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Abstract 

 

Bark beetle (Ips typographus L.) outbreaks are one of the main threats to forest health in northern Europe, with recent events causing 

extensive damage to spruce forests. While management for population control relies on detecting infested trees before the emergence 

of the filial generation, identifying robust spectral indicators remains a major challenge. In this study, we evaluate the performance of 

vegetation indices (VIs) derived from hyperspectral drone imagery for detecting bark beetle infestations in southern Sweden. We 

calculated detection rates based on the cases where VI values for infested trees deviated from the value range observed in healthy trees. 

We tested different scenarios for defining the range of healthy values to assess spatial and temporal consistency of VI performance. 

Green shoulder VIs, particularly GSCR1MS and GSCR2MS, consistently showed the highest detection rates. Their performance was 

stable across different weeks and forest stands, indicating stronger generalizability and higher potential for pre-emergence detection. 

In contrast, red edge VIs showed limited temporal consistency and strong dependence on normalization. SWIR-based VIs presented 

low detection rates in all scenarios, therefore showing limited potential. 

 

 

1. Introduction 

The European spruce bark beetle (Ips typographus L.) has caused 

extensive damage in Swedish forests, threatening forest health, 

timber production, and socio-ecological values (Kärvemo et al., 

2023). Developing effective remote sensing methods to detect 

infested trees as early as possible can support outbreak 

monitoring and response strategies (Luo et al., 2023). 

 

Recent research has focused on pre-emergence detection to 

enable timely interventions and prevent further spread to healthy 

stands (Kautz et al., 2024). In other words, previous studies have 

investigated the possibility of identifying infested trees before 

offspring emergence, which typically occurs in Sweden around 

9-10 weeks after bark beetle colonization depending on weather 

conditions (Öhrn et al., 2014). However, a key challenge remains 

in identifying reliable remote sensing indicators that can detect 

early stress signals across varying environmental and forest 

conditions. 

 

The first study in Sweden to explore pre-emergence detection 

using multispectral drone imagery introduced novel vegetation 

indices (VIs) based on the red-edge region (680-780 nm), 

achieving detection rates of 15 and 90% of infested trees after 5 

and 10 weeks of infestation, respectively (Huo et al., 2023a). A 

follow-up study demonstrated that machine-learning models 

trained on these VIs performed poorly when applied to untrained 

areas, highlighting challenges in generalizability (Huo et al., 

2023b). 

 

More recently, a study conducted in Finland proposed novel VIs 

based on the green shoulder region (490-560 nm), which 

provided the highest detection rates of bark beetle-infested trees 

among the tested VIs (Huo et al., 2024). That study also 

suggested that normalizing VI values using the first image 

acquired in a time series could further enhance detection rates. 

However, the transferability and robustness of these methods 

across regions remains untested. 

 

In this study, we assess the performance of traditional and newly 

developed VIs to detect bark beetle infestation in southern 

Sweden using multi-temporal, high-resolution hyperspectral 

drone imagery. We focus particularly on evaluating VI 

robustness across different spatial and temporal scales to identify 

consistent and generalizable indicators for early stress detection. 

 

2. Material and methods 

The study was conducted in Remningstorp, Sweden 

(58°27′18″N, 13°39′8″E). The area is mainly composed of even-

aged managed forest, where Norway Spruce and Scots Pine are 

the main occurring species. In 2023, we monitored four spruce 

forest stands, each containing six plots with a 15-meter radius, 

which included 30-60 trees. 

 

A pheromone bag was placed in the central tree of each plot to 

attract bark beetles. Limitations from weather conditions led to 

poor bark beetle colonization in 17 out of the 24 field plots 

despite using pheromone bags, leading to unsuitable sites to 

represent outbreak scenarios. Therefore, the analysis focus on the 

7 plots which experienced severe attacks, containing at least 5 

infested trees (Table 1). 

