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Abstract  

The increasing globalisation of trade and climate change are accelerating the spread of invasive pest species, posing significant threats 

to agriculture. The Japanese beetle (Popillia japonica Newman), first recorded in northern Italy in 2014, is a highly destructive pest 

with severe economic impacts, particularly in viticulture. Effective monitoring is essential for timely intervention, yet conventional 

field-based surveys are resource-intensive and limited in spatial coverage. 

This study presents a novel UAV-based monitoring framework integrating near-infrared (NIR) imaging and machine learning 

algorithms to detect Popillia japonica adults in vineyard environments. Field experiments were conducted in two commercial vineyards 

in northern Italy during the beetle's summer flight season. A standardised and replicable aerial data acquisition protocol was developed 

using lightweight multispectral sensors mounted on rotary-wing UAV platforms. Detected insect signatures were processed through a 

custom CV pipeline and validated through entomological ground truthing via manual counts. 

Results show a strong correlation between CV-derived detections and manual observations, with Pearson correlation coefficients 

ranging from 0.89 to 0.96. Although the system tends to overestimate insect counts under certain canopy conditions slightly, its 

integration into a GIS environment enabled the near real-time generation of prescription maps. These maps were used to guide site-

specific drone spraying treatments, applying insecticides only in hotspot areas where infestation thresholds were exceeded. 

This UAV-enabled, semi-automated monitoring approach significantly reduces survey time and human exposure to agrochemicals, 

while supporting precision pest management at scale. The methodology offers a promising framework for integrating remote sensing, 

AI, and entomological validation, with broader applications for managing invasive species in precision agriculture contexts. 

 

 

1. Introduction 

Globalisation has significantly accelerated the movement of 

goods, services, and people, contributing to rapid economic 

growth in recent decades. However, it has also facilitated the 

transboundary spread of invasive species, particularly 

agricultural pests, which now threaten global food security and 

local economies. Climate change further exacerbates this issue, 

which expands the suitable habitat range for many invasive 

organisms (Early et al., 2016). A striking example is the Japanese 

beetle (Popillia japonica Newman, PJ), a coleopteran species 

native to Japan and accidentally introduced to North America 

and, more recently, Europe. 

PJ is a highly destructive pest, exhibiting a holometabolous life 

cycle. Larvae feed on the roots of grasses and crops belowground, 

while adults are highly polyphagous, attacking over 300 plant 

species, including grapevine, maize, apple, rose, and soybean 

(EPPO, 2018; Ebbenga et al., 2022). The adult beetles typically 

consume leaf tissue between the veins, a process known as 

skeletonization (figure 2), and may also feed on flowers and 

fruits. Aggregation behaviour frequently leads to the complete 

defoliation of individual plants, causing a significant reduction in 

photosynthetic capacity, yield losses, and in severe cases, plant 

death (Ebbenga et al., 2022). 

Since its first detection in northern Italy in 2014, P. japonica has 

rapidly spread throughout the Ticino Valley, affecting 

economically important crops, particularly grapevines. 

Viticultural systems are especially vulnerable due to the long 

lifecycle of vines and the delayed return on investment from 

newly planted vineyards. In response, the Italian government has 

enacted emergency containment measures and provided financial 

support to affected farmers (figure 4). 

In this critical context, improving pest monitoring strategies is a 

key priority to enable early detection and timely intervention. 

Based on manual visual inspections and trapping, conventional 

monitoring methods are labour-intensive, time-consuming, and 

spatially constrained. As a result, there is growing interest in 

developing automated solutions leveraging recent advances in 

computer vision (CV) and sensor technologies. 

Among the various automated approaches explored in recent 

literature, image-based systems have shown particular promise 

for insect identification (Martineau et al., 2017; Ahmad et al., 

2022; Júnior & Rieder, 2020). Unlike acoustic or olfactory 

techniques, which are often limited to specific taxa (Cui et al., 

2018), image-based systems can be applied broadly due to the 

visual morphological traits that distinguish insect species. 

Furthermore, digital imagery can be archived, enabling 

reproducibility and longitudinal analyses. 

Recent applications of CV in entomology include pest 

classification in agricultural and forestry systems (Domingues et 

al., 2022; Duarte et al., 2022), detection of fruit fly parasitisation 

(Marinho et al., 2023), pine pest identification (Ye et al., 2022), 

and automated counting of mosquito eggs (Javed et al., 2023). 

