The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Determining the Amount of Crop Residue Cover Using Image Analysis
Mikael Anikkéla®, Roope Rantanen?, Antti Lajunen®

!Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland, mikael.anakkala@helsinki.fi
Keywords: crop residue, tillage, UAV, aerial imaging, multispectral imaging.

Abstract

This research investigates the use of UAV-based image analysis to quantify crop residue cover on the soil surface after tillage
operations. Crop residue plays a crucial role in sustainable agriculture by reducing nutrient runoff and decreasing the susceptibility of
topsoil to erosion. By anchoring the soil and obstructing surface flow, residue helps mitigate the loss of fine particles, especially during
seasonal transitions. To assess residue coverage, aerial images were captured using two types of UAVs equipped with different imaging
systems: a standard RGB camera and a multispectral camera. The imagery was then analysed to determine the extent of plant debris
remaining on the field surface. The research highlights the advantages of using UAV-based imaging, including high efficiency, cost-
effectiveness, and superior resolution compared to satellite imagery. This makes the method particularly suitable for field-scale residue
mapping. The results demonstrated that images captured with RGB cameras were more compatible with the applied image analysis
techniques. Residue was clearly distinguishable, and shadows from soil clods had minimal impact on detection accuracy. Conversely,
multispectral imagery posed greater challenges in processing, primarily due to reduced contrast between residue and soil and increased
sensitivity to shadow interference. Overall, the findings support the use of RGB UAV imagery as a reliable and practical tool for
quantifying crop residue cover. This approach offers a scalable solution for monitoring soil conservation practices and evaluating

tillage outcomes across agricultural fields.

1. Introduction

Measuring crop residue cover (CRC) is vital for assessing soil
conservation, erosion control, and sustainable agricultural
practices. CRC plays a key role in preserving soil moisture,
enhancing soil structure, and reducing nutrient loss. Its accurate
quantification supports precision agriculture and environmental
compliance monitoring.

Traditional ground-based measurements, including line-transect
and visual estimation methods, are labour-intensive, time-
consuming, and limited in spatial scope. These methods also
suffer from subjectivity and inconsistencies due to varying
operator  experience and  environmental  conditions.
Consequently, there has been a growing reliance on remote
sensing techniques to estimate CRC more efficiently and
accurately over large areas.

Remote sensing provides non-invasive, repeatable observations
and facilitates large-scale monitoring. Spectral indices derived
from multispectral and hyperspectral sensors, such as the
Cellulose Absorption Index (CAI) and Normalized Difference
Tillage Index (NDTI), have proven useful in differentiating crop
residue from bare soil and green vegetation (Quemada &
Daughtry, 2016). However, their sensitivity to moisture content,
soil brightness, and residue orientation poses a challenge to
robust estimation under diverse field conditions.

Advances in satellite data integration and modelling techniques,
including regression models using multi-sensor platforms,
enhance CRC prediction accuracy by combining spectral, spatial,
and temporal information (Williams et al., 2024). Additionally,
UAYV (Unmanned Aerial Vehicle) based imaging and machine
learning approaches show promise in improving residue
detection in heterogeneous landscapes (Yang et al., 2025).

Despite these advances, challenges remain. Variability in residue
type, decomposition stage, and background soil properties
complicate remote sensing analyses. Calibration with reliable

ground truth data remains essential for model validation and
refinement (Sonmez & Slater, 2016).

The structural development of farms, advancements in tillage
machinery, and, to some extent, changes in agricultural subsidy
policies have collectively driven farms to optimize their
cultivation practices over recent decades. Tillage is one of the
most time- and resource-intensive operations in crop production.
Its efficiency has been improved by shifting from traditional
ploughing methods to reduced tillage systems. In reduced tillage,
operational efficiency is often achieved by increasing the
working width of the tillage implement without significantly
raising the power requirements of the machinery.

