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Abstract 

This research investigates the use of UAV-based image analysis to quantify crop residue cover on the soil surface after tillage 

operations. Crop residue plays a crucial role in sustainable agriculture by reducing nutrient runoff and decreasing the susceptibility of 

topsoil to erosion. By anchoring the soil and obstructing surface flow, residue helps mitigate the loss of fine particles, especially during 

seasonal transitions. To assess residue coverage, aerial images were captured using two types of UAVs equipped with different imaging 

systems: a standard RGB camera and a multispectral camera. The imagery was then analysed to determine the extent of plant debris 

remaining on the field surface. The research highlights the advantages of using UAV-based imaging, including high efficiency, cost-

effectiveness, and superior resolution compared to satellite imagery. This makes the method particularly suitable for field-scale residue 

mapping. The results demonstrated that images captured with RGB cameras were more compatible with the applied image analysis 

techniques. Residue was clearly distinguishable, and shadows from soil clods had minimal impact on detection accuracy. Conversely, 

multispectral imagery posed greater challenges in processing, primarily due to reduced contrast between residue and soil and increased 

sensitivity to shadow interference. Overall, the findings support the use of RGB UAV imagery as a reliable and practical tool for 

quantifying crop residue cover. This approach offers a scalable solution for monitoring soil conservation practices and evaluating 

tillage outcomes across agricultural fields. 

 

 

1. Introduction 

Measuring crop residue cover (CRC) is vital for assessing soil 

conservation, erosion control, and sustainable agricultural 

practices. CRC plays a key role in preserving soil moisture, 

enhancing soil structure, and reducing nutrient loss. Its accurate 

quantification supports precision agriculture and environmental 

compliance monitoring. 

 

Traditional ground-based measurements, including line-transect 

and visual estimation methods, are labour-intensive, time-

consuming, and limited in spatial scope. These methods also 

suffer from subjectivity and inconsistencies due to varying 

operator experience and environmental conditions. 

Consequently, there has been a growing reliance on remote 

sensing techniques to estimate CRC more efficiently and 

accurately over large areas. 

 

Remote sensing provides non-invasive, repeatable observations 

and facilitates large-scale monitoring. Spectral indices derived 

from multispectral and hyperspectral sensors, such as the 

Cellulose Absorption Index (CAI) and Normalized Difference 

Tillage Index (NDTI), have proven useful in differentiating crop 

residue from bare soil and green vegetation (Quemada & 

Daughtry, 2016). However, their sensitivity to moisture content, 

soil brightness, and residue orientation poses a challenge to 

robust estimation under diverse field conditions. 

 

Advances in satellite data integration and modelling techniques, 

including regression models using multi-sensor platforms, 

enhance CRC prediction accuracy by combining spectral, spatial, 

and temporal information (Williams et al., 2024). Additionally, 

UAV (Unmanned Aerial Vehicle) based imaging and machine 

learning approaches show promise in improving residue 

detection in heterogeneous landscapes (Yang et al., 2025). 

 

Despite these advances, challenges remain. Variability in residue 

type, decomposition stage, and background soil properties 

complicate remote sensing analyses. Calibration with reliable 

ground truth data remains essential for model validation and 

refinement (Sonmez & Slater, 2016). 

 

The structural development of farms, advancements in tillage 

machinery, and, to some extent, changes in agricultural subsidy 

policies have collectively driven farms to optimize their 

cultivation practices over recent decades. Tillage is one of the 

most time- and resource-intensive operations in crop production. 

Its efficiency has been improved by shifting from traditional 

ploughing methods to reduced tillage systems. In reduced tillage, 

operational efficiency is often achieved by increasing the 

working width of the tillage implement without significantly 

raising the power requirements of the machinery. 

 

Previous studies have explored various methods for determining 

the amount of crop residue cover (CRC) on the soil surface. Most 

of these studies estimated CRC on untilled fields. Image analysis 

can be used in determining the amount of crop residue on arable 

land. It is especially effective in assessing plant cover, as UAVs  

or satellites can quickly image large areas. However, challenges 

include image resolution and difficulties in segmenting crop 

residue from bare soil (Kosmowski et al., 2017). In the study by 

Kosmowski et al. (2017), a DJI Phantom 2+ UAV with an RGB 

camera (Sony EXMOR 1/2.3) was used, flying at 7.5 meters 

altitude, capturing about 80 m² with a resolution of 0.27 cm/pixel. 

