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Abstract

Bark beetle (Ips typographus L.) outbreaks are one of the main threats to forest health in northern Europe, with recent events causing
extensive damage to spruce forests. While management for population control relies on detecting infested trees before the emergence
of the filial generation, identifying robust spectral indicators remains a major challenge. In this study, we evaluate the performance of
vegetation indices (VIs) derived from hyperspectral drone imagery for detecting bark beetle infestations in southern Sweden. We
calculated detection rates based on the cases where V1 values for infested trees deviated from the value range observed in healthy trees.
We tested different scenarios for defining the range of healthy values to assess spatial and temporal consistency of VI performance.
Green shoulder Vs, particularly GSCR1ms and GSCR2ws, consistently showed the highest detection rates. Their performance was
stable across different weeks and forest stands, indicating stronger generalizability and higher potential for pre-emergence detection.
In contrast, red edge Vs showed limited temporal consistency and strong dependence on normalization. SWIR-based VIs presented

low detection rates in all scenarios, therefore showing limited potential.

1. Introduction

The European spruce bark beetle (Ips typographus L.) has caused
extensive damage in Swedish forests, threatening forest health,
timber production, and socio-ecological values (Karvemo et al.,
2023). Developing effective remote sensing methods to detect
infested trees as early as possible can support outbreak
monitoring and response strategies (Luo et al., 2023).

Recent research has focused on pre-emergence detection to
enable timely interventions and prevent further spread to healthy
stands (Kautz et al., 2024). In other words, previous studies have
investigated the possibility of identifying infested trees before
offspring emergence, which typically occurs in Sweden around
9-10 weeks after bark beetle colonization depending on weather
conditions (Ohrn et al., 2014). However, a key challenge remains
in identifying reliable remote sensing indicators that can detect
early stress signals across varying environmental and forest
conditions.

The first study in Sweden to explore pre-emergence detection
using multispectral drone imagery introduced novel vegetation
indices (VIs) based on the red-edge region (680-780 nm),
achieving detection rates of 15 and 90% of infested trees after 5
and 10 weeks of infestation, respectively (Huo et al., 2023a). A
follow-up study demonstrated that machine-learning models
trained on these VIs performed poorly when applied to untrained
areas, highlighting challenges in generalizability (Huo et al.,
2023b).

More recently, a study conducted in Finland proposed novel Vs
based on the green shoulder region (490-560 nm), which
provided the highest detection rates of bark beetle-infested trees
among the tested VIs (Huo et al., 2024). That study also
suggested that normalizing VI values using the first image
acquired in a time series could further enhance detection rates.
However, the transferability and robustness of these methods
across regions remains untested.

In this study, we assess the performance of traditional and newly
developed VIs to detect bark beetle infestation in southern
Sweden using multi-temporal, high-resolution hyperspectral
drone imagery. We focus particularly on evaluating VI
robustness across different spatial and temporal scales to identify
consistent and generalizable indicators for early stress detection.

2. Material and methods

The study was conducted in Remningstorp, Sweden
(58°27'18"N, 13°39'8"E). The area is mainly composed of even-
aged managed forest, where Norway Spruce and Scots Pine are
the main occurring species. In 2023, we monitored four spruce
forest stands, each containing six plots with a 15-meter radius,
which included 30-60 trees.

A pheromone bag was placed in the central tree of each plot to
attract bark beetles. Limitations from weather conditions led to
poor bark beetle colonization in 17 out of the 24 field plots
despite using pheromone bags, leading to unsuitable sites to
represent outbreak scenarios. Therefore, the analysis focus on the
7 plots which experienced severe attacks, containing at least 5
infested trees (Table 1).

Stand and plot Healthy Infested Total
st.1-plt.6 39 (38) 5(5) 44 (43)
st.2 - plt.3 41 (37) 5 (5) 46 (42)
st.2 - plt.5 53 (45) 7(7) 60 (52)
st.3-plt.1 32 (30) 10 (10) 42 (40)
st.3-plt4 33(31) 5(5) 38 (36)
st.3 - plt.6 24 (24) 11 (11) 35(35)
st.4 - plt.6 22 (22) 14 (13) 36 (35)
Total 244 (227) 57 (56) 301 (283)

Table 1. Number of trees monitored in each plot. In parenthesis,
the number of trees that were successfully segmented in the
hyperspectral images using an automatic algorithm.