 
Stand and plot Healthy Infested  Total 

st.1 - plt.6 39 (38) 5 (5) 44 (43) 

st.2 - plt.3 41 (37) 5 (5) 46 (42) 
st.2 - plt.5 53 (45) 7 (7) 60 (52) 

st.3 - plt.1 32 (30) 10 (10) 42 (40) 

st.3 - plt.4 33 (31) 5 (5) 38 (36) 
st.3 - plt.6 24 (24) 11 (11) 35 (35) 

st.4 - plt.6 22 (22) 14 (13) 36 (35) 

Total 244 (227) 57 (56) 301 (283) 

Table 1. Number of trees monitored in each plot. In parenthesis, 

the number of trees that were successfully segmented in the 

hyperspectral images using an automatic algorithm. 

 

Weekly field inventories were conducted between weeks 16 and 

32 to identify infested trees. According to symptom monitoring 

and bark beetle population monitoring, the swarming and attacks 
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by the overwintering generation occurred in weeks 19 and 20, the 

attacks by the sister generation occurred in week 23, and the F1 

filial generation had peak emergence in weeks 28, 30, and 32. 

 

Hyperspectral images were collected with cameras SPECIM 

AFX10 VNIR (400-1,000 nm, 224 bands, 7 cm GSD) and 

AFX17 SWIR (900-1,700 nm, 112 bands, 11 cm GSD), mounted 

one camera at a time on a multirotor drone Freefly Alta X with a 

Gremsy gimbal. The sensors were flown at 100 m height, 

resulting in 69 m swath. In each stand, we collected several 

parallel flight lines covering the field plot, spaced by 20 m. 

 

VNIR and SWIR images were intended to be collected every 

second week from week 22 to week 32 of the year. However, in 

practice, image acquisition was limited by gimbal performance 

and logistics. In total, we conducted seven drone missions per 

camera. The first three flights occurred in different weeks for 

VNIR and SWIR. During the final four instances of image 

acquisition (weeks 26, 28, 30, and 32), images from both sensors 

were collected (Table 2). 

 
Dataset Week of 2023 

16 18 20 22 23 24 26 28 30 32 

Field  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

AFX10 ✓1 ✓2 
  

✓3 
 

✓ ✓ ✓ ✓ 

AFX17     ✓1 ✓2   ✓3 ✓ ✓ ✓ ✓ 

Table 2. Timeframe of data collection. Datasets present for a 

given week are marked with the symbol ✓. Subscripted 

numbers represent normalization weeks tested for each camera. 

 

Radiometric correction and georectification were performed 

using CaliGeoPRO software, resulting in imagery expressed in 

radiance units. The calibration coefficients for the camera pixels 

were derived under controlled laboratory conditions using a 

calibrated integrating sphere as a uniform radiance source. As 

specified by the manufacturer, 100 images of the sphere were 

averaged to generate a calibration image, and 100 dark frames 

were similarly averaged to correct for sensor noise. During each 

flight, ground reference targets with near-Lambertian surface 

were placed in the scene, and their known reflectance values were 

used to convert radiance to reflectance. 

 

Treetops were identified in the images using single-band local 

maxima detection (550nm/AFX10, 965nm/AFX17) and tree 

crowns were segmented using a marker-controlled watershed 

segmentation. We then matched these treetops with the 

corresponding field observation using an automatic algorithm. 

Each field observation was first matched with all treetops within 

a 2.5 m radius, and the pair with the shortest distance was 

selected. Because cameras were flown with high side overlap, 

many trees were repeated in multiple flight lines, resulting in 

multiple segments in the same week. In such cases, we selected 

the crown segment closer to the central axis of the image to avoid 

off-nadir distortions. We also removed poor-quality crown 

segments (e.g., inaccurate treetop position, incorrect matching) 

based on spectral and visual assessments. 