Raoufat et al. (2020) used a DJI Phantom 3 UAV with a 12 MP 

RGB camera, flying at altitudes of 5–35 meters, with image 

resolution ranging from 0.225 to 0.45 cm/pixel. Image analysis 

was done using IrfanView-64 and MATLAB software. The 

studies were conducted on a field where wheat had been 

previously grown and harvested weeks before imaging. 

Multispectral imaging is also considered reliable for plant and 

surface analysis by using satellite images (Gao et al., 2022) and 

aerial imaging by UAVs (Änäkkälä et al., 2022). 

 

Image analysis can help determine the Crop Residue Cover Index 

(CRCI), calculated by the proportion of the soil surface covered 

by residue relative to the total area measured (Asadi et al., 2011). 

The method is cost-effective and efficient, especially when using 

UAVs or free satellite data. Kosmowski et al. (2017) used the 

Excess Green Index for segmentation. The original RGB image 
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was transformed into a binary image where crop residue appeared 

as white pixels and bare soil as black pixels. The CRCI was then 

calculated as the percentage of white vs. black pixels. Raoufat et 

al. (2020) used several indices for CRCI detection, with the most 

effective being Excess Green Index (2G–R–B) and Green 

Percentage Index (G/(R+G+B)). Both Kosmowski and Raoufat 

concluded that UAV-based crop residue indexing is a promising 

and effective method. However, challenges such as camera 

resolution limitations (especially in Kosmowski’s study) exist. 

Advances in camera technology will likely improve these 

methods’ reliability in the future. 

 

Artificial intelligence and machine learning methods have 

recently been used increasingly for estimating the amount of 

CRC on agricultural fields. The methods used vary from simple 

algorithms such as K-means (Azimi & Jung, 2024) to more 

advanced machine learning methods (Upadhyay et al., 2024). 

 

The primary objective of the research was to develop and 

evaluate an efficient method for determining crop residue cover 

on agricultural fields using UAV-based image analysis. By 

comparing imagery from RGB and multispectral cameras, the 

study aimed to identify which imaging approach best supports 

accurate residue detection. The impact of this research lies in its 

potential to enhance soil conservation monitoring through 

precise, cost-effective, and scalable assessments of tillage 

outcomes. By improving our ability to quantify residue cover, the 

method supports better decision-making in sustainable land 

management and also can provide fast feedback about the 

efficiency of tillage operations for covering crop residue. 

 

2. Materials and Methods 

In this research, field measurements were conducted using two 

different UAVs and a handheld DSLR camera Canon EOS 80D. 

The larger UAV was equipped with a multispectral camera and 

the other with a high-quality RGB camera (DJI Mavic 3 

Enterprise). The larger UAV, a hexacopter Tarot T960 (Figure 1) 

carried a multispectral camera MicaSense RedEdge 3 capable of 

capturing five spectral wavelengths: blue (475 nm), green (560 

nm), red (668 nm), red edge (717 nm), and near-infrared (NIR, 

840 nm). The measurements were performed on 20 August 2024 

between 12:00 and 15:00 o’clock. 

 

 

Figure 1. Custom‐built UAV with a Tarot T960 frame. 

 

The experiment was located in Niinijoki, Loimaa, Finland. 

Winter wheat (Triticum aestivum L.) was grown in the field and 

harvested before the measurements. Tilling of the test plots were 

performed with Multiva Wingmaster 360 cultivator with a 

working width of 3.5 m (Figure 2). Five different blade types 

were used on the cultivator to create difference in crop residue 

cover between different plots. 

Cultivation with a cultivator represents a form of reduced tillage 

that combines the benefits of conventional plowing with the 

advantages of conservation-oriented soil management. One of its 

key attributes is the ability to loosen the upper soil layer, thereby 

improving soil aeration and promoting root development, much 

like traditional plowing. However, unlike deep inversion tillage, 

cultivation is less disruptive to soil structure and organic matter 

distribution. As a tillage implement, the cultivator is notably 

efficient; it offers a favorable balance between operational 

performance and economic feasibility. The machinery is 

generally affordable, and its use supports the maintenance of soil 

structure by minimizing compaction and preserving soil porosity. 