Weekly field inventories were conducted between weeks 16 and
32 to identify infested trees. According to symptom monitoring
and bark beetle population monitoring, the swarming and attacks
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by the overwintering generation occurred in weeks 19 and 20, the
attacks by the sister generation occurred in week 23, and the F1
filial generation had peak emergence in weeks 28, 30, and 32.

Hyperspectral images were collected with cameras SPECIM
AFX10 VNIR (400-1,000 nm, 224 bands, 7 cm GSD) and
AFX17 SWIR (900-1,700 nm, 112 bands, 11 cm GSD), mounted
one camera at a time on a multirotor drone Freefly Alta X with a
Gremsy gimbal. The sensors were flown at 100 m height,
resulting in 69 m swath. In each stand, we collected several
parallel flight lines covering the field plot, spaced by 20 m.

VNIR and SWIR images were intended to be collected every
second week from week 22 to week 32 of the year. However, in
practice, image acquisition was limited by gimbal performance
and logistics. In total, we conducted seven drone missions per
camera. The first three flights occurred in different weeks for
VNIR and SWIR. During the final four instances of image
acquisition (weeks 26, 28, 30, and 32), images from both sensors
were collected (Table 2).

Week of 2023
16 18 20 22 23 24 26 28 30 32
Field v v v v v v v v v Y
AFX10 v, , Vs v v v Y
AFX17 Vi V2 Vi v vV v Y

Table 2. Timeframe of data collection. Datasets present for a

given week are marked with the symbol v'. Subscripted
numbers represent normalization weeks tested for each camera.

Dataset

Radiometric correction and georectification were performed
using CaliGeoPRO software, resulting in imagery expressed in
radiance units. The calibration coefficients for the camera pixels
were derived under controlled laboratory conditions using a
calibrated integrating sphere as a uniform radiance source. As
specified by the manufacturer, 100 images of the sphere were
averaged to generate a calibration image, and 100 dark frames
were similarly averaged to correct for sensor noise. During each
flight, ground reference targets with near-Lambertian surface
were placed in the scene, and their known reflectance values were
used to convert radiance to reflectance.

Treetops were identified in the images using single-band local
maxima detection (550nm/AFX10, 965nm/AFX17) and tree
crowns were segmented using a marker-controlled watershed
segmentation. We then matched these treetops with the
corresponding field observation using an automatic algorithm.
Each field observation was first matched with all treetops within
a 2.5 m radius, and the pair with the shortest distance was
selected. Because cameras were flown with high side overlap,
many trees were repeated in multiple flight lines, resulting in
multiple segments in the same week. In such cases, we selected
the crown segment closer to the central axis of the image to avoid
off-nadir distortions. We also removed poor-quality crown
segments (e.g., inaccurate treetop position, incorrect matching)
based on spectral and visual assessments.

For each tree crown segment, pixels were selected among the
75% brightest pixels within 1-meter buffer around the treetop,
which have previously been shown to be effective crown pixels
(Huo et al., 2025). These pixels were extracted using a mask that
was computed from the same bands used for segmentation for
each camera (550nm/AFX10, 965nm/AFX17). The mask was
created by removing reflectance values below the 251 percentile
in those bands. Figure 1 illustrates crown segments (including the
treetop and the 1-meter buffer from where spectral data was

extracted) for one of the field plots in the beginning and in the
end of the study.
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Figure 1. Tree crown segments from st.3-plt.6 in week 16 (A)
and week 32 (B). Tree numbers are unique identifiers used in
the study. Infested trees are highlighted with red squares around
the crown segments. Tree tops are marked with yellow points,
and 1-meter buffers are shown as yellow circles. Segments are
true-colour composites based on AFX10-VNIR images using
bands centred at 675 nm (red), 554 nm (green), and 479 nm
(blue).

To make spectral signatures comparable across different flights,
we used the Frobenius norm, defined as the square root of the
sum of squares of reflectance values in the full spectra. We then
smoothed the curves to minimize spectral noise using a spline
function with a moderate smoothing factor (Green & Silverman,
1993) (Figure 2).
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Figure 2. Reflectance curves (normalized and smoothed) for
healthy and infested trees from st.4-plt.6 in week 32.

We calculated the first- and second-order derivatives based on
the smoothed reflectance curves (Equations 1 and 2). Lastly, we
calculated a series of VIs derived from reflectance values and
spectral derivatives (Table 3).

