respects: (i) Robustness to de-
generacy — a fixed-lag smoother combined with key-frame
Generalized-ICP can absorb several seconds of feature-poor
data without corrupting the trajectory; (ii) Throughput — all
scan-matching and global optimisation factors are off-loaded to
the GPU, sustaining real-time mapping at > 20Hz while free-
ing CPU cycles for flight control (feature which is not used in
this paper); (iii) Sensor-agnostic extensibility — thanks to its
generic range-factor formulation and callback slots, GLIM runs
unchanged on spinning, solid-state, or non-repetitive LiDARs
and can be augmented with visual or thermal constraints when
available. These properties make GLIM an excellent fit for
the LiDAR-only, real-time exploration and mapping pipeline
required in CDM scenarios.

Semantic Mapping Rapid scene understanding is critical for
first responders that must gain knowledge of cluttered indoor
spaces while relying only on LiDAR data. As summarised in
the recent survey of (Alqobali et al., 2023), most existing in-
door semantic-mapping pipelines still depend on RGB cues.
(Bournez et al., 2024) addresses this limitation by proposing a
LiDAR-only network that maintains quasi-real-time inference
(10 Hz), making it suited for time-critical missions while pre-
serving robustness and accuracy.

Only a handful of other works consider RGB-free indoor set-
tings. MapSegNet projects LiDAR scans to 2-D occupancy
grids before applying image CNNs, sacrificing geometric fi-
delity (Foroughi et al., 2021). (Alenzi et al., 2022) relies
on handcrafted features and classical classifiers that might not
generalise across buildings, as well as closed-source datasets
for training. Generic point-centric backbones such as Point-
NeXt (Qian et al., 2022) and KPConv (Thomas et al., 2019)
do not scale well with the size of point clouds, exceeding the
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memory or latency budgets of quasi-real-time systems. Con-
sequently, integrating the lightweight LiDAR-only segmenta-
tion of (Bournez et al., 2024) into our mapping stack fills a cru-
cial gap, enabling semantics-aware, real-time exploration and
mapping for mission operators.

Thermal Mapping Regarding the thermal point cloud gener-
ation, some works tackle the topic, but they either do not per-
form the fusion in real-time (Qiu et al., 2025), or they use LiD-
ARs that are not suited for indoor exploration (Arsene, 2020).

3. Proposed Method

Figure 2 summarizes the flow of information in the proposed
approach. Starting from the basic sensors — IMU, LiDAR, and
thermal camera — the data is processed by multiple modules
and then transformed in the three final products: geometric, se-
mantic, and thermal point clouds. The following section will
describe each module in detail.

Figure 2. The overall scheme of the proposed solution.

3.1 Platform

Figure 3. The drone and its sensor suite. (1) Livox Mid-360
LiDAR; (2) Thermal Camera PureThermal 3 with FLIR Lepton

3; (3) Cygbot LiDARs.

Figure 3 showcases the drone that was developed to execute the
autonomous exploration and mapping missions. As previously
stated, CDM scenarios may be characterized by low visibility.
Thus, the sensor suite must be carefully chosen. This limita-
tion excludes the use of any conventional RGB-D cameras and
optical flow sensors. Instead, LiDARs can be used.

The main sensor is the Livox MID-3606, a hemispherical
LiDAR characterized by a 360° by 59° Field of View (FOV),
a range of 0.1-40m, and by a non-repeating helicoidal acquis-
ition pattern which saturates the environment if left stationary.
Then, three 3D solid-state Time-of-Flight (ToF) LiDARs7 with
a 120° by 65° FOV and a range of 0.05m to 2m are mounted on
the sides of the drone for local collision avoidance. Finally, a

6 https://www.livoxtech.com/mid-360
7 https://www.cygbot.com/

PureThermal3 with a FLIR Lepton 3 thermal camera8 is moun-
ted next to the main LiDAR. Its purposes are to detect elements
of interest such as people, and to assign temperature values to
each point of the point cloud that intersects with its FOV.

The total sensor suite has a weight of 361g and a power con-
sumption of 18W.