These characteristics make this type of cultivation a sustainable 

and cost-effective practice in modern agricultural systems, 

particularly in regions where maintaining long-term soil health is 

a priority. 

 

 
Figure 2. Multiva Wingmaster 360H ja Valtra T174EV. 

 

There were five test plots (from A to E) in which data was 

collected separately immediately after tilling to avoid soil drying 

before imaging. Figure 3 shows all the plots and Figures 4-8 

present the area chosen for analysis for each plot. Flights were 

conducted at an altitude of 20 meters with 80% overlap. At this 

height, image GSD (ground sample distance) for the RGB camera 

was 0.62 cm/pixel, and 1.29 cm/pixel for the multispectral 

camera. The multispectral camera was calibrated after each 

flight. The images from both UAV cameras were stitched into a 

single large orthomosaic image for each plot using Pix4Dmapper. 

 

Figure 3. The research area and the five tilled test plots. Plot 

labelling followed a left-to-right order, starting with Plot A on 

the left and ending with Plot E on the right 
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Figure 4. Orthomosaic image for field plot A. 

 

 
Figure 5. Orthomosaic image for field plot B. 

 
Figure 6. Orthomosaic image for field plot C. 

 

 
Figure 7. Orthomosaic image for field plot D. 
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Figure 8. Orthomosaic image for field plot E. 

 

The DSLR camera images were collected from 1.5 m altitude and 

with the average GSD value of 0.016 cm/pixel. A 0.5m x 0.5m 

wooden square was placed in DSLR images to determine the 

area. Five images were collected from each plot from randomized 

spots. 

 

The objective was to compare different, rather simple, image 

analysis methods based on techniques presented in literature. 

Five methods with the following data were chosen for 

preliminary analysis: 

1. Excess Green index (ExG) from DJI UAV RGB images 

2. Excess Green index (ExG) from DSLR camera images 

3. Red bandwidth from DJI UAV RGB images 

4. Red bandwidth from multispectral images (Tarot UAV) 

5. Manually annotated images from DSLR camera images 

 

For each dataset, a specific threshold value was determined and 

used for generating binary images for calculating the amount of 

crop residue cover on the tilled field plots. The threshold values 

used in the analysis were as follows: 3 for Method 1, 16 for 

Method 2, 130 for Method 3, and 0.108 for Method 4. 

Thresholding and analysis of the images was performed with 

Matlab. Methods 1 and 2 used ExG (Excess Green Index) index 

(Equation 1): 

 

 𝐸𝑥𝐺 = 2 ∗ 𝐺 − 𝑅 −B   (1) 

 

Where G = Pixel value of the Green band 

 R = Pixel value of the Red band 

 B = Pixel value of the Blue band 

 

Only the DSLR camera images were manually annotated to 

present the ground truth for each plot. Figure 9 represents the 

workflow for analysing these images for ground truth. The DSLR 

camera images were annotated using a lightweight image editing 

application (Microsoft Paint). Manual annotations focused on 

representative regions of crop residue rather than exhaustive 

pixel-level labelling, to maintain a practical balance between 

detail and efficiency. After manual annotation the images were 

processed with Matlab to count the annotated pixels that were 

classified as crop residue within the wooden frame. 

 

 
Figure 9. The process of determining ground truth data from the 

plots. a) the original DSLR camera image. b) the hand annotated 

image. c) manually drawn polygon over the desired region with 

Matlab. d) The binary image representing the ground truth 

 

3. Results 

Table 1 presents the estimated CRC for each test plot with the 

five different methods. Across all estimating methods, plots B 

and C consistently had the most crop residue on the soil surface, 

while in the plot A, the mixing performance of the tilling machine 

was considered quite good. Method 1 yielded the highest residue 

percentages, and Method 2 the lowest, with the most uniform 

results. Methods 3 and 4 supported the same overall trends, 

though Method 4 showed the greatest variability between the test 

plots. The results of test plots D and E were relatively consistent 

and moderate across methods. 