Previous studies have explored various methods for determining
the amount of crop residue cover (CRC) on the soil surface. Most
of these studies estimated CRC on untilled fields. Image analysis
can be used in determining the amount of crop residue on arable
land. It is especially effective in assessing plant cover, as UAVS
or satellites can quickly image large areas. However, challenges
include image resolution and difficulties in segmenting crop
residue from bare soil (Kosmowski et al., 2017). In the study by
Kosmowski et al. (2017), a DJI Phantom 2+ UAV with an RGB
camera (Sony EXMOR 1/2.3) was used, flying at 7.5 meters
altitude, capturing about 80 m2 with a resolution of 0.27 cm/pixel.
Raoufat et al. (2020) used a DJI Phantom 3 UAV with a 12 MP
RGB camera, flying at altitudes of 5-35 meters, with image
resolution ranging from 0.225 to 0.45 cm/pixel. Image analysis
was done using IrfanView-64 and MATLAB software. The
studies were conducted on a field where wheat had been
previously grown and harvested weeks before imaging.
Multispectral imaging is also considered reliable for plant and
surface analysis by using satellite images (Gao et al., 2022) and
aerial imaging by UAVs (Anakkali et al., 2022).

Image analysis can help determine the Crop Residue Cover Index
(CRCI), calculated by the proportion of the soil surface covered
by residue relative to the total area measured (Asadi et al., 2011).
The method is cost-effective and efficient, especially when using
UAVs or free satellite data. Kosmowski et al. (2017) used the
Excess Green Index for segmentation. The original RGB image
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was transformed into a binary image where crop residue appeared
as white pixels and bare soil as black pixels. The CRCI was then
calculated as the percentage of white vs. black pixels. Raoufat et
al. (2020) used several indices for CRCI detection, with the most
effective being Excess Green Index (2G-R-B) and Green
Percentage Index (G/(R+G+B)). Both Kosmowski and Raoufat
concluded that UAV-based crop residue indexing is a promising
and effective method. However, challenges such as camera
resolution limitations (especially in Kosmowski’s study) exist.
Advances in camera technology will likely improve these
methods’ reliability in the future.

Artificial intelligence and machine learning methods have
recently been used increasingly for estimating the amount of
CRC on agricultural fields. The methods used vary from simple
algorithms such as K-means (Azimi & Jung, 2024) to more
advanced machine learning methods (Upadhyay et al., 2024).

The primary objective of the research was to develop and
evaluate an efficient method for determining crop residue cover
on agricultural fields using UAV-based image analysis. By
comparing imagery from RGB and multispectral cameras, the
study aimed to identify which imaging approach best supports
accurate residue detection. The impact of this research lies in its
potential to enhance soil conservation monitoring through
precise, cost-effective, and scalable assessments of tillage
outcomes. By improving our ability to quantify residue cover, the
method supports better decision-making in sustainable land
management and also can provide fast feedback about the
efficiency of tillage operations for covering crop residue.

2. Materials and Methods

In this research, field measurements were conducted using two
different UAVs and a handheld DSLR camera Canon EOS 80D.
The larger UAV was equipped with a multispectral camera and
the other with a high-quality RGB camera (DJI Mavic 3
Enterprise). The larger UAV, a hexacopter Tarot T960 (Figure 1)
carried a multispectral camera MicaSense RedEdge 3 capable of
capturing five spectral wavelengths: blue (475 nm), green (560
nm), red (668 nm), red edge (717 nm), and near-infrared (NIR,
840 nm). The measurements were performed on 20 August 2024
between 12:00 and 15:00 o’clock.

Figure 1. Custom-built UAV with a Tarot T960 frame.

The experiment was located in Niinijoki, Loimaa, Finland.
Winter wheat (Triticum aestivum L.) was grown in the field and
harvested before the measurements. Tilling of the test plots were
performed with Multiva Wingmaster 360 cultivator with a
working width of 3.5 m (Figure 2). Five different blade types
were used on the cultivator to create difference in crop residue
cover between different plots.

