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Abstract

The increasing globalisation of trade and climate change are accelerating the spread of invasive pest species, posing significant threats
to agriculture. The Japanese beetle (Popillia japonica Newman), first recorded in northern Italy in 2014, is a highly destructive pest
with severe economic impacts, particularly in viticulture. Effective monitoring is essential for timely intervention, yet conventional
field-based surveys are resource-intensive and limited in spatial coverage.

This study presents a novel UAV-based monitoring framework integrating near-infrared (NIR) imaging and machine learning
algorithms to detect Popillia japonica adults in vineyard environments. Field experiments were conducted in two commercial vineyards
in northern Italy during the beetle's summer flight season. A standardised and replicable aerial data acquisition protocol was developed
using lightweight multispectral sensors mounted on rotary-wing UAV platforms. Detected insect signatures were processed through a
custom CV pipeline and validated through entomological ground truthing via manual counts.

Results show a strong correlation between CV-derived detections and manual observations, with Pearson correlation coefficients
ranging from 0.89 to 0.96. Although the system tends to overestimate insect counts under certain canopy conditions slightly, its
integration into a GIS environment enabled the near real-time generation of prescription maps. These maps were used to guide site-
specific drone spraying treatments, applying insecticides only in hotspot areas where infestation thresholds were exceeded.

This UAV-enabled, semi-automated monitoring approach significantly reduces survey time and human exposure to agrochemicals,
while supporting precision pest management at scale. The methodology offers a promising framework for integrating remote sensing,

Al, and entomological validation, with broader applications for managing invasive species in precision agriculture contexts.

1. Introduction

Globalisation has significantly accelerated the movement of
goods, services, and people, contributing to rapid economic
growth in recent decades. However, it has also facilitated the
transboundary spread of invasive species, particularly
agricultural pests, which now threaten global food security and
local economies. Climate change further exacerbates this issue,
which expands the suitable habitat range for many invasive
organisms (Early et al., 2016). A striking example is the Japanese
beetle (Popillia japonica Newman, PJ), a coleopteran species
native to Japan and accidentally introduced to North America
and, more recently, Europe.

PJ is a highly destructive pest, exhibiting a holometabolous life
cycle. Larvae feed on the roots of grasses and crops belowground,
while adults are highly polyphagous, attacking over 300 plant
species, including grapevine, maize, apple, rose, and soybean
(EPPO, 2018; Ebbenga et al., 2022). The adult beetles typically
consume leaf tissue between the veins, a process known as
skeletonization (figure 2), and may also feed on flowers and
fruits. Aggregation behaviour frequently leads to the complete
defoliation of individual plants, causing a significant reduction in
photosynthetic capacity, yield losses, and in severe cases, plant
death (Ebbenga et al., 2022).

Since its first detection in northern Italy in 2014, P. japonica has
rapidly spread throughout the Ticino Valley, affecting
economically important crops, particularly grapevines.
Viticultural systems are especially vulnerable due to the long
lifecycle of vines and the delayed return on investment from
newly planted vineyards. In response, the Italian government has
enacted emergency containment measures and provided financial

support to affected farmers (figure 4).

In this critical context, improving pest monitoring strategies is a
key priority to enable early detection and timely intervention.
Based on manual visual inspections and trapping, conventional
monitoring methods are labour-intensive, time-consuming, and
spatially constrained. As a result, there is growing interest in
developing automated solutions leveraging recent advances in
computer vision (CV) and sensor technologies.

Among the various automated approaches explored in recent
literature, image-based systems have shown particular promise
for insect identification (Martineau et al., 2017; Ahmad et al.,
2022; Janior & Rieder, 2020). Unlike acoustic or olfactory
techniques, which are often limited to specific taxa (Cui et al.,
2018), image-based systems can be applied broadly due to the
visual morphological traits that distinguish insect species.
Furthermore, digital imagery can be archived, enabling
reproducibility and longitudinal analyses.

Recent applications of CV in entomology include pest
classification in agricultural and forestry systems (Domingues et
al., 2022; Duarte et al., 2022), detection of fruit fly parasitisation
(Marinho et al., 2023), pine pest identification (Ye et al., 2022),
and automated counting of mosquito eggs (Javed et al., 2023).
CV enables the automated extraction of ecologically relevant
features—such as presence, abundance, morphology, and
behaviour—without direct human observation (Bjerge et al.,
2022).