 

 
Table 1. CRC values for each plot with the different methods. 

 

Figure 10 shows the original RGB image and binary image 

calculated from it. Method 1 produced the highest CRC 
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estimations for the plots. Method 1 also resulted in higher 

clustering of pixels in the UAV images indicating high crop 

residue. Individual straws and other small crop parts were faintly 

noticeable with this method. On the contrary, method 2 had the 

smallest GSD value and therefore it could identify the smallest 

crop residue as seen in Figure 11. Nevertheless, soil still 

produced a little bit of noise in the binary image. 

 

 
Figure 10. RGB image (left) and binary image with method 1 

(right). 

 

 

 
Figure 11. DSLR image (left) and binary image with method 2 

(right). 

 

Figure 12 shows the original RGB image in the left and the binary 

image generated with the Method 3. In the binary image 

produced using Method 3, individual straw fragments and larger 

crop residue clusters are more clearly distinguishable than in the 

binary images generated using Methods 1 and 4 (Figures 10 and 

13). Generally, Method 3 appears to be more accurate than 

Method 4. Based on the visual and numerical results, it seemed 

that the Method 3 was the most reliable method among the used 

methods. Method 4 had the highest GSD value for the images but 

could still separate crop residue from the soil. Based on visual 

inspection method 4 could not detect individual straws. 

 

 
Figure 12. RGB image (left) and binary image with method 3 

(right). 

 

Figure 13. The red spectral band image from the multispectral 

camera(left) and binary image with method 4 (right). 

 

4. Discussion 

The results obtained from Methods 3 and 4 were largely align 

with the findings of Alakukku et al. (2002), who reported that a 

cultivator is typically capable of covering 60–80% of crop 

residue in a single pass. Using Method 4, the covering rates 

ranged from 49% to 91%, while Method 3 yielded values 

between 60% and 75%. Among all the measurement methods 

used, the results from Method 3 corresponded most closely with 

the range reported by Alakukku et al. (2002).  

 

While the UAV imagery provides broad spatial coverage, the 

DSLR images represent only small, localized portions of the 

research plots. This difference in spatial coverage introduces 

potential variability and may complicate direct comparisons 

between the methods. For example, in plot B and partially plot C 

there were high CRC concentrations on the left side of the plots 

due to higher crop biomass before the soil tillage process. 

 

All CRC estimation methods indicated that Plot B had the highest 

CRC values. Regarding the second-highest values, methods 1–4 

identified Plot C, while Method 5 pointed to Plot E. Upon 

examining the UAV RGB images, visible crop residues were 

observed on the left side of Plot C. This may have contributed to 

elevated CRC values in methods that rely on UAV-based image 

analysis. Method 5 may have included fewer images capturing 

the specific area of Plot C where residue accumulation was more 

prominent. 
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Method 5 represented the ground truth in this research. Plots B 

and E exhibited higher CRC values compared to the other plots, 

while plots A, C, and D showed only minor differences among 

themselves. When comparing CRC estimates from methods 1–4 

against the ground truth, methods 3 and 4 demonstrated the best 

performance relative to the ground truth, producing values most 

closely aligned with those of Method 5. To improve the accuracy 

of CRC estimation in methods 1-4 the threshold values could be 

further optimized. Applying additional image filtering techniques 

alongside thresholding may improve the accuracy of CRC 

estimation and help reduce the influence of soil on CRC values. 

 

5. Conclusions 

This research aimed to evaluate the applicability of image 

analysis for quantifying crop residue on tilled agricultural fields. 

Four analytical methods were tested, three of which relied on 

aerial imagery. Aerial imaging is a cost effective, flexible and 

higher resolution method compared to satellite imaging. The 

findings suggest that image-based analysis offers a promising, 

cost-effective, and flexible alternative to satellite-based remote 

sensing, with higher spatial resolution enabling more accurate 

residue detection. Results confirmed that crop residue remaining 

after tillage can be assessed using image analysis techniques. 