1 9R _ Riy—R; )
dw Wi —W;

= ot (2 @
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where R=

Reflectance

R’ = first derivative

R’’ = second derivative
W = wavelength
i = band index
Index Definition Reference
GSIPsy Value of the maximum 1% Huo et al.
derivative at approx. 520 nm (2024)
GSIPsys Value of the maximum 1% Huo et al.
derivative at approx. 545 nm (2024)
GSCPs3 Value of the maximum 2" Huo et al.
derivative at approx. 530 nm (2024)
GSCR1 GSIPs,5 Huo et al.
—GSCP;3, (2024)
GSCR2 GSIPsys Huo et al.
GSIP5z0 * —GSCPs3g (2024)
REIP05 @ Value of the maximum 1% Lietal.
derivative at approx. 705 nm (2024)
RECPggs Value of the maximum 2" This study ®
derivative at approx. 685 nm
RECPz0s Value of the minimum 2 This study ®
derivative at approx. 705 nm
GSCR1us Rss0— Rszo Huo et al.
Res — (Rsso"z‘ R490) (2024)
GSCR2ums R550_ R530 Huo et al.
(Rs30— Rago) * (2024)
(R530 _ Rsso"z' R490)
PRIs30/570 Rs31— Rs7o Pefiuelas et al.
Rs31+ Rs7o (1994)
PRIss0/530 550 Rs30 Pefiuelas et al.
Rss0t Rsso (1994)
ARI 1 1 Gitelson et al.
Rsso  Rooo (2001)
CIG Rges 1 Gitelson et al.
Rsso (2003)
Cvi Rges * Ryos Vincini et al.
Rsso * Rsso (2008)
GNDVI 780~ Rsso Gitelson et al.
R7g0t Rsso (1996)
MR-DSWI, R705 * Ryps Huo et al.
Rss * Rogs (2023a)
MR-DSWI;  R7os * R7gs * Rges Huo et al.
Rsso * Rz * Rogs (2023a)
MR-DSWI; R705 * R705 * R655 Huo et al.
Rsso * Rogs * Rgso (2023a)
MR-DSWI, R705 * Rygs * R865 * R555 Huo et al.
Rsso * Rogs * Rygz * Rsgo (20232)
NDRE 790~ R720 Barnes et al.
R790+ R720 (2000)
NDVI Rges— Rsso Rouse et al.
Rges+ Rsso (1973)
NGRDI R550_ R665 Tucker
Rss0+ Rees (1979)
REIP, 700 + 40 Guyot et al.
Re70— Roso _ ¢ (1988)
. 2 700
R740_ R700
RVSI R718_ R743 _R Merton
2 733 (1998)
DRS 5 N Huo et al.
/Rees + Rie1o (2021)
NDII R819_ R1549 Hardisky et al.

R819+ R1649

(1983)

Index Definition Reference

NDWI Rgs7— Ri241 Jackson et al.
R857+ R1241 (2004)

MSI R1500 Hunt & Rock
Rezo (1989)

RAT|0975 2 * §9607990 Pu et al.
§9207940:’- §10907110 (2004)

RATlolzoo 2 * R1180—1220 Pu et al.
ﬁ109071110 + E126571285 (2004)

Table 3. List of vegetation indices used in this study, as well as
their definitions and sources. @ referred to as REIPq in Li at al.
(2024), ® derived from peaks and valleys observed in the
second derivative curves in our data, inspired by REIPq in Li at
al. (2024) and GSCPs30 in Huo et al. (2024).

To determine whether a VI was capable of identifying infested
trees, we first calculated a “healthy range”, defined as the range
of VI values presented by healthy trees (i.e., trees not infested
with bark beetles). To minimize the influence of noise and
outliers, we only considered VI values between the 1%t and 99t
percentiles. We assumed that this range encompassed the natural
variability of trees in healthy conditions, and that a good VI
would produce values deviating from the healthy range when
trees are stressed.

For each VI and in each week, we labelled as detected any
infested trees that presented values falling outside the healthy
range. To assess spatial and temporal consistency, we considered
three different scenarios for defining the healthy range:

a. Individual-plot scenario — a healthy range was defined
individually for each field plot in each week of the
study. Therefore, the detection of infested trees in this
scenario only considered the healthy trees occurring in
the same plot. This represented the finest scale of
assessment, reflecting local site conditions.

b.  Multi-stand scenario — a healthy range was defined for
each week of the study, therefore considering
simultaneously all healthy trees in a given week. This
approach tests spatial consistency by pooling together
the values observed for the healthy trees from all four
stands in a given week.

c. Multi-week scenario — a single healthy range was
defined for the entire study, therefore considering
values observed for healthy trees in multiple weeks.
We chose to restrict V1 values obtained in weeks 26 and
32 to avoid fluctuations caused primarily by
phenological changes occurring in spring (e.g. bud
flush). This represented the broader scale of analysis,
where detection depends on temporal consistency.