CV enables the automated extraction of ecologically relevant 

features—such as presence, abundance, morphology, and 

behaviour—without direct human observation (Bjerge et al., 

2022). 

Image acquisition strategies range from handheld cameras to 

fixed smart traps and curated datasets (Gao et al., 2024; Nawoya 

et al., 2024). However, Uncrewed Aerial Systems (UAS) offer 

several advantages for practical, large-scale field monitoring. 

These include flexible navigation, the ability to cover extensive 
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areas, integration of diverse sensors, and reduced human 

exposure to field hazards. Yet, field-acquired images present new 

challenges, such as complex backgrounds and object occlusion 

due to vegetation. In particular, PJ exhibits a reflective green 

dorsal surface, rendering it challenging to distinguish from 

foliage in RGB images. 

To address this, near-infrared (NIR) imaging has emerged as a 

valuable technique for enhancing contrast between insects and 

host plants. Vegetation strongly reflects in the NIR band, while 

the beetle’s exoskeleton has low NIR reflectance, enabling easier 

discrimination (Brusco et al., 2023, Matrone et al., 2022). This 

spectral separation supports more accurate segmentation and 

classification, even in cluttered outdoor environments (Figure 3). 

Building on this foundation, the present study explores a CV-

based methodology for the detection of PJ using NIR sensors 

mounted on UAS platforms. The objective is to assess the 

feasibility of this approach in operational field conditions and to 

develop a replicable monitoring protocol that integrates 

automated detection with geospatial analysis for precision pest 

management. 

 

 
Figure 1. An adult insect of Popillia Japonica on a vine plant. 

 

 
Figure 2. The effects of PJ on a vineyard 

 

 

2. The case study 

This contribution is grounded in the complex and urgent context 

of managing the invasive species PJ. It presents the results of a 

multitemporal field trial aimed at monitoring adult beetles using 

a machine learning algorithm applied to two commercial 

vineyards in Ghemme and Briona (Province of Novara, northern 

Italy). The study is part of the DANTE project (Longhi, 2024) 

(Drone-based Experimental Survey for the Monitoring and 

Protection of Vineyards against the Quarantine Pest Popillia 

japonica Newman), which aims to optimise the timing and spatial 

targeting of UAS-based treatments. The overarching objective is 

to minimise pesticide use by confining applications to infested 

areas, thereby reducing environmental impact and improving 

treatment efficiency. 

 

 
Figure 3. An example of an NIR image of Popillia insects in the 

studied vineyards was recognised with the algorithm described 

below. 

 

 

 
Figure 4. The spread dynamics of Popillia japonica in the Upper 

Piedmont region (from a presentation by Dr. Michele Colombo 

at the workshop “DANTE2 Project: the use of drones to counter 

Popillia japonica in vineyards”, April 17, 2025). 

 

Regione Piemonte funds the project and involves a 

multidisciplinary partnership including: the Department of 

Environmental and Land Engineering (DIATI) of Politecnico di 

Torino, the Department of Agricultural, Forestry and Food 

Sciences (DiSAFA) of the University of Turin, ARPA Piemonte 

(Regional Agency for Environmental Protection), Regione 

Piemonte, and the Consorzio di Tutela Nebbioli dell’Alto 

Piemonte. 

The activities undertaken within the DANTE project include 

developing and validating a ML (Machine Learing) based 

detection method, UAV-assisted and manual monitoring of 
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Popillia populations, targeted treatments, damage assessment, 

and evaluating environmental impacts resulting from pesticide 

applications. 

This paper focuses specifically on the project's insect detection 

and monitoring components. The goal is to assess the 

effectiveness of a ML algorithm for identifying adult P. japonica 

using near-infrared (NIR) optical sensors mounted on UAS 

platforms. The broader aim is to define a replicable and 

standardised data acquisition protocol suitable for operational 

pest monitoring. The analysis presented here addresses three 

main aspects: 

 

• the implementation of the machine learning algorithm for 

beetle detection from NIR imagery, 

• the spatial mapping of detected insects onto a georeferenced 

3D model of the vineyards, and 

• the overall accuracy and reliability of the detection method 

in a real-world monitoring scenario. 

 
 

Figure 4. The study area: in the bottom right picture, Ghemme 

and Briona towns are highlighted by red circles.  

(Images acquired from OpenStreetMap) 

 

Two vineyard plots were selected as study sites in the 

municipalities of Ghemme and Briona, located in the Province of 

Novara within the Piedmont region of northern Italy (Figure 4). 

