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Abstract

Autonomous drone navigation in dense forests remains challenging due to unreliable GNSS signals, difficulty detecting thin
branches, and cumulative drift in Visual-Inertial Odometry (VIO). This work investigates a deep learning-based navigation solution
using a simulation-to-reality approach, focusing on boreal forests where fine obstacles and dense foliage are prevalent. A vision-
based system was deployed, combining a semantically-enhanced depth autoencoder for small-branch detection and a Collision
Prediction Network (CPN) based on motion primitive evaluation. The system, trained using RotorS and Aerial Gym simulations
data, was implemented on a custom drone featuring a RealSense D435i and a RealSense T265 sensor suite and NVIDIA Orin
NX for onboard processing. Real-world tests in open, lightly vegetated, and dense forests revealed robust performance against
larger obstacles but highlighted limitations in thin-branch avoidance and odometry drift in highly cluttered environments. While
simulation results were satisfactory, real-world trials achieved moderate success (60 m flights), demonstrating the potential of the
framework for forestry applications. As future directions, integrating higher-resolution sensors, RGB-depth fusion, a y-velocity in-
tegration and possibly a small lidar, to address current gaps are proposed. The findings underscore the need for real-world validation
beyond simulation to bridge the perception-action gap in complex environments.

1. Introduction

Autonomous drone navigation in cluttered environments, par-
ticularly under forest canopies, presents a complex set of chal-
lenges. Dense foliage, thin obstacles such as branches, and in-
consistent lighting severely limit the effectiveness of traditional
navigation pipelines. Moreover, the absence of GNSS signals in
such environments further complicates localization and control,
pushing the need for vision-based solutions that can interpret
the scene in real time and make safe, robust decisions.

Conventional approaches often rely on Visual-Inertial Odo-
metry (VIO), Simultaneous Localization and Mapping
(SLAM), or dense 3D mapping using data structures such
as octrees or voxel grids (Hornung et al., 2013; Oleynikova
et al., 2017). However, these techniques are prone to failure
in forests due to dynamic lighting, occlusions, and the high
computational demands of dense mapping (Ebadi et al., 2022).
LiDAR-based solutions, though accurate, are often unsuitable
for small UAVs due to their size, weight, and power constraints
(Zhang et al., 2024).

To address these limitations, recent work has increasingly shif-
ted toward map-less, learning-based control methods. Instead
of building an explicit world model, these methods learn dir-
ect mappings from sensor inputs to control commands or col-
lision probabilities using deep neural networks. Examples in-
clude supervised learning approaches trained on pilot demon-
strations or crash data (Gandhi et al., 2017; Loquercio et al.,
2018), and reinforcement learning techniques that generalize
across domains through simulation-to-reality transfer (Sadeghi
and Levine, 2016). These techniques enable more agile and re-
sponsive navigation in cluttered environments by avoiding the
bottlenecks of traditional mapping.

However, many of these models simplify critical factors such
as field-of-view limitations, aleatoric uncertainty, and the dy-
namic state of the robot (Pfeiffer et al., 2018; Nguyen et al.,

2022). As a result, they may perform poorly when deployed in
real-world settings with unpredictable visual degradations and
complex obstacle geometries.

Two recent contributions have sought to overcome these lim-
itations. ORACLE (Nguyen et al., 2024) combines deep en-
sembles and uncertainty modeling to predict collision prob-
abilities with obstacles. Meanwhile, seVAE (Kulkarni et al.,
2023b) introduces a semantically-aware depth autoencoder that
enhances feature representation for fine-grained structures such
as branches.

This paper builds upon both ORACLE and seVAE, integrating
their key innovations into a single end-to-end navigation frame-
work tailored for forest environments. In contrast to prior work
evaluated in structured or semi-natural outdoor spaces, the sys-
tem developed in this work is tested extensively in complex
real-world forests in Finland, characterized by dense vegeta-
tion, uneven terrain, and variable lighting.

The main contributions of this work are:

• Designing and implementing a complete end-to-
end autonomous navigation system that combines
semantically-enhanced depth encoding with uncertainty-
aware collision prediction.

• Refining model architecture and training strategies to im-
prove obstacle awareness and navigational safety in dense
forest scenes.

• Conducting comprehensive validation in both simulated
and real-world forest environments, demonstrating reliable
autonomous flight in GNSS-denied, cluttered conditions.

This article is based on the Master’s thesis of the first author
Del Col Guglielmo (2024).
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2. Material and Methods

A comprehensive representation of the workflow of this project
and the main algorithm pipeline for the drone navigation, are
provided in Fig 2. The following sections will describe in detail
the hardware and software components of this project.

2.1 System Overview

Figure 1. System Components

The proposed system in Figure 1 comprises three tightly integ-
rated components: a perception module built around a convolu-
tional autoencoder (Kulkarni et al., 2023b), a CPN for traject-
ory evaluation (Nguyen et al., 2024), and a real-time control
interface. All modules communicate via Robot Operating Sys-
tem (ROS) and operate synchronously at 30 Hz. The Perception
module includes a RealSense D435i stereo camera that captures
depth images at 270×480 resolution, filtered to discard invalid
pixels. These depth maps are passed through a 7-layer convo-
lutional autoencoder, producing a 128-dimensional latent rep-
resentation that emphasizes semantically critical features such
as tree trunks and branches. The autoencoder is presented in
Figure 2.