Image acquisition strategies range from handheld cameras to
fixed smart traps and curated datasets (Gao et al., 2024; Nawoya
et al., 2024). However, Uncrewed Aerial Systems (UAS) offer
several advantages for practical, large-scale field monitoring.
These include flexible navigation, the ability to cover extensive
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areas, integration of diverse sensors, and reduced human
exposure to field hazards. Yet, field-acquired images present new
challenges, such as complex backgrounds and object occlusion
due to vegetation. In particular, PJ exhibits a reflective green
dorsal surface, rendering it challenging to distinguish from
foliage in RGB images.

To address this, near-infrared (NIR) imaging has emerged as a
valuable technique for enhancing contrast between insects and
host plants. Vegetation strongly reflects in the NIR band, while
the beetle’s exoskeleton has low NIR reflectance, enabling easier
discrimination (Brusco et al., 2023, Matrone et al., 2022). This
spectral separation supports more accurate segmentation and
classification, even in cluttered outdoor environments (Figure 3).
Building on this foundation, the present study explores a CV-
based methodology for the detection of PJ using NIR sensors
mounted on UAS platforms. The objective is to assess the
feasibility of this approach in operational field conditions and to
develop a replicable monitoring protocol that integrates
automated detection with geospatial analysis for precision pest
management.

Figure 2. The effects of PJ on a vineyard

2. The case study

This contribution is grounded in the complex and urgent context
of managing the invasive species PJ. It presents the results of a
multitemporal field trial aimed at monitoring adult beetles using
a machine learning algorithm applied to two commercial

vineyards in Ghemme and Briona (Province of Novara, northern
Italy). The study is part of the DANTE project (Longhi, 2024)
(Drone-based Experimental Survey for the Monitoring and
Protection of Vineyards against the Quarantine Pest Popillia
japonica Newman), which aims to optimise the timing and spatial
targeting of UAS-based treatments. The overarching objective is
to minimise pesticide use by confining applications to infested
areas, thereby reducing environmental impact and improving
treatment efficiency.

Figure 3. An example of an NIR image of Popillia insects in the
studied vineyards was recognised with the algorithm described
below.

oo 2021 WRREREN |
Figure 4. The spread dynamics of Popillia japonica in the Upper
Piedmont region (from a presentation by Dr. Michele Colombo
at the workshop “DANTE?2 Project: the use of drones to counter
Popillia japonica in vineyards”, April 17, 2025).

®

Regione Piemonte funds the project and involves a
multidisciplinary partnership including: the Department of
Environmental and Land Engineering (DIATI) of Politecnico di
Torino, the Department of Agricultural, Forestry and Food
Sciences (DiSAFA) of the University of Turin, ARPA Piemonte
(Regional Agency for Environmental Protection), Regione
Piemonte, and the Consorzio di Tutela Nebbioli dell’Alto
Piemonte.

The activities undertaken within the DANTE project include
developing and validating a ML (Machine Learing) based
detection method, UAV-assisted and manual monitoring of
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Popillia populations, targeted treatments, damage assessment,
and evaluating environmental impacts resulting from pesticide
applications.

This paper focuses specifically on the project's insect detection
and monitoring components. The goal is to assess the
effectiveness of a ML algorithm for identifying adult P. japonica
using near-infrared (NIR) optical sensors mounted on UAS
platforms. The broader aim is to define a replicable and
standardised data acquisition protocol suitable for operational
pest monitoring. The analysis presented here addresses three
main aspects:

e the implementation of the machine learning algorithm for
beetle detection from NIR imagery,

e the spatial mapping of detected insects onto a georeferenced
3D model of the vineyards, and

e the overall accuracy and reliability of the detection method
in a real-world monitoring scenario.