This area is renowned for its high-quality wine production and 

has been affected by infestations of Popillia japonica since its 

initial detection in the summer of 2014. The selection of this 

region was based on three main criteria: the urgency of 

addressing the pest outbreak, logistical accessibility for field 

operations, and the economic relevance of viticulture in the area. 

At the outset of the study, two subplots of comparable size were 

delineated within each vineyard and assigned to different 

treatment protocols. The first subplot, designated as 

"Conventional" (C), was managed through manual pesticide 

application conducted by trained field operators. The second 

subplot, referred to as "Drones" (D), was treated using a DJI 

Agras MG-1P RTK Uncrewed Aerial vehicle (UAV) equipped 

for precision spraying. 

The treatment areas were defined based on a digital surface 

model (DSM) generated through aerial photogrammetry at the 

beginning of the study (baseline timepoint T0). The two 

experimental plots had similar surface areas—approximately 

2,000 m² in Briona and 3,000 m² in Ghemme. Notably, the Briona 

vineyard is situated on flat terrain. In contrast, the Ghemme 

vineyard lies on sloped ground, a factor considered during UAV 

flight planning and mission design. 

3. The methodology 

The adopted methodology is presented in Figure 5 and will be 

discussed in detail in the following sections. 

 

Figure 5. The T0 orthomosaic of Briona displayed in GIS and 

representation of the interbranches.  

 

3.1 Initial Data Acquisition  

At the onset of the project, a high-resolution 3D model of the two 

study areas was generated as part of the T0 acquisition to improve 

understanding of vineyard geometry. Aerial photogrammetry 

was conducted using a DJI Matrice 300 UAV equipped with a 

Zenmuse P1 RGB sensor. Ground control points (GCPs) were 

established through markers either anchored to the soil or affixed 

to the heads of vine rows. Their coordinates were acquired using 

high-precision GNSS receivers (Stonex S990A and Leica GS18 

in Real Time Kinematic solution using the regional SPIN 

service). 

A Structure from Motion (SfM) technique (Teppati Losè et al., 

2020), implemented in Agisoft Metashape, produced the 

following geospatial outputs: 

- An orthophoto with 1 cm resolution, 

- A Digital Surface Model (DSM, 5 cm GSD), and 

- A Digital Terrain Model (DTM, 20 cm GSD). 

3.2 3D Vineyard Modeling in GIS environment 

These geospatial products supported the structural definition of 

the vineyard using ArcGIS 3D, resulting in a simplified 3D 

model encompassing: 

- The geometry of vine rows and their vertical partitions 

(inter-pole segments or “interbranches”), used as census 

units; 
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- The spatial location of weather stations for environmental 

parameter monitoring; 

- The placement of deposition collectors to assess insecticide 

distribution. 

Figure 6 shows the 3D GIS view of Briona vineyard. 

 
Figure 6. The T0 orthomosaic of Briona displayed in GIS and 

representation of the interbranches.  

 

3.3 NIR-Based Monitoring Flights 

Monitoring data were acquired through low-altitude UAV 

surveys using a DJI Mavic 2 Pro equipped with a Sentera Single 

NIR sensor. The flight protocol included: 

- A camera tilt of about 45° (oblique images), 

- Flight paths orthogonal to vine rows, 

- Altitude of 2–3 meters above the canopy, and 

- Flight speed of about 2 m/s. 

Considering the behavior of Popillia japonica, which remains 

stationary during early morning and begins flying as solar 

radiation increases, all flights were conducted between 6:00 and 

9:00 a.m. These operational conditions enabled the acquisition of 

high-resolution, close-range imagery of the pest (Brusco et al., 

2023). The used drone and sensor are showed in figure 7 (a) and 

(b)  

 

 
Figure 7. (a) the used drone, (b) the NIR sensor for monitoring, 

(c) and (d) an example of Agisoft Metashape processing result 

of Ghemme vineyard, using 1711 NIR images, 15 markers, and 

1.78 million tie points. 

3.4 Machine Learning Workflow for Insect Detection 

Each monitoring session involved the processing of NIR imagery 

to detect and count insects on vine foliage using artificial 

intelligence and computer vision techniques. The method 

comprised three main phases: 

- reconstruction and orientation refinement: due to the UAV’s 

lack of high-precision onboard navigation, camera exterior 

orientation was recalculated in Agisoft Metashape. By 

generating a sparse point cloud and referencing a minimum 

of three GCPs from T0, more accurate georeferencing was 

achieved (Figure 7c,d); 

- detection: a custom algorithm, developed in MATLAB, was 

applied to the NIR images to identify potential insect targets. 