Cultivation with a cultivator represents a form of reduced tillage
that combines the benefits of conventional plowing with the

advantages of conservation-oriented soil management. One of its
key attributes is the ability to loosen the upper soil layer, thereby
improving soil aeration and promoting root development, much
like traditional plowing. However, unlike deep inversion tillage,
cultivation is less disruptive to soil structure and organic matter
distribution. As a tillage implement, the cultivator is notably
efficient; it offers a favorable balance between operational
performance and economic feasibility. The machinery is
generally affordable, and its use supports the maintenance of soil
structure by minimizing compaction and preserving soil porosity.
These characteristics make this type of cultivation a sustainable
and cost-effective practice in modern agricultural systems,
particularly in regions where maintaining long-term soil health is

a priority.
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There were five test plots (from A to E) in which data was
collected separately immediately after tilling to avoid soil drying
before imaging. Figure 3 shows all the plots and Figures 4-8
present the area chosen for analysis for each plot. Flights were
conducted at an altitude of 20 meters with 80% overlap. At this
height, image GSD (ground sample distance) for the RGB camera
was 0.62 cm/pixel, and 1.29 cm/pixel for the multispectral
camera. The multispectral camera was calibrated after each
flight. The images from both UAV cameras were stitched into a
single large orthomosaic image for each plot using Pix4Dmapper.

Figure 3. he research area and the five tilled test plots. Plot
labelling followed a left-to-right order, starting with Plot A on
the left and ending with Plot E on the right
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mosaic image for field plot B. Figure 7. Orthmosaic imag for field plot D.
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Fure 8. rtomosaic imae for field plot E.

The DSLR camera images were collected from 1.5 m altitude and
with the average GSD value of 0.016 cm/pixel. A 0.5m x 0.5m
wooden square was placed in DSLR images to determine the
area. Five images were collected from each plot from randomized
spots.

The objective was to compare different, rather simple, image
analysis methods based on techniques presented in literature.
Five methods with the following data were chosen for
preliminary analysis:

Excess Green index (ExG) from DJI UAV RGB images
Excess Green index (ExG) from DSLR camera images

Red bandwidth from DJI UAV RGB images

Red bandwidth from multispectral images (Tarot UAV)
Manually annotated images from DSLR camera images

bR

For each dataset, a specific threshold value was determined and
used for generating binary images for calculating the amount of
crop residue cover on the tilled field plots. The threshold values
used in the analysis were as follows: 3 for Method 1, 16 for
Method 2, 130 for Method 3, and 0.108 for Method 4.
Thresholding and analysis of the images was performed with
Matlab. Methods 1 and 2 used ExG (Excess Green Index) index
(Equation 1):

ExG=2+*G—R-B 1)
G = Pixel value of the Green band

R = Pixel value of the Red band
B = Pixel value of the Blue band

Where

Only the DSLR camera images were manually annotated to
present the ground truth for each plot. Figure 9 represents the
workflow for analysing these images for ground truth. The DSLR
camera images were annotated using a lightweight image editing

application (Microsoft Paint). Manual annotations focused on
representative regions of crop residue rather than exhaustive
pixel-level labelling, to maintain a practical balance between
detail and efficiency. After manual annotation the images were
processed with Matlab to count the annotated pixels that were
classified as crop residue within the wooden frame.

R

Figure 9. The process of determining ground truth data from the
plots. a) the original DSLR camera image. b) the hand annotated
image. ¢) manually drawn polygon over the desired region with
Matlab. d) The binary image representing the ground truth

3. Results

Table 1 presents the estimated CRC for each test plot with the
five different methods. Across all estimating methods, plots B
and C consistently had the most crop residue on the soil surface,
while in the plot A, the mixing performance of the tilling machine
was considered quite good. Method 1 yielded the highest residue
percentages, and Method 2 the lowest, with the most uniform
results. Methods 3 and 4 supported the same overall trends,
though Method 4 showed the greatest variability between the test
plots. The results of test plots D and E were relatively consistent
and moderate across methods.