Given the constrained on-board processing power, all the al-
gorithms that will be introduced — also shown in Figure 2 —
are set to run on a Ground Control Station (GCS). The GCS
then communicates via Wi-Fi with the drone, ensuring a robust
connection in small environments.

3.2 Autonomous Exploration

SLAM Given the lack of GNSS signals, no absolute position-
ing system is available. For this reason, a SLAM framework
was implemented to simultaneously track the drone’s position
and build a globally consistent map of the environment. The key
element for high-quality measurements is the fusion of multiple
sensors — an IMU for high-frequency motion prediction and a
LiDAR for lower-frequency correction — using a factor graph-
based algorithm. As stated in Section 2.2, GLIM (Koide et al.,
2024) was selected as the base for SLAM due to its strong per-
formance in long-term position tracking and mapping accuracy
(see Section 4 for quantitative results). This global map forms
the geometric layer referenced in Section 1.

The collected point cloud is further used to construct a voxel
map, which can be used by the motion planner for computing
collision-free paths. In this map, each voxel can be either un-
known, observed free, or observed occupied.

Exploration Logic and Motion Planning To guide the drone
toward unexplored areas, our previous work (Bolz et al., 2024)
was implemented. Briefly explained, a frontier-based approach
is used, where a frontier is any unknown voxel adjacent to at
least one observed free cell. These frontiers are clustered into
n centroids. The optimal goal is selected by minimizing a cus-
tom cost function, which balances three factors: the distance
to the frontier, the number of unexplored voxels visible from
that location, and the angle between the drone’s motion direc-
tion and the frontier. The exploration behaviour can be tuned
by modifying the cost function’s weights, encouraging efficient
and consistent exploration without unnecessary deviations.

Once a goal is selected, a smooth B-Spline trajectory is planned
based on the method from (Zhou et al., 2021). A receding-
horizon strategy executes only part of the trajectory before re-
planning, allowing the drone to adapt to new obstacles.

3.3 Semantic Point Cloud Understanding

SuperPoint Transformer for Online segmentation The Su-
perpoint Transformer (Robert et al., 2023) is expressly designed
for scenarios where both the spatial extent of the scan and the
required prediction horizon can vary at run time. It first con-
structs lightweight, hand-crafted geometric descriptors on each
points’ neighbourhoods, then partitions the cloud into geomet-
rically coherent superpoints before giving those as input to a
neural network.

Building on this backbone, (Bournez et al., 2024) extends the
model along three axes that are pivotal for quasi-real time de-
ployment. First, they redesign the handcrafted descriptor set to
8 https://groupgets.com/products/purethermal-3
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improve their robustness on sparse point clouds, better discrim-
inate thin structures such as doors and window frames. Second,
the expensive partitioning algorithm is replaced with a light-
weight voxel-grid clustering, and the k-NN radius is enlarged
to stabilise feature statistics under noisy observations. Third,
to compensate for the lack of contextual information in small
point clouds, the authors devise a two-stage curriculum learn-
ing strategy that (i) simulates realistic sensor trajectories inside
S3DIS meshes and (ii) adds visibility-aware Hidden-Point Re-
moval augmentation.

These adaptations translate into a real-time capable model, not
only because of its latency but also in its capacity to under-
stand low-quality and incomplete point clouds. Crucially, the
new pipeline proves robust to SLAM noise and achieves reli-
able detection of walls, ceilings/floors, as well as competitive
results on harder classes such as doors or windows, supplying
our semantic layer for mission operators.

Model integration and data pre-processing For use during
missions, we encapsulate the LiDAR-only Superpoint Trans-
former variant in a dedicated ROS node. The node listens to
the localised messages published by the SLAM back-end and
buffers the last 10 s of point cloud messages. When the buffer
fills, the individual scans are concatenated and passed through
a voxel-grid downsampling algorithm (with voxel size 0.03m)
to keep a reasonable point density and ensure a processing time
under the 10 s aggregation time. This also ensures that Su-
perpoint Transformer’s neighbourhood-based features remain
computed on similar spatial extents as during the model’s train-
ing.