For each detected blob, a set of 13 descriptive features is 

calculated, encompassing both morphological (geometric) 

and radiometric properties (- Geometric Descriptors: Area, 

MajorAxisLength, MinorAxisLength, Eccentricity, 

Circularity, EulerNumber, EquivalentDiameter, Solidity, 

Extent, Perimeter - radiometric Descriptors: MeanIntensity, 

MinIntensity, MaxIntensity). 

- extraction: using MATLAB environment, a Feedforward 

Neural Network (FFN) was trained using manual 

annotations to distinguish insects from other dark blobs 

detected in the images in previous step. The procedure used 

is described in detail in Section 3.5; 

- Spatial projection and de-duplication: Detected insect 

coordinates were reprojected onto the vineyard’s 3D volume 

using MATLAB. The algorithm utilized the T0 DTM, 

camera poses, and image geometry to spatially assign 

insects to interbranches (Figure 9). A 5 cm spherical 

proximity threshold was applied to merge duplicate 

detections across overlapping images. 

 
Figure 8. Example of NIR image processed by the machine 

learning algorithm: the green circles in the top left image are all 

the possible targets detected by the method; in the top right 

image, two Popillia are detected, and the bottom photo shows 

the final counting of the estimated insects on the image. 

 

3.5 FNN network architecture 

To discriminate in the recognized blobs the insects from the 

foliage holes, we decided to use a Feedforward Neural Network 

(FNN) for the purposes of our study because it is a suitable choice 
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for simple data due to several reasons. Firstly, FNNs are 

straightforward and easy to implement, making them accessible 

for simple tasks where complex architectures might be 

unnecessary (Aggarwal, C.C., 2018). Their simplicity facilitates 

rapid prototyping and experimentation with different network 

architectures and hyperparameters (Müller, A.C. and Guido, S., 

2016). Secondly, FNNs excel at learning linear and non-linear 

relationships between input features and target variables 

(Goodfellow I. et al, 2016). 

 

 
Figure 9. Representation of the reprojection of the detected 

insects on an image on the interbranch. 

 

For datasets with simple structure, clearly defined patterns, or 

linearly/separably distributed classes, feedforward neural 

networks (FNNs) can effectively capture and model underlying 

relationships without the need for more sophisticated 

architectures. FNNs are also computationally efficient, making 

them well suited for processing small- to medium-sized datasets 

commonly encountered in low-complexity classification 

scenarios (Géron, 2019). Their efficiency leads to faster training 

and inference times, which is particularly advantageous when 

computational resources are limited or rapid prototyping is 

required. Overall, FNNs offer a balanced solution by combining 

performance, simplicity, and computational economy in the 

context of straightforward data analysis tasks. 

The first stage of the methodology consisted of data annotation 

to establish a ground truth dataset. This was carried out through 

manual labeling of NIR images acquired from two vineyard plots 

under varying conditions, including differences in acquisition 

angle, distance, illumination, and plant health status. Annotation 

was performed using the open-source tool labelImg (Tzutalin, 

2015), which enables object labeling in a simple, text-based 

format. The final dataset consists of approximately 300 annotated 

images and 15,000 labeled blobs, categorized based on visual 

cues suggestive of insect presence. 

The next step involved the definition and configuration of the 

FNN architecture. The implementation was carried out in 

MATLAB, where a specific pipeline was executed for training 

and validation. The ground truth dataset was split into three 

subsets: 70% for training, 15% for validation, and 15% for 

testing. The training set consisted of input vectors (X_train) 

representing the 13 descriptors and corresponding categorical 

labels (Y_train). The validation (X_val, Y_val) and test (X_test, 

Y_test) sets were used to monitor performance and evaluate 

generalization. 

The network architecture was designed based on several key 

considerations. The input layer contains 13 neurons, 

corresponding to the number of input descriptors. Two hidden 

layers were included to balance model expressiveness and 

complexity. First hidden layer consists of 64 neurons and 

employs ReLU (Rectified Linear Unit) activation functions to 

introduce non-linearity. Dropout layers with a rate of 0.2 were 

added after each hidden layer to reduce overfitting. The second 

layer consist in a 32 neurons and a similar dropout layer. The 

output layer comprises 3 neurons activated by a Softmax 

function, suitable for multiclass classification into the categories: 

insect, non-insect, and possible insect. The architecture is 

illustrated in Figure 10. 