 

For each tree crown segment, pixels were selected among the 

75% brightest pixels within 1-meter buffer around the treetop, 

which have previously been shown to be effective crown pixels 

(Huo et al., 2025). These pixels were extracted using a mask that 

was computed from the same bands used for segmentation for 

each camera (550nm/AFX10, 965nm/AFX17). The mask was 

created by removing reflectance values below the 25th percentile 

in those bands. Figure 1 illustrates crown segments (including the 

treetop and the 1-meter buffer from where spectral data was 

extracted) for one of the field plots in the beginning and in the 

end of the study. 

 

 
Figure 1. Tree crown segments from st.3-plt.6 in week 16 (A) 

and week 32 (B). Tree numbers are unique identifiers used in 

the study. Infested trees are highlighted with red squares around 

the crown segments. Tree tops are marked with yellow points, 

and 1-meter buffers are shown as yellow circles. Segments are 

true-colour composites based on AFX10-VNIR images using 

bands centred at 675 nm (red), 554 nm (green), and 479 nm 

(blue). 

 

To make spectral signatures comparable across different flights, 

we used the Frobenius norm, defined as the square root of the 

sum of squares of reflectance values in the full spectra. We then 

smoothed the curves to minimize spectral noise using a spline 

function with a moderate smoothing factor (Green & Silverman, 

1993) (Figure 2). 

 

 
Figure 2. Reflectance curves (normalized and smoothed) for 

healthy and infested trees from st.4-plt.6 in week 32. 

 

We calculated the first- and second-order derivatives based on 

the smoothed reflectance curves (Equations 1 and 2). Lastly, we 

calculated a series of VIs derived from reflectance values and 

spectral derivatives (Table 3).  

 

R' =
dR

dW
=

R i+1− R i

W i+1− W i
     (1) 

 

R'' =
d2R

d2W
=

d

dW
 (

dR

dW
)    (2) 
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where  R = Reflectance 

 R’ = first derivative 

 R’’ = second derivative 

 W = wavelength  

 i = band index 

 
Index Definition Reference 

GSIP520 Value of the maximum 1st 

derivative at approx. 520 nm 

Huo et al.  

(2024) 

 

GSIP545 Value of the maximum 1st 

derivative at approx. 545 nm 

Huo et al.  

(2024) 
GSCP530 Value of the maximum 2nd 

derivative at approx. 530 nm 

Huo et al.  

(2024) 

GSCR1 GSIP545

−GSCP530

 

 

Huo et al.  
(2024) 

GSCR2 GSIP545

GSIP520 ∗  −GSCP530

 
Huo et al.  

(2024) 

REIP705 
(a) Value of the maximum 1st  

derivative at approx. 705 nm 

Li et al.  

(2024) 
RECP685 Value of the maximum 2nd  

derivative at approx. 685 nm 

This study (b) 

RECP705 Value of the minimum 2nd  
derivative at approx. 705 nm 

This study (b) 

GSCR1MS R550− R530

R530 − (
R550 + R490

2
)
 

Huo et al.  

(2024) 

GSCR2MS R550− R530

(R530− R490) ∗

 (R530 − 
R550 + R490

2
)

 
Huo et al.  

(2024) 

PRI530/570 R531− R570

R531+ R570

 
Peñuelas et al. 
 (1994) 

PRI550/530 R550− R530

R550+ R530

 
Peñuelas et al.  

(1994) 

ARI 1 

R550

−
1 

R700

 
Gitelson et al.  

(2001) 

CIG R865

R550

− 1 
Gitelson et al.  

(2003) 

CVI R865 ∗  R705

R550 ∗  R550

 
Vincini et al.  
(2008) 

GNDVI R780− R550

R780+ R550

 
Gitelson et al.  

(1996) 

MR-DSWI1 R705 ∗  R705

R550 ∗  R783

 
Huo et al. 

 (2023a) 

MR-DSWI2 R705 ∗  R705 ∗  R865

R550 ∗  R783 ∗  R783

 
Huo et al.  
(2023a) 

MR-DSWI3 R705 ∗  R705 ∗  R665

R550 ∗  R783 ∗  R550

 
Huo et al.  