Furthermore, we tested if normalizing Vs considering the values
obtained in early-season conditions could improve detection
rates. We used a relative change normalization approach, which
quantifies how much a VI has increased or decreased in relation
to a baseline week (Equation 3). We tested normalization to the
first three flights (denoted as norm-1, norm-2, or norm-3, in
correspondence to Table 2) and we use the term “original values”
to refer to VI values directly obtained from their formulas, i.e.,
without any normalization applied. For VIs based on AFX10
wavelengths (which was the case for most VIs in this study),
baseline weeks corresponded to weeks 16, 18, or 23. For
RATIO1200, which was based on AFX17 wavelengths, baseline
weeks corresponded to weeks 20, 22, and 24. For other indices
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based on wavelengths from both AFX10 and AFX17, we only
analysed the original VI values due to the mismatch of baseline
weeks for both cameras.

8VI — VIi—Vlpaseline (3)

Vlpaseline

where  3VI = Normalized vegetation index

VI = Vegetation index

i = week

baseline = week used for normalization

Finally, we calculated the detection rates at each week to
compare the performance across VIs, healthy range scenarios
(individual-plot, multi-stand, or multi-week), and normalization
weeks (original values, norm-1, norm-2, or norm-3). The
detection rate refers to the number of infested trees detected by a
VI divided by the total number of infested trees (n = 56).

3. Results

In week 26, two weeks before the offspring emergence, the
highest detection rate at the individual-plot level was achieved by
green shoulder Vs, such as GSIPsss (0.48, norm-2), GSCR2ms
(0.43, norm-2), and GSCR1wms (0.38, norm-3) (Figure 3). Red
edge VIs performed slightly worse, with best results obtained
with MR-DSWI1, MR-DSWI;, REIPL, and NDRE (0.29-0.30,
norm-2). Nevertheless, the detection rates decreased sharply at
the multi-stand and multi-week scenarios. Considering the VIs
previously mentioned, the best result for these scenarios was
achieved by GSCR2wms (0.23-0.25, norm-1). While RECPsss and
PRIssos30 also achieved similar detection rates for those
scenarios, such results were not sustained in week 28 compared
to other VIs. These results suggest that spectral changes in early
stages of infestation were very subtle and could only be detected
locally, i.e., by comparing infested trees with their neighbouring
trees.
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Figure 3. Detection rates of infested trees in week 26 (pre-
emergence phase). Normalization: Original= original VI values,
Norm= normalized VI values and respective baseline week.
Healthy range scenario: IP= individual-plot, MS= multi-stand,
MW= multi-week.

By week 28 when the offspring emergence began, detection
improved for most VIs (Figure 4). Specifically, some green
shoulder VIs reached detection of at least half of the infested trees
across all three scenarios considered in this study, such as
GSCR1wms (0.68-0.52, norm-3) and GSCR2wms (0.52-0.50, norm-
1). GSCR1wms with norm-3 showed the highest transferability,
with only slight decreases in the detection rates comparing multi-
stand (0.62) and multi-week (0.52) to individual-plot level
detection (0.68). PRIssos70 had a similar detection rate at the
individual-plot level, but transferability was lower, i.e., lower
detection rates for multi-stand (0.39) and multi-week (0.34)
scenarios. Red edge indices, on the other hand, did not perform
well at the multi-week scenario. Their performance was limited
to the individual-plot and multi-stand levels, with values close to
0.40 for MR-DSWI1 and MR-DSWI. (0.38-0.43, norm-2).
SWIR-based VIs consistently showed low detection rates,
suggesting water content was not a primary indicator of bark
beetle infestation in our study area.
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Figure 4. Detection rates of infested trees in week 28
(beginning of F1 filial generation emergence). Normalization:
Original= original VI values, Norm= normalized V1 values and
respective baseline week. Healthy range scenario: IP=
individual-plot, MS= multi-stand, MW= multi-week.