 

 
Figure 10. Block diagram of the FNN architecture used for 

insect classification. 

 

The Adam optimizers were selected for their ability to perform 

adaptive learning rate adjustments, improving convergence in 

high-dimensional feature spaces. The number of training epochs 

was set to 100, balancing learning depth with the risk of 

overfitting. During training, the data were shuffled at each epoch 

to ensure robust learning and to minimize order-induced biases. 

The validation set was used for interim evaluation every 10 

epochs, allowing early detection of overfitting and guiding the 

tuning of training strategies. 

Once training was complete, the trained network was evaluated 

on the validation and test sets. Predictions were generated using 

the trained model, and outputs (Y_pred) were compared to 

ground truth labels. Correlation coefficients between predicted 

and actual labels (Y_val and Y_test) were calculated to assess the 

linear relationship between predictions and true outcomes. These 

coefficients range from -1 to +1, where values close to +1 

indicate strong predictive alignment. 

Under evaluation conditions, the model achieved the following 

classification metrics: Accuracy: 0.857, precision: 0.9236, 

Recall: 0.91683, F1-score: 0.8760. 

 

3.6 Data Integration, Visualization, and Validation 

The final insect counts were attributed to individual interbranch 

segments and subsequently integrated into ArcGIS Pro through a 

custom workflow developed using ModelBuilder. The count data 

were joined to the corresponding interbranch shapefile, enabling 

spatial association between insect occurrences and their 

respective vine segments. 

To generate a continuous spatial representation, Inverse Distance 

Weighting (IDW) interpolation was applied, with predicted 

values projected at the centroid of each interbranch segment. 

The resulting maps were visualized using a traffic-light color 

scheme, facilitating intuitive interpretation of insect density 

levels: Green: <10 insects, Yellow: 10–50 insects, Red: >50 

insects. These classifications were validated against ground-truth 

data collected manually by entomologists, shown on the same 

map using a blue–purple color scale for comparative purposes 

(Figure 11). This dual representation facilitated a rapid 

assessment of infestation levels and algorithm performance. 

All spatial data were dynamically managed in a multi-temporal 

geodatabase within ArcGIS Pro (Figure 11), coordinated by the 

Geomatic Laboratory of Politecnico di Torino. For stakeholder 

access and operational planning, a Web App (Web AppBuilder 

for ArcGIS) was developed, enabling temporal navigation of 
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infestation maps via a dedicated time slider (Figure 12). This 

allowed experts from DISAFA–University of Turin, Regione 

Piemonte, and the Consorzio Tutela Nebbioli Alto Piemonte to 

identify critical treatment zones and plan drone-based pesticide 

applications accordingly (figure 13a) 

The effectiveness of treatments, carried out only during the 2023 

DANTE project (authorized by the Italian Ministry of Health), 

was assessed through follow-up monitoring (Figure 13b). In 2024 

(DANTE2), no treatments were applied due to delays in 

navigating updated and more complex authorization procedures 

required by the Ministry. Thus, activities in 2024 were limited to 

parcel-scale monitoring. 

 

 
Figure 11. An example of result representation  

 

 
Figure 12. The webGIS developed with ESRI tools 

 

 

4. Results and validation 

The monitoring activity was conducted in accordance with the 

methodology described above, with surveys initiated in mid-June  

and completed by the end of July in the 2023 and 2024, 

coinciding with the peak period of adult Popillia japonica 

activity. Monitoring operations were performed at approximately 

three-day intervals, in order to evaluate the potential need for 

insecticide treatment. In total, 13 surveys were carried out in the 

Briona vineyard and 14 in the Ghemme vineyard. 

During each survey, NIR images were acquired and processed, 

enabling near real-time estimation of both the number and spatial 

distribution of Popillia individuals. The results were visualized 

within a Geographic Information System (GIS) environment and 

compared against ground truth data obtained through manual 

counting. 

Figure 11 presents a sample thematic map generated in ArcGIS 

Pro for one of the surveys conducted in the Ghemme vineyard. 