Notable differences were observed among the test plots in terms 

of residue incorporation and uniformity of tillage. Significant 

variability was also found between the analytical methods in their 

ability to detect residue, with methods 3 and 4 performing more 

reliably. Some methods either under- or overestimated residue 

presence, particularly with smaller fragments. Nevertheless, all 

methods consistently indicated that plots B and C retained more 

surface residue, with plot B showing the least effective residue 

incorporation. The results underscore the need for further 

research and data collection to assess method performance under 

diverse conditions and highlights the potential of emerging 

camera technologies to enhance future analysis accuracy. 

 

 

6. Acknowledgment 

The authors would like to thank Huovilan tila for providing the 

research area. We would also like to thank Dometal Oy for 

providing the facilities and machinery. The research project was 

funded by the Maatalouskoneiden tutkimussäätiö (Agricultural 

Machinery Research Foundation). 

 

 

References 

Alakukku, L., Mikkola, H., Nuutinen, V., Palojärvi, A., 

Peltomaa, R., Peltonen, S., Pietola, L., Pitkänen, J. & Rajala, J. 

(2002). Maan rakenteen hoito (Soil structure management). Pro 

Agria ja Maatalouden tutkimuslaitos. Tieto tuottamaan 98. 

Keuruu: Otavan kirjapaino Oy. 

 

Asadi, V., Jafari, A., Moradi, M., & Rasekhi, R. (2011). Precise 

measurement of residue cover by means of image processing 

techniques. Int J Nat Eng Sci, 5, 53-56. 

 

Azimi, F., & Jung, J. (2024). Automated Crop Residue 

Estimation via Unsupervised Techniques Using High-Resolution 

UAS RGB Imagery. Remote Sensing, 16, 1135. 

 

Gao, L., Zhang, C., Yun, W., Ji, W., Ma, J., Wang, H., LI, C., & 

Zhu, D. (2022). Mapping crop residue cover using Adjust 

Normalized Difference Residue Index based on Sentinel-2 MSI 

data. Soil and Tillage Research, 220, 105374. 

 

Kosmowski, F., Stevenson, J., Campbell, J., Ambel, A., & Haile 

Tsegay, A. (2017). On the ground or in the air? A methodological 

experiment on crop residue cover measurement in Ethiopia. 

Environmental management, 60, 705-716. 

 

Quemada M., & Daughtry, Craig S.T. (2016). Spectral Indices to 

Improve Crop Residue Cover Estimation under Varying 

Moisture Conditions. Remote Sens. 2016, 8, 660; 

doi:10.3390/rs8080660. 

 

Raoufat, M. H., Dehghani, M., Abdolabbas, J., Kazemeini, S. A., 

& Nazemossadat, M. J. (2020). Feasibility of satellite and drone 

images for monitoring soil residue cover. Journal of the Saudi 

Society of Agricultural Sciences, 19(1), 56-64. 

 

Sonmez, N.K. & Slater, B. (2016). Measuring Intensity of Tillage 

and Plant Residue Cover Using Remote Sensing. European 

Journal of Remote Sensing, 49:1, 

121-135, doi:10.5721/EuJRS20164907. 

 

Upadhyay, P.C., Lagaunne, T.A.P., Lory, J.A., & DeSouza, G.N. 

(2024). Crop Residue Cover Percentage Estimation from RGB 

Images Using Transfer Learning and Ensemble Ordinal 

Regression. Journal of the ASABE, 67(4): 943-953. 

 

Williams, F., Gelder, B., Presley, D., Pape, B., Einck, A. (2024). 

Estimation of Crop Residue Cover Utilizing Multiple Ground 

Truth Survey Techniques and Multi-Satellite Regression Models. 

Remote Sens. 2024, 16, 4185, doi:10.3390/rs16224185. 

 

Yang, L., Lu, B., Schmidt, M., Natesan, S. & McCaffrey, D. 

(2025). Applications of remote sensing for crop residue cover 

mapping. Smart Agricultural Technology, 11,  

100880; doi:10.1016/j.atech.2025.100880. 

 

Änäkkälä, M., Lajunen, A., Hakojärvi, M., & Alakukku, L. 

(2022). Evaluation of the influence of field conditions on aerial 

multispectral images and vegetation indices. Remote Sensing, 

14(19), 4792. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-7-2025 | © Author(s) 2025. CC BY 4.0 License.

 
12