Figure 4. The study area: in the bottom right picture, Ghemme
and Briona towns are highlighted by red circles.
(Images acquired from OpenStreetMap)

Two vineyard plots were selected as study sites in the
municipalities of Ghemme and Briona, located in the Province of
Novara within the Piedmont region of northern Italy (Figure 4).
This area is renowned for its high-quality wine production and
has been affected by infestations of Popillia japonica since its
initial detection in the summer of 2014. The selection of this
region was based on three main criteria: the urgency of
addressing the pest outbreak, logistical accessibility for field
operations, and the economic relevance of viticulture in the area.
At the outset of the study, two subplots of comparable size were
delineated within each vineyard and assigned to different
treatment protocols. The first subplot, designated as
"Conventional" (C), was managed through manual pesticide
application conducted by trained field operators. The second
subplot, referred to as "Drones" (D), was treated using a DJI
Agras MG-1P RTK Uncrewed Aerial vehicle (UAV) equipped
for precision spraying.

The treatment areas were defined based on a digital surface
model (DSM) generated through aerial photogrammetry at the
beginning of the study (baseline timepoint T0). The two
experimental plots had similar surface areas—approximately
2,000 m? in Briona and 3,000 m? in Ghemme. Notably, the Briona
vineyard is situated on flat terrain. In contrast, the Ghemme
vineyard lies on sloped ground, a factor considered during UAV
flight planning and mission design.

3. The methodology

The adopted methodology is presented in Figure 5 and will be
discussed in detail in the following sections.
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Figure 5. The TO orthomosaic of Briona displayed in GIS and
representation of the interbranches.

3.1 Initial Data Acquisition

At the onset of the project, a high-resolution 3D model of the two
study areas was generated as part of the TO acquisition to improve
understanding of vineyard geometry. Aerial photogrammetry
was conducted using a DJI Matrice 300 UAV equipped with a
Zenmuse P1 RGB sensor. Ground control points (GCPs) were
established through markers either anchored to the soil or affixed
to the heads of vine rows. Their coordinates were acquired using
high-precision GNSS receivers (Stonex S990A and Leica GS18
in Real Time Kinematic solution using the regional SPIN
service).

A Structure from Motion (SfM) technique (Teppati Lose et al.,
2020), implemented in Agisoft Metashape, produced the
following geospatial outputs:

- An orthophoto with 1 cm resolution,
- A Digital Surface Model (DSM, 5 cm GSD), and
- A Digital Terrain Model (DTM, 20 cm GSD).

3.2 3D Vineyard Modeling in GIS environment

These geospatial products supported the structural definition of
the vineyard using ArcGIS 3D, resulting in a simplified 3D
model encompassing:

- The geometry of vine rows and their vertical partitions
(inter-pole segments or “interbranches”), used as census
units;
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- The spatial location of weather stations for environmental
parameter monitoring;

- The placement of deposition collectors to assess insecticide
distribution.

Figure 6 shows the 3D GIS view of Briona vineyard.

Figure 6. The TO orthomosaic of Briona displayed in GIS and
representation of the interbranches.

3.3 NIR-Based Monitoring Flights

Monitoring data were acquired through low-altitude UAV
surveys using a DJI Mavic 2 Pro equipped with a Sentera Single
NIR sensor. The flight protocol included:

- A camera tilt of about 45° (oblique images),

- Flight paths orthogonal to vine rows,

- Altitude of 2-3 meters above the canopy, and
- Flight speed of about 2 m/s.

Considering the behavior of Popillia japonica, which remains
stationary during early morning and begins flying as solar
radiation increases, all flights were conducted between 6:00 and
9:00 a.m. These operational conditions enabled the acquisition of
high-resolution, close-range imagery of the pest (Brusco et al.,
2023). The used drone and sensor are showed in figure 7 (a) and

(b)

ngﬂ

(c) and (d) an example of Agisoft Metashape processing result

of Ghemme vineyard, using 1711 NIR images, 15 markers, and
1.78 million tie points.