The two areas of interest, delineated by orange and blue 

polygons, correspond to study zones C and D, respectively. The 

number of insects detected via computer vision (CV) is displayed 

using a traffic-light color scheme. For Area C, the CV-based 

count indicates fewer than 10 insects per interbranch across most 

of the region, a finding corroborated by the ground truth data, 

represented by a light blue to purple gradient on the row 

segments. Conversely, Area D exhibits several locations where 

the infestation exceeds 30 insects per interbranch, as detected by 

both the CV algorithm and manual annotations. These results 

demonstrate a strong correspondence between automated and 

manual insect counting. 

 

 
Figure 13. (a) Selection of the treatment areas with 

corresponding UAV flight paths displayed in green, red, and 

blue (points and lines); (b) the outcome observed after 

treatment. 

 

Figure 13 illustrates the number of Popillia specimens detected 

in each survey across the study areas, comparing the two 

counting methods: manual (blue) and CV-based (orange). The 

temporal trends of the two approaches are highly consistent, as 

confirmed by the Pearson correlation coefficient, which ranges 

between 0.89 and 0.96—values indicative of a strong positive 

correlation (with 1.0 representing perfect agreement). 

 

Table 1 provides the basic statistics of the difference between 

CV-based and manual counting, computed per interbranch unit:  

 

- Averages are always positive: this means that the machine 

learning method is affected by a mean systematic error, 

which makes the algorithm overestimate the number of 

insects. The error, computed on the number of insects 

detected over the entire study area at each survey, is about 

40% (with a minimum of about 10%, and maximum of 

about 80%).  

- The maxima may be due to limitations in the quality of 

acquired images (low resolution) and navigation sensors 

(poor quality). Further experimentation and testing of new 

sensors could help improve this issue. 

Statistics 
Briona 

Area C 

Briona 

Area D 

Ghemme 

Area C 

Ghemme 

Area D 

Average  3.5 2.9 5.2 4.2 

Max 33 23 40 35 

Min -25 -10 -35 -45 

Std 8.5 5.7 12.7 15.7 

Table 1. Statistics of the difference between CV-based and 

manual counting. 

 

- The minima could be caused by acquisition holes. 

Specifically, in some cases, the SfM approach applied to 

NIR images encountered problems resulting in insufficient 
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information or incorrect external orientation parameters that 

affected the final results of insect recognition.  

- The standard deviation indicates the precision of the method 

and ranges from 5.7 to 15.7 insects per interbranch, with an 

average of 3-5 insects. This enables accurate spatialisation 

of insects detected in vineyards, laying the foundation for 

phytosanitary intervention maps.  

Overall, the CV-based monitoring method is effective, with an 

overestimation that provides a safety measure. However, the 

overestimation may be reduced by fine-tuning the detection 

algorithm, for example, using adaptive cut-off scores instead of 

fixed ones over the extraction features. Finally, it has sufficient 

precision to discriminate areas that do not require treatment from 

those that need it. 

 

 
 

Figure 13. The number of Popillia detected by the two methods, manual and CV counting, during each survey. The vertical dotted 

lines indicate when pesticides were spread over the vineyards, which justifies the following decrease in the number of insects. 

 

 

5. Conclusions 

In conclusion, the integration of uncrewed aerial systems (UAS) 

equipped with suitable sensors and tailored acquisition protocols 

provides a fast and reliable approach for the temporal monitoring 

of Popillia japonica infestations in vineyards. The application of 

machine learning algorithms, combined with near-infrared (NIR) 

imagery, has demonstrated considerable potential in the detection 

and quantification of insect populations, as supported by prior 

research. 

Building upon this foundation, the proposed monitoring method 

employs NIR sensors mounted on UAV platforms for data 

collection and comprises three principal components: 

 

(1) insect detection and counting using a custom machine 

learning algorithm, 

(2) recalibration of exterior camera orientation, and 

(3) spatial mapping of detected insects on georeferenced 3D 

vineyard models. 

 

The results reveal a strong correspondence between UAV-based 

and manual insect counts, with Pearson correlation coefficients 

ranging from 0.89 to 0.96, confirming the robustness and 

reliability of the automated method. While the proposed 

approach may slightly overestimate insect abundance, it 

nonetheless provides valuable decision-support information for 

targeted pest control interventions and damage risk assessment. 

Future improvements—such as the use of high resolution sensors 

as for esample DJI MAVI 3 M—may further enhance detection 

accuracy and reduce false positives. Overall, this work 

establishes the basis for a standardized, replicable protocol for 

monitoring Popillia japonica in viticultural systems, offering a 

promising tool to support precision agriculture practices and 

mitigate both economic losses and environmental impacts 

associated with this invasive pest. 
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