However, in cases where the UAV finds itself in particularly
large locations (with respect to the training data), the number
of points kept by the downsampling step might be too large
to ensure a timely processing of the buffer. In addition, the
features of such large spaces (or conversely small places) might
be misinterpreted by the model as they may constitute outliers
compared to areas seen during training. To compensate for this
effect, we investigate a training-aware rescaling of the buffer
before the downsampling operation.

To be precise, we define the extent as the cubic root of the mean
volume computed over N point cloud messages accumulated
over 10 s:

extent = 3

√√√√ 1

N

N∑
i=1

Vi

where Vi denotes the estimated volume of the i-th point cloud
message. The volume of an individual point cloud message is
estimated using an Oriented Bounding Box (OBB), where the
vertical axis (z-axis) is fixed. The OBB is computed via prin-
cipal component analysis, followed by outlier removal based on
the 1st and 99th percentiles along each axis to ensure robustness
against noise. We compute the extent of 10 s buffers made from
the S3DIS training split according to (Bournez et al., 2024),
then investigate different ways to use this metric for rescaling
the input point clouds (see Section 4).

The resulting down-sampled clouds are then converted into the
superpoint graph representation and forwarded to the model.
After inference, the node repacks the predicted class labels into
a new message and republishes it. These 10 s buffers are then
aggregated into the final semantic map to be used by first re-
sponders, providing additional visual cues to interpret the point
cloud.

3.4 Human Detection in Thermal Images

The exploration of indoor environments in CDM scenarios in-
troduces specific requirements for the datasets used in model
training and evaluation. Traditional RGB imagery is often inad-
equate in such conditions due to limited visibility, low lighting,
and background clutter. In contrast, thermal imaging captures
infrared radiation emitted by objects, reflecting their temperat-
ure and emissivity properties, and is thus more suitable for these
scenarios (Wilson et al., 2023).

In addition, human detection in CDM scenarios must account
for uncommon body poses, such as individuals lying on the
ground (face-up or face-down), sitting, or squatting — poses
frequently encountered in real-world cases. However, most
publicly available datasets primarily depict people in upright
or moving positions. A limited number of datasets address this
gap by including annotated instances of people in atypical pos-
tures (Stippel et al., 2023, Cruz Ulloa et al., 2021, Tsai et al.,
2022, ThermalObjectDetection, 2024) as well as synthetic gen-
erated datasets modelling human behaviour in indoor settings
(Pramerdorfer et al., 2020).

For model training, the YOLOv8 (Varghese and Sambath,
2024) network was employed due to its strong performance and
real-time inference capabilities, supporting tasks such as object
detection and instance segmentation.

3.5 Thermal Point Cloud Generation

The thermal camera can also be leveraged to enhance the col-
lected point clouds with temperature information. The pro-
posed fusion node operates as a real-time middleware layer
that unifies LiDAR point clouds with co-registered thermal im-
agery and per-pixel temperature data. After retrieving the ri-
gid LiDAR-to-camera extrinsics and the camera intrinsics, the
node time-synchronises three incoming streams — point cloud,
infrared image, and temperature array. Each 3D point that
falls within the camera FOV is projected onto the undistor-
ted thermal image, assigned a colour according to its inter-
polated temperature, and then re-expressed in the global map
frame using the vehicle’s pose. The algorithm publishes this
temperature-augmented point cloud continuously, which con-
stitutes the thermal layer mentioned in Section 1.

The same logic is used parallelly to project the detected hu-
mans — as previously described in Section 3.4 — on the se-
mantic point cloud. The functioning is straight-forward: the
points whose image projections lie inside a “person” bounding
box are accumulated and added to the semantic cloud described
in Section 3.3.

4. Experiments and Results

In our previous work (Bolz et al., 2024), the autonomous ex-
ploration framework was thoroughly tested in complex simu-
lated environments. In this paper, we present real-world tests
conducted in two simplified and controlled settings. The first,
shown in Figure 4, was designed to give the drone ample free-
dom to explore while allowing the human pilot enough time to
intervene if it began drifting toward an obstacle.