(2023a) 

MR-DSWI4 R705 ∗  R705 ∗  R865 ∗  R665

R550 ∗  R783 ∗  R783 ∗  R550

 
Huo et al.  

(2023a) 

NDRE R790− R720

R790+ R720

 
Barnes et al.  

(2000) 

NDVI R865− R550

R865+ R550

 
Rouse et al.  

(1973) 

NGRDI 𝑅550− 𝑅665

𝑅550+ 𝑅665

 
Tucker  

(1979) 

REIPLI 700 + 40

∗  (

𝑅670− 𝑅780

2
− R700

R740− R700

) 

Guyot et al.  
(1988) 

RVSI R718− R748

2
− R733 

Merton  
(1998) 

DRS 
 √R665

2 + R1610
2 

Huo et al.  

(2021) 

NDII R819− R1649

R819+ R1649

 
Hardisky et al.  

(1983) 

Index Definition Reference 

NDWI R857− R1241

R857+ R1241

 
Jackson et al.  

(2004) 

MSI R1600

R820

 
Hunt & Rock 
(1989) 

RATIO975 2 ∗ R̅960−990

R̅920−940 + R̅1090−110

 
Pu et al. 

 (2004) 

RATIO1200 2 ∗ R̅1180−1220

R̅1090−1110 +  R̅1265−1285

 
Pu et al.  

(2004) 

Table 3. List of vegetation indices used in this study, as well as 

their definitions and sources. (a) referred to as REIPd in Li at al. 

(2024), (b) derived from peaks and valleys observed in the 

second derivative curves in our data, inspired by REIPd in Li at 

al. (2024) and GSCP530 in Huo et al. (2024). 

 

To determine whether a VI was capable of identifying infested 

trees, we first calculated a “healthy range”, defined as the range 

of VI values presented by healthy trees (i.e., trees not infested 

with bark beetles). To minimize the influence of noise and 

outliers, we only considered VI values between the 1st and 99th 

percentiles. We assumed that this range encompassed the natural 

variability of trees in healthy conditions, and that a good VI 

would produce values deviating from the healthy range when 

trees are stressed.  

 

For each VI and in each week, we labelled as detected any 

infested trees that presented values falling outside the healthy 

range. To assess spatial and temporal consistency, we considered 

three different scenarios for defining the healthy range: 

 

a. Individual-plot scenario – a healthy range was defined 

individually for each field plot in each week of the 

study. Therefore, the detection of infested trees in this 

scenario only considered the healthy trees occurring in 

the same plot. This represented the finest scale of 

assessment, reflecting local site conditions. 

 

b. Multi-stand scenario – a healthy range was defined for 

each week of the study, therefore considering 

simultaneously all healthy trees in a given week. This 

approach tests spatial consistency by pooling together 

the values observed for the healthy trees from all four 

stands in a given week.  

 

c. Multi-week scenario – a single healthy range was 

defined for the entire study, therefore considering 

values observed for healthy trees in multiple weeks. 

We chose to restrict VI values obtained in weeks 26 and 

32 to avoid fluctuations caused primarily by 

phenological changes occurring in spring (e.g. bud 

flush). This represented the broader scale of analysis, 

where detection depends on temporal consistency. 

 

Furthermore, we tested if normalizing VIs considering the values 

obtained in early-season conditions could improve detection 

rates. We used a relative change normalization approach, which 

quantifies how much a VI has increased or decreased in relation 

to a baseline week (Equation 3). We tested normalization to the 

first three flights (denoted as norm-1, norm-2, or norm-3, in 

correspondence to Table 2) and we use the term “original values” 

to refer to VI values directly obtained from their formulas, i.e., 

without any normalization applied. For VIs based on AFX10 

wavelengths (which was the case for most VIs in this study), 

baseline weeks corresponded to weeks 16, 18, or 23. For 

RATIO1200, which was based on AFX17 wavelengths, baseline 

weeks corresponded to weeks 20, 22, and 24. For other indices 
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based on wavelengths from both AFX10 and AFX17, we only 

analysed the original VI values due to the mismatch of baseline 

weeks for both cameras.  