Figure 5 illustrates the challenge of detecting infested trees in
week 26 considering the multi-stand scenario. We observed a
clustering of VI values by field plot, but it was not clear whether
this reflects differences in forest conditions, flight conditions
(e.g., images captured on different days or times for different
stands, illumination changes during the flight), or a combination
of both. As a result, VI-based detection was limited at this stage,
as most infested trees exhibited only minor deviations from
healthy values, which were insufficient to surpass the broader
detection thresholds used when considering healthy trees across
multiple sites. In later weeks, however, infested trees showed
larger deviations, enabling successful detection across all stands.
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Figure 5. Values for GSCR1ms and MR-DSWI1 between weeks
26 and 32 for original values and values normalized to weeks
16, 18, or 23. Red markers represent infested trees and blue
markers represent healthy trees. Different shapes represent
different field plots. Dashed lines represent detection thresholds
for each index considering the multi-stand scenario, i.e., all
healthy trees from all field plots in a given week.

We observed that many VIs benefited from normalization, even
though the optimal baseline week varied. Normalization to early-
season values improved detection by reducing variability among
healthy trees and enhancing the contrast between healthy and
infested trees (Figure 6). While green shoulder indices had their
performance enhanced with normalization, they also presented
the best results using original VI values (e.g., GSCR1ws, but also
PRIss0/530). The same did not apply to red edge Vs, which heavily
depended on normalization for detecting infested trees in our
data. Therefore, green shoulder Vs can provide higher detection
rates in single-image analysis, i.e., when a time series is not
available.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-2-W11-2025-73-2025 | © Author(s) 2025. CC BY 4.0 License. 77



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Original Norm-1
5
*
=
b
3
@
.
0
(8)
Original Norm-1
15
1.0
05
=
7]
=1
o Norm-2 Norm-3
= 3 2
1
0

16 18 23 26 28 30 32 16 18 23 26 28 30 32

— Healthy ---- Infested

Figure 6. Evolution of GSCR1wms (A) and MR-DSWI: (B) for
healthy (in blue) and infested (in red) trees. Original= original
VI values, Norm= normalized VI values and respective week.

4. Discussion

In our field survey, we recorded the first entrance holes in week
18, while most of the infested trees were first attacked from week
19 onwards. This indicates that data from week 26 reflects a
situation of roughly 7-8 weeks after the bark beetle swarming. In
Scandinavian forests, bark beetles typically emerge from the bark
around 9-10 weeks after the adults bore into the bark, even
though the specific timing depends on environmental conditions
(Ohrnetal., 2014). Therefore, the low detection obtained in week
26 at the multi-stand scenario poses a challenge for effective pre-
emergence detection, as infested trees cannot be easily separated
from healthy trees across the landscape (Figure 5). Nevertheless,
adopting the best VIs and best processing techniques (e.qg., pixel
selection and normalization) can be helpful to enable broad-scale
monitoring, where spectral analysis can indicate specific sites
where outbreaks are more likely to be happening to complement
field efforts.

The fact that some green shoulder VIs presented consistent
results at the multi-stand and multi-week scenarios suggests they
are robust against a series of factors that can influence spectral
signatures, such as forest properties (e.g., structural differences
across trees and stands) and flight conditions (e.g., illumination,
sun angles). Therefore, these VIs might be valuable metrics in
monitoring forest disturbances from airborne platforms. These
results reflect the high stability of green shoulder VIs observed
for healthy trees between weeks 23 and 32 (Figure 6). We expect
that this stability is not site-specific and persists for even longer,
as Huo et al. (2024) also observed a similar trend in drone images
collected between weeks 30 and 36 of 2021 in southern Finland.

Furthermore, these results indicate that green shoulder VIs have
the highest potential to build models transferable to other time
points and untrained areas. Generalizability has been a challenge
for previous research using machine-learning models, leading to
overfitting (Huo et al., 2023b). Nevertheless, a broader adoption
of green shoulder VIs for forest disturbance monitoring is still
limited by the spectral settings from sensors widely available (in
particular commercial airborne sensors and spaceborne sensors
with open data), which usually provide only one band in the green
region around 550 nm, while calculating green shoulder Vs
requires one additional band centred around 530 nm.

5. Conclusion

Green shoulder indices demonstrated the highest robustness and
stability among all VIs for capturing stress-induced spectral
changes across spatial and temporal scales. Their performance
was further enhanced when normalized to early-season
conditions, making these indices and techniques promising for
detection of bark beetle infestations and other forest disturbances
in southern Sweden.
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