3.4 Machine Learning Workflow for Insect Detection

Each monitoring session involved the processing of NIR imagery
to detect and count insects on vine foliage using artificial

intelligence and computer vision techniques. The method
comprised three main phases:

- reconstruction and orientation refinement: due to the UAV’s
lack of high-precision onboard navigation, camera exterior
orientation was recalculated in Agisoft Metashape. By
generating a sparse point cloud and referencing a minimum
of three GCPs from T0, more accurate georeferencing was
achieved (Figure 7c,d);

- detection: a custom algorithm, developed in MATLAB, was
applied to the NIR images to identify potential insect targets.
For each detected blob, a set of 13 descriptive features is
calculated, encompassing both morphological (geometric)
and radiometric properties (- Geometric Descriptors: Area,
MajorAxisLength, MinorAxisLength, Eccentricity,
Circularity, EulerNumber, EquivalentDiameter, Solidity,
Extent, Perimeter - radiometric Descriptors: MeanIntensity,
Minlntensity, MaxIntensity).

- extraction: using MATLAB environment, a Feedforward
Neural Network (FFN) was trained using manual
annotations to distinguish insects from other dark blobs
detected in the images in previous step. The procedure used
is described in detail in Section 3.5;

- Spatial projection and de-duplication: Detected insect
coordinates were reprojected onto the vineyard’s 3D volume
using MATLAB. The algorithm utilized the TO DTM,
camera poses, and image geometry to spatially assign
insects to interbranches (Figure 9). A 5 cm spherical
proximity threshold was applied to merge duplicate
detections across overlapping images.

Figure 8. Example of NIR image processed by the machine
learning algorithm: the green circles in the top left image are all
the possible targets detected by the method; in the top right
image, two Popillia are detected, and the bottom photo shows
the final counting of the estimated insects on the image.

3.5 FNN network architecture
To discriminate in the recognized blobs the insects from the

foliage holes, we decided to use a Feedforward Neural Network
(FNN) for the purposes of our study because it is a suitable choice
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for simple data due to several reasons. Firstly, FNNs are
straightforward and easy to implement, making them accessible
for simple tasks where complex architectures might be
unnecessary (Aggarwal, C.C., 2018). Their simplicity facilitates
rapid prototyping and experimentation with different network
architectures and hyperparameters (Miiller, A.C. and Guido, S.,
2016). Secondly, FNNs excel at learning linear and non-linear
relationships between input features and target variables
(Goodfellow I. et al, 2016).

Figure 9. Representation of the reprojection of the detected
insects on an image on the interbranch.

For datasets with simple structure, clearly defined patterns, or
linearly/separably distributed classes, feedforward neural
networks (FNNs) can effectively capture and model underlying
relationships without the need for more sophisticated
architectures. FNNs are also computationally efficient, making
them well suited for processing small- to medium-sized datasets
commonly encountered in low-complexity classification
scenarios (Géron, 2019). Their efficiency leads to faster training
and inference times, which is particularly advantageous when
computational resources are limited or rapid prototyping is
required. Overall, FNNs offer a balanced solution by combining
performance, simplicity, and computational economy in the
context of straightforward data analysis tasks.

The first stage of the methodology consisted of data annotation
to establish a ground truth dataset. This was carried out through
manual labeling of NIR images acquired from two vineyard plots
under varying conditions, including differences in acquisition
angle, distance, illumination, and plant health status. Annotation
was performed using the open-source tool labellmg (Tzutalin,
2015), which enables object labeling in a simple, text-based
format. The final dataset consists of approximately 300 annotated
images and 15,000 labeled blobs, categorized based on visual
cues suggestive of insect presence.

The next step involved the definition and configuration of the
FNN architecture. The implementation was carried out in
MATLAB, where a specific pipeline was executed for training
and validation. The ground truth dataset was split into three
subsets: 70% for training, 15% for validation, and 15% for
testing. The training set consisted of input vectors (X _train)
representing the 13 descriptors and corresponding categorical
labels (Y _train). The validation (X _val, Y val) and test (X _test,
Y _test) sets were used to monitor performance and evaluate
generalization.

The network architecture was designed based on several key
considerations. The input layer contains 13 neurons,
corresponding to the number of input descriptors. Two hidden
layers were included to balance model expressiveness and
complexity. First hidden layer consists of 64 neurons and
employs ReLU (Rectified Linear Unit) activation functions to
introduce non-linearity. Dropout layers with a rate of 0.2 were
added after each hidden layer to reduce overfitting. The second

layer consist in a 32 neurons and a similar dropout layer. The
output layer comprises 3 neurons activated by a Softmax
function, suitable for multiclass classification into the categories:
insect, non-insect, and possible insect. The architecture is
illustrated in Figure 10.