 

 δVI =
𝑉𝐼𝑖− 𝑉𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑉𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
    (3) 

 

where  δVI = Normalized vegetation index 

 VI = Vegetation index 

 i = week 

 baseline = week used for normalization 

 

Finally, we calculated the detection rates at each week to 

compare the performance across VIs, healthy range scenarios 

(individual-plot, multi-stand, or multi-week), and normalization 

weeks (original values, norm-1, norm-2, or norm-3). The 

detection rate refers to the number of infested trees detected by a 

VI divided by the total number of infested trees (n = 56). 

  

3. Results  

In week 26, two weeks before the offspring emergence, the 

highest detection rate at the individual-plot level was achieved by 

green shoulder VIs, such as GSIP545 (0.48, norm-2), GSCR2MS 

(0.43, norm-2), and GSCR1MS (0.38, norm-3) (Figure 3). Red 

edge VIs performed slightly worse, with best results obtained 

with MR-DSWI1, MR-DSWI2, REIPLI, and NDRE (0.29-0.30, 

norm-2). Nevertheless, the detection rates decreased sharply at 

the multi-stand and multi-week scenarios. Considering the VIs 

previously mentioned, the best result for these scenarios was 

achieved by GSCR2MS (0.23-0.25, norm-1). While RECP685 and 

PRI550/530 also achieved similar detection rates for those 

scenarios, such results were not sustained in week 28 compared 

to other VIs. These results suggest that spectral changes in early 

stages of infestation were very subtle and could only be detected 

locally, i.e., by comparing infested trees with their neighbouring 

trees. 

 

 

Figure 3. Detection rates of infested trees in week 26 (pre-

emergence phase). Normalization: Original= original VI values, 

Norm= normalized VI values and respective baseline week. 

Healthy range scenario: IP= individual-plot, MS= multi-stand, 

MW= multi-week. 

 

By week 28 when the offspring emergence began, detection 

improved for most VIs (Figure 4). Specifically, some green 

shoulder VIs reached detection of at least half of the infested trees 

across all three scenarios considered in this study, such as 

GSCR1MS (0.68-0.52, norm-3) and GSCR2MS (0.52-0.50, norm-

1). GSCR1MS with norm-3 showed the highest transferability, 

with only slight decreases in the detection rates comparing multi-

stand (0.62) and multi-week (0.52) to individual-plot level 

detection (0.68). PRI530/570 had a similar detection rate at the 

individual-plot level, but transferability was lower, i.e., lower 

detection rates for multi-stand (0.39) and multi-week (0.34) 

scenarios. Red edge indices, on the other hand, did not perform 

well at the multi-week scenario. Their performance was limited 

to the individual-plot and multi-stand levels, with values close to 

0.40 for MR-DSWI1 and MR-DSWI2 (0.38-0.43, norm-2). 

SWIR-based VIs consistently showed low detection rates, 

suggesting water content was not a primary indicator of bark 

beetle infestation in our study area. 
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 Figure 4. Detection rates of infested trees in week 28 

(beginning of F1 filial generation emergence). Normalization: 

Original= original VI values, Norm= normalized VI values and 

respective baseline week. Healthy range scenario: IP= 

individual-plot, MS= multi-stand, MW= multi-week. 

 

Figure 5 illustrates the challenge of detecting infested trees in 

week 26 considering the multi-stand scenario. We observed a 

clustering of VI values by field plot, but it was not clear whether 

this reflects differences in forest conditions, flight conditions 

(e.g., images captured on different days or times for different 

stands, illumination changes during the flight), or a combination 

of both. As a result, VI-based detection was limited at this stage, 

as most infested trees exhibited only minor deviations from 

healthy values, which were insufficient to surpass the broader 

detection thresholds used when considering healthy trees across 

multiple sites. In later weeks, however, infested trees showed 

larger deviations, enabling successful detection across all stands. 