Additional tests took place in a more constrained setting, a 153
cm wide corridor with multiple connected rooms, depicted in
Figure 6. For safety, the planner’s clearance threshold was set
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Figure 4. The setup for the simplified room testing. The top
image shows the corrected SLAM point cloud, colour-coded

based on the z value of each point, and the trajectory (in white)
autonomously executed by the drone to fully map the room.

higher than the width of the doorways, limiting exploration to
the corridor itself.

Despite the relative simplicity of these environments, the tests
demonstrated the drone’s ability to navigate narrow spaces
without collisions. Future work will address exploration in
more complex scenarios.

4.1 Autonomous Mapping

Autonomous Exploration The chosen metrics to evaluate the
performance of the exploration logic are the Observed Volume
[m3] and the Distance Traveled [m]. The plots in Figure 5
represent the mean and the standard deviation over various runs
— 4 for the simple room and 2 for the corridor — given the non-
deterministic nature of the algorithm. Notice that the simple
room in which we tested had a volume of roughly 400 m3, and
the small variation towards the end of the plot can be attributed
to the mapping of what the LiDAR saw outside the windows.
The same consideration is valid for the results in the corridor
environment.

Geometric Mapping To evaluate the quality of the geomet-
ric map produced by the SLAM module, the standard Cloud
to Cloud (C2C) distance metric has been used. For the ground
truth, a building plan was used, which was post-processed and
converted into a point cloud to make the C2C comparison pos-
sible. Figure 7 shows the C2C histogram, highlighting how
most of the points are off by 10 cm from the ground truth.
This information can be used to adapt the planner’s clearance
threshold to ensure safe trajectories.

4.2 Semantic Mapping

To evaluate the effect of rescaling the input point clouds on the
semantic mapping pipeline, the Intersection over Union (IoU)
of each individual class was recorded. The average of the IoUs
for all classes, called mean IoU (mIoU), is also reported. First,

Figure 5. The exploration metrics plot for each scenario,
showing the mean and the standard deviation of each metric.

Figure 6. The explored corridor. Notice that the arrows point to
the spots on the map where the corresponding photo was taken.
The white trajectory represents the path executed by the drone.

the 10 s batches used in (Bournez et al., 2024) at training time
are analysed, and the empirical distribution function F̂ (e) of its
extent is recorded.

In any given experiment, if the extent e of a point cloud is an
outlier, defined as F̂ (e) < α or F̂ (e) > 1 − α, it is uniformly
rescaled such that its extent becomes an inlier. To be precise,
if F̂ (e) < α, it is rescaled such that its new extent becomes
enew with F̂−1(β) = enew. Conversely, if F̂ (e) > 1 − α, it is
rescaled such that its new extent becomes enew with F̂−1(1 −
β) = enew. The parameter α is interpreted as the correction
threshold, which decides whether to apply a correction or not,
and β as the correction amount, which, when a correction is
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Figure 7. Histogram of the C2C distances between the generated
geometric map and the building’s plan.

applied, determines how significant this correction should be.

Experiments are performed using 3 datasets (S3DIS10s,
Office10s and Building10s following (Bournez et al., 2024)’s
nomenclature). (Armeni et al., 2017)’s meshes are simulated
in a Gazebo environment and split every 10 s, resulting in
S3DIS10s. This dataset was used to train the model, so it is used
to compute the statistics described above. Office10s is a real
dataset reported for comparability with (Bournez et al., 2024).
Finally, we contribute an additional and similarly annotated test
area, denoted Building10s (see Figure 1). Those datasets have
extents following the distributions shown on Figure 8, where
the percentiles of the S3DIS10s extent distribution are also rep-
resented for easier reference.

Figure 8. Smoothed approximate distributions of the extent
values for each dataset. The S3DIS10s is additionally annotated

by vertical bars showing every tenth percentile for easier
reference to the experiment parameters used in this study.

As can be seen on Figure 9, the proposed method behaves dif-
ferently depending on the dataset. The results on S3DIS10s

mostly do not change much or degrade sightly, which is to be
expected for the model’s synthetic training data. For Office10s,
the total amplitude of the mIoU is below 1% despite its extent
distribution being markedly more shifted towards larger point
clouds impacted by the method (see Figure 8). The rescaling
achieves an average total processing time of 1.8 s (from 2.2 s)
for average values of the parameters (α = 15 and β = 30)
while our maximum processing time for a 10 s buffer (i.e.., the
outliers needed to be tackled) goes down to 2.9 s (from 4.5 s)
without significant loss of mIoU.