3classes:

Dense 64 Dropout Dense 32 Dropout
+RelU 0.2 +RelU 0.2

Figure 10. Block diagram of the FNN architecture used for
insect classification.

The Adam optimizers were selected for their ability to perform
adaptive learning rate adjustments, improving convergence in
high-dimensional feature spaces. The number of training epochs
was set to 100, balancing learning depth with the risk of
overfitting. During training, the data were shuffled at each epoch
to ensure robust learning and to minimize order-induced biases.
The validation set was used for interim evaluation every 10
epochs, allowing early detection of overfitting and guiding the
tuning of training strategies.

Once training was complete, the trained network was evaluated
on the validation and test sets. Predictions were generated using
the trained model, and outputs (Y pred) were compared to
ground truth labels. Correlation coefficients between predicted
and actual labels (Y_valand Y _test) were calculated to assess the
linear relationship between predictions and true outcomes. These
coefficients range from -1 to +1, where values close to +1
indicate strong predictive alignment.

Under evaluation conditions, the model achieved the following
classification metrics: Accuracy: 0.857, precision: 0.9236,
Recall: 0.91683, F1-score: 0.8760.

3.6 Data Integration, Visualization, and Validation

The final insect counts were attributed to individual interbranch
segments and subsequently integrated into ArcGIS Pro through a
custom workflow developed using ModelBuilder. The count data
were joined to the corresponding interbranch shapefile, enabling
spatial association between insect occurrences and their
respective vine segments.

To generate a continuous spatial representation, Inverse Distance
Weighting (IDW) interpolation was applied, with predicted
values projected at the centroid of each interbranch segment.
The resulting maps were visualized using a traffic-light color
scheme, facilitating intuitive interpretation of insect density
levels: Green: <10 insects, Yellow: 10-50 insects, Red: >50
insects. These classifications were validated against ground-truth
data collected manually by entomologists, shown on the same
map using a blue—purple color scale for comparative purposes
(Figure 11). This dual representation facilitated a rapid
assessment of infestation levels and algorithm performance.

All spatial data were dynamically managed in a multi-temporal
geodatabase within ArcGIS Pro (Figure 11), coordinated by the
Geomatic Laboratory of Politecnico di Torino. For stakeholder
access and operational planning, a Web App (Web AppBuilder
for ArcGIS) was developed, enabling temporal navigation of

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-2-W11-2025-63-2025 | © Author(s) 2025. CC BY 4.0 License. 67



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

infestation maps via a dedicated time slider (Figure 12). This
allowed experts from DISAFA-University of Turin, Regione
Piemonte, and the Consorzio Tutela Nebbioli Alto Piemonte to
identify critical treatment zones and plan drone-based pesticide
applications accordingly (figure 13a)

The effectiveness of treatments, carried out only during the 2023
DANTE project (authorized by the Italian Ministry of Health),
was assessed through follow-up monitoring (Figure 13b). In 2024
(DANTE2), no treatments were applied due to delays in
navigating updated and more complex authorization procedures
required by the Ministry. Thus, activities in 2024 were limited to
parcel-scale monitoring.

Figure 12. The webGIS developed with ESRI tools

4. Results and validation

The monitoring activity was conducted in accordance with the
methodology described above, with surveys initiated in mid-June
and completed by the end of July in the 2023 and 2024,
coinciding with the peak period of adult Popillia japonica
activity. Monitoring operations were performed at approximately
three-day intervals, in order to evaluate the potential need for
insecticide treatment. In total, 13 surveys were carried out in the
Briona vineyard and 14 in the Ghemme vineyard.

During each survey, NIR images were acquired and processed,
enabling near real-time estimation of both the number and spatial
distribution of Popillia individuals. The results were visualized
within a Geographic Information System (GIS) environment and
compared against ground truth data obtained through manual
counting.