 

 

 

 

Figure 5. Values for GSCR1MS and MR-DSWI1 between weeks 

26 and 32 for original values and values normalized to weeks 

16, 18, or 23. Red markers represent infested trees and blue 

markers represent healthy trees. Different shapes represent 

different field plots. Dashed lines represent detection thresholds 

for each index considering the multi-stand scenario, i.e., all 

healthy trees from all field plots in a given week.  

 

We observed that many VIs benefited from normalization, even 

though the optimal baseline week varied. Normalization to early-

season values improved detection by reducing variability among 

healthy trees and enhancing the contrast between healthy and 

infested trees (Figure 6). While green shoulder indices had their 

performance enhanced with normalization, they also presented 

the best results using original VI values (e.g., GSCR1MS, but also 

PRI550/530). The same did not apply to red edge VIs, which heavily 

depended on normalization for detecting infested trees in our 

data. Therefore, green shoulder VIs can provide higher detection 

rates in single-image analysis, i.e., when a time series is not 

available.  
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Figure 6. Evolution of GSCR1MS (A) and MR-DSWI1 (B) for 

healthy (in blue) and infested (in red) trees. Original= original 

VI values, Norm= normalized VI values and respective week.  

 

4. Discussion 

In our field survey, we recorded the first entrance holes in week 

18, while most of the infested trees were first attacked from week 

19 onwards. This indicates that data from week 26 reflects a 

situation of roughly 7-8 weeks after the bark beetle swarming. In 

Scandinavian forests, bark beetles typically emerge from the bark 

around 9-10 weeks after the adults bore into the bark, even 

though the specific timing depends on environmental conditions 

(Öhrn et al., 2014). Therefore, the low detection obtained in week 

26 at the multi-stand scenario poses a challenge for effective pre-

emergence detection, as infested trees cannot be easily separated 

from healthy trees across the landscape (Figure 5). Nevertheless, 

adopting the best VIs and best processing techniques (e.g., pixel 

selection and normalization) can be helpful to enable broad-scale 

monitoring, where spectral analysis can indicate specific sites 

where outbreaks are more likely to be happening to complement 

field efforts. 

 

The fact that some green shoulder VIs presented consistent 

results at the multi-stand and multi-week scenarios suggests they 

are robust against a series of factors that can influence spectral 

signatures, such as forest properties (e.g., structural differences 

across trees and stands) and flight conditions (e.g., illumination, 

sun angles). Therefore, these VIs might be valuable metrics in 

monitoring forest disturbances from airborne platforms. These 

results reflect the high stability of green shoulder VIs observed 

for healthy trees between weeks 23 and 32 (Figure 6). We expect 

that this stability is not site-specific and persists for even longer, 

as Huo et al. (2024) also observed a similar trend in drone images 

collected between weeks 30 and 36 of 2021 in southern Finland.  

Furthermore, these results indicate that green shoulder VIs have 

the highest potential to build models transferable to other time 

points and untrained areas. Generalizability has been a challenge 

for previous research using machine-learning models, leading to 

overfitting (Huo et al., 2023b). Nevertheless, a broader adoption 

of green shoulder VIs for forest disturbance monitoring is still 

limited by the spectral settings from sensors widely available (in 

particular commercial airborne sensors and spaceborne sensors 

with open data), which usually provide only one band in the green 

region around 550 nm, while calculating green shoulder VIs 

requires one additional band centred around 530 nm. 

 

5. Conclusion 

Green shoulder indices demonstrated the highest robustness and 

stability among all VIs for capturing stress-induced spectral 

changes across spatial and temporal scales. Their performance 

was further enhanced when normalized to early-season 

conditions, making these indices and techniques promising for 

detection of bark beetle infestations and other forest disturbances 

in southern Sweden. 
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