Figure 9. mIoUs for the various experiments on the various
datasets, depending on the choice of the Correction threshold α

and the Correction amount β. α = β = 0 represents the
baseline, where no scaling is applied.
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Finally, on Building10s, the mIoU is either mostly stable or im-
proves significantly. The extent distributions show that this data
is most often scaled down by our method. Since this dataset
contains very few points on the ground, classifying the ground
accurately proves harder for the model with a ground IoU of
0.5. We hypothesise that scaling the point cloud down before
performing the voxel-based downsampling partly re-establishes
a ground point density closer to that of the training set. This
leads to an increase to, for the example of α = 15 and β = 30,
0.78 for the ground IoU. The inference time also goes down us-
ing this procedure, from 4 s to 3.6 s on average and 6.3 s to 4.7
s for the maximum time.

4.3 Thermal Mapping

People Detection The trained model processes thermal im-
ages to detect persons, outputting bounding boxes that indicate
their positions. The predictions are forwarded to the thermal
layer, where the 2D data is merged with the global 3D point
cloud.

Input resolution was set to 640×640 pixels, aligned with the
low resolution typical of thermal cameras. On an NVIDIA Ge-
Force RTX 3090 GPU, the model achieved an inference speed
of 100 FPS. Training was conducted for each experiment over
50 epochs, with mosaic data augmentation applied at a factor of
0.3 to enhance dataset variability and generalisation.

Due to missing annotations of persons in common poses in
the PDWS dataset, it was discarded. For the final trained
model, the tristar dataset (Stippel et al., 2023) was combined
with parts of the SDT dataset (Pramerdorfer et al., 2020) and
the VictimDetectionInDisaster dataset (ThermalObjectDetec-
tion, 2024), which reached 97.3% mean Average Precision
(mAP). Figure 10 shows examples of predicted persons marked
with bounding boxes.

Figure 10. Examples of bounding box predictions from the
detection model are shown. The left image depicts a single

person standing in the room, while the right image shows two
individuals, partially occluded by other objects.

Thermal Map The output of the thermal layer can be seen
in Figure 1, where the global point cloud is coloured based on
the temperature of each point. The histogram shows that the
temperature distribution is in the expected range, with most of
the values being close to 18°C.

Furthermore — as described in Section 3.5 — the thermal im-
age can also be overlapped with the global map, allowing for
globally localised human detections. An example can be seen
in Figure 11, where a person can be seen standing in front of the
drone both in the thermal camera and in the generated global
point cloud.

5. Conclusions and Future Work

This paper introduced ResQDrone, a quadcopter designed for
fully autonomous exploration of indoor environments in CDM

Figure 11. Example of projection of the semantic bounding box
on the global point cloud. The top-left image shows what the

thermal camera is seeing, highlighting the detected person in the
bounding box. The main image shows the global point cloud -

colour coded based on the z value - and, in white, the points that
overlap the bounding box.

scenarios. By integrating a lightweight hemispherical LiDAR
with a thermal camera, the system supports a range of al-
gorithms: LiDAR-inertial SLAM for real-time positioning
and geometric mapping, frontier-guided exploration, online se-
mantic and thermal mapping, and human detection with global
localisation. Real-world tests conducted in both a simple room
and a narrow corridor demonstrated the drone’s ability to navig-
ate collision-free while delivering multiple map layers to GCS
operators in real time.

Future work will focus on evaluating the system in larger, more
cluttered environments. To improve platform autonomy and
safety, both the SLAM and exploration logic will be migrated
on-board, reducing reliance on the GCS. Another key object-
ive is to ensure global consistency in the semantic and thermal
maps, which currently depend on the low drift of the SLAM
pipeline. Finally, for more precise localisation of humans in
the global map, bounding box detection will be replaced with a
more accurate segmentation-based approach.
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