Plot Crop residue Method

coverage

Plot A 37.47%
6.73%

24.93%

19.79%

19.53 %

Plot B 84.03 %
8.35%

40.87 %

51.22%

29.53%

PlotC 72.07 %
7.67%

36.83 %

34.44%

19.94 %

PlotD 48.92 %
6.10 %

32.37%

16.91%

19.84 %

PlotE 55.01%
6.52%

31.65%

9.58 %

21.46%

Table 1. CRC values for each plot with the different methods.
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Figure 10 shows the original RGB image and binary image
calculated from it. Method 1 produced the highest CRC
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estimations for the plots. Method 1 also resulted in higher
clustering of pixels in the UAV images indicating high crop
residue. Individual straws and other small crop parts were faintly
noticeable with this method. On the contrary, method 2 had the
smallest GSD value and therefore it could identify the smallest
crop residue as seen in Figure 11. Nevertheless, soil still
produced a little bit of noise in the binary image.

0y oty < ettt
Figure 10. RGB image (left) al
(right).

Flure 11. DSLR imag (Ie) and binary image with method 2
(right).

Figure 12 shows the original RGB image in the left and the binary
image generated with the Method 3. In the binary image
produced using Method 3, individual straw fragments and larger
crop residue clusters are more clearly distinguishable than in the
binary images generated using Methods 1 and 4 (Figures 10 and
13). Generally, Method 3 appears to be more accurate than
Method 4. Based on the visual and numerical results, it seemed
that the Method 3 was the most reliable method among the used
methods. Method 4 had the highest GSD value for the images but
could still separate crop residue from the soil. Based on visual
inspection method 4 could not detect individual straws.

(right).

camera(left) and binary image with method 4 (right).

4. Discussion

The results obtained from Methods 3 and 4 were largely align
with the findings of Alakukku et al. (2002), who reported that a
cultivator is typically capable of covering 60-80% of crop
residue in a single pass. Using Method 4, the covering rates
ranged from 49% to 91%, while Method 3 yielded values
between 60% and 75%. Among all the measurement methods
used, the results from Method 3 corresponded most closely with
the range reported by Alakukku et al. (2002).

While the UAV imagery provides broad spatial coverage, the
DSLR images represent only small, localized portions of the
research plots. This difference in spatial coverage introduces
potential variability and may complicate direct comparisons
between the methods. For example, in plot B and partially plot C
there were high CRC concentrations on the left side of the plots
due to higher crop biomass before the soil tillage process.

All CRC estimation methods indicated that Plot B had the highest
CRC values. Regarding the second-highest values, methods 1-4
identified Plot C, while Method 5 pointed to Plot E. Upon
examining the UAV RGB images, visible crop residues were
observed on the left side of Plot C. This may have contributed to
elevated CRC values in methods that rely on UAV-based image
analysis. Method 5 may have included fewer images capturing
the specific area of Plot C where residue accumulation was more
prominent.
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Method 5 represented the ground truth in this research. Plots B
and E exhibited higher CRC values compared to the other plots,
while plots A, C, and D showed only minor differences among
themselves. When comparing CRC estimates from methods 1-4
against the ground truth, methods 3 and 4 demonstrated the best
performance relative to the ground truth, producing values most
closely aligned with those of Method 5. To improve the accuracy
of CRC estimation in methods 1-4 the threshold values could be
further optimized. Applying additional image filtering techniques
alongside thresholding may improve the accuracy of CRC
estimation and help reduce the influence of soil on CRC values.

5. Conclusions

This research aimed to evaluate the applicability of image
analysis for quantifying crop residue on tilled agricultural fields.
Four analytical methods were tested, three of which relied on
aerial imagery. Aerial imaging is a cost effective, flexible and
higher resolution method compared to satellite imaging. The
findings suggest that image-based analysis offers a promising,
cost-effective, and flexible alternative to satellite-based remote
sensing, with higher spatial resolution enabling more accurate
residue detection. Results confirmed that crop residue remaining
after tillage can be assessed using image analysis techniques.
Notable differences were observed among the test plots in terms
of residue incorporation and uniformity of tillage. Significant
variability was also found between the analytical methods in their
ability to detect residue, with methods 3 and 4 performing more
reliably. Some methods either under- or overestimated residue
presence, particularly with smaller fragments. Nevertheless, all
methods consistently indicated that plots B and C retained more
surface residue, with plot B showing the least effective residue
incorporation. The results underscore the need for further
research and data collection to assess method performance under
diverse conditions and highlights the potential of emerging
camera technologies to enhance future analysis accuracy.
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