Figure 11 presents a sample thematic map generated in ArcGIS
Pro for one of the surveys conducted in the Ghemme vineyard.
The two areas of interest, delineated by orange and blue
polygons, correspond to study zones C and D, respectively. The
number of insects detected via computer vision (CV) is displayed

using a traffic-light color scheme. For Area C, the CV-based
count indicates fewer than 10 insects per interbranch across most
of the region, a finding corroborated by the ground truth data,
represented by a light blue to purple gradient on the row
segments. Conversely, Area D exhibits several locations where
the infestation exceeds 30 insects per interbranch, as detected by
both the CV algorithm and manual annotations. These results
demonstrate a strong correspondence between automated and
manual insect counting.

Figure 13. (a) Selection of the treatment areas with
corresponding UAV flight paths displayed in green, red, and
blue (points and lines); (b) the outcome observed after
treatment.

Figure 13 illustrates the number of Popillia specimens detected
in each survey across the study areas, comparing the two
counting methods: manual (blue) and CV-based (orange). The
temporal trends of the two approaches are highly consistent, as
confirmed by the Pearson correlation coefficient, which ranges
between 0.89 and 0.96—values indicative of a strong positive
correlation (with 1.0 representing perfect agreement).

Table 1 provides the basic statistics of the difference between
CV-based and manual counting, computed per interbranch unit:

- Averages are always positive: this means that the machine
learning method is affected by a mean systematic error,
which makes the algorithm overestimate the number of
insects. The error, computed on the number of insects
detected over the entire study area at each survey, is about
40% (with a minimum of about 10%, and maximum of
about 80%).

- The maxima may be due to limitations in the quality of
acquired images (low resolution) and navigation sensors
(poor quality). Further experimentation and testing of new
sensors could help improve this issue.

Statistics Briona Briona Ghemme | Ghemme
Area C Area D Area C Area D
Average 3.5 2.9 5.2 4.2
Max 33 23 40 35
Min -25 -10 -35 -45
Std 8.5 5.7 12.7 15.7

Table 1. Statistics of the difference between CV-based and
manual counting.

- The minima could be caused by acquisition holes.
Specifically, in some cases, the SfM approach applied to
NIR images encountered problems resulting in insufficient
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information or incorrect external orientation parameters that
affected the final results of insect recognition.

- The standard deviation indicates the precision of the method
and ranges from 5.7 to 15.7 insects per interbranch, with an
average of 3-5 insects. This enables accurate spatialisation
of insects detected in vineyards, laying the foundation for
phytosanitary intervention maps.
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Overall, the CV-based monitoring method is effective, with an
overestimation that provides a safety measure. However, the
overestimation may be reduced by fine-tuning the detection
algorithm, for example, using adaptive cut-off scores instead of
fixed ones over the extraction features. Finally, it has sufficient
precision to discriminate areas that do not require treatment from
those that need it.
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Figure 13. The number of Popillia detected by the two methods, manual and CV counting, during each survey. The vertical dotted
lines indicate when pesticides were spread over the vineyards, which justifies the following decrease in the number of insects.

5. Conclusions

In conclusion, the integration of uncrewed aerial systems (UAS)
equipped with suitable sensors and tailored acquisition protocols
provides a fast and reliable approach for the temporal monitoring
of Popillia japonica infestations in vineyards. The application of
machine learning algorithms, combined with near-infrared (NIR)
imagery, has demonstrated considerable potential in the detection
and quantification of insect populations, as supported by prior
research.

Building upon this foundation, the proposed monitoring method
employs NIR sensors mounted on UAV platforms for data
collection and comprises three principal components:

(1) insect detection and counting using a custom machine
learning algorithm,

(2) recalibration of exterior camera orientation, and

(3) spatial mapping of detected insects on georeferenced 3D
vineyard models.

The results reveal a strong correspondence between UAV-based
and manual insect counts, with Pearson correlation coefficients
ranging from 0.89 to 0.96, confirming the robustness and
reliability of the automated method. While the proposed
approach may slightly overestimate insect abundance, it
nonetheless provides valuable decision-support information for
targeted pest control interventions and damage risk assessment.

Future improvements—such as the use of high resolution sensors
as for esample DJI MAVI 3 M—may further enhance detection
accuracy and reduce false positives. Overall, this work
establishes the basis for a standardized, replicable protocol for
monitoring Popillia japonica in viticultural systems, offering a
promising tool to support precision agriculture practices and
mitigate both economic losses and environmental impacts
associated with this invasive pest.
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