The Planning module is mainly composed by the collision pre-
diction network, visible in Figure 2. At each planning step, the
system evaluates 256 motion primitives, defined by combina-
tions of x-velocity, z-velocity, and yaw rate. These candidate
trajectories are scored by the CPN, which uses the latent vector
and partial drone state to predict the likelihood of collision for
each option. The safest primitive is selected for execution. The
chosen velocity command is transmitted to the PX4 compliant
flight controller of the drone, a Holybro Pixhawk 6C Mini, us-
ing MAVROS. Safety checks ensure that if all predicted traject-
ories pose excessive risk, an emergency stop is triggered. The
controller maintains flight stability even during rapid trajectory
changes or evasive maneuvers.

2.2 Semantically Enhanced Autoencoder

To enable compact and semantically meaningful representa-
tions of visual data, the system leverages a convolutional au-
toencoder architecture derived from the work of Kulkarni et
al. (Kulkarni et al., 2023b). The primary function of the au-
toencoder is to compress depth images into a latent space that
encodes information critical for safe path planning, especially

the presence of thin branches and small obstacles often missed
by conventional depth-based features. The encoder comprises
seven convolutional layers with progressively decreasing spatial
resolution and increasing feature depth. These are followed by a
bottleneck layer with 128 latent dimensions. The decoder, used
only in training and not during inference, mirrors this structure
using seven deconvolutional layers to reconstruct the original
input. This symmetric architecture balances information pre-
servation with computational efficiency. Training of the autoen-
coder was performed to fine-tune the model in forest-specific
scenes generated using the Aerial Gym simulator (Kulkarni et
al., 2023a). This simulator supports randomized obstacle place-
ments resembling trees and branches, allowing the autoencoder
to learn semantically salient features. The training objective
combined a pixel-wise mean squared error (MSE) loss with a
Kullback-Leibler Divergence (KLD) term, as shown in Equa-
tion 1. Semantic segmentation masks were used to weight the
MSE loss, giving higher importance to visually sparse but crit-
ical classes such as branches. Invalid pixels were masked dur-
ing training to prevent their corruption of the latent space.

Ltotal = Lsem
MSE + λ · LKLD (1)

where Lsem
MSE is the mean squared error weighted by se-

mantic importance and LKLD regularizes the latent space via
a Kullback-Leibler divergence term. This combination helps
preserve small yet crucial features in the latent representation.

The use of forest-specific data significantly improved the abil-
ity of the model to encode fine structural details. Visualiza-
tions of latent reconstructions showed clearer representation of
branches and trunks, particularly in partially occluded views or
under low-contrast conditions.

2.3 Collision Prediction Network

The decision-making core of the navigation system is a Col-
lision Prediction Network (CPN), originally developed by
Nguyen et al. (Nguyen et al., 2022, 2024), and retained here
with minor adjustments. The CPN estimates the probability of
collision for a set of predefined motion primitives, using both
the latent encoding of the current depth image and the partial
state of the drone. Each motion primitive defines a trajectory
over a fixed time horizon and is characterized by a combination
of three components: constant x-axis forward velocity, one of
eight discrete z-axis velocities (vertical motion), and one of 32
yaw rates (angular turns). In total, 256 candidate trajectories are
evaluated at each decision step. The architecture of the CPN in-
cludes a Long-Short Term Memory network (LSTM) layer that
processes the trajectory sequence, followed by a set of fully
connected layers outputting a sigmoid-scaled probability of col-
lision for each trajectory. Ensemble learning is employed to re-
duce model variance. Three instances of the CPN are trained
with different random seeds and weight initializations. Their
predictions are averaged during inference to produce a more
stable and robust estimate. To propagate sensor and model un-
certainty, the Unscented Transform (UT) is used. UT generates
sigma points around the current state estimate, capturing non-
linear transformations in the prediction process more accurately
than linearization techniques. This probabilistic propagation
improves collision forecasting in ambiguous or noisy regions of
the observation space. The overall decision-making frequency
was maintained at 30 Hz, matching the perception pipeline, and
allowing the system to respond in real time to dynamic changes
or near-miss events.
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Figure 2. (Top) Work pipeline of the system. (Bottom) Navigation framework and planner integration (sevae-ORACLE model).

2.4 Experimental Setup

To evaluate the performance of the proposed navigation sys-
tem, extensive experiments were conducted in both simulation
and real-world forest environments. The aim was to assess the
ability of the drone to autonomously reach a target destination
while avoiding obstacles, particularly in complex and cluttered
settings.

Env. ID Type Density Description Purpose

Sim-1 Dense Forest (sim) High Flat terrain with few
scattered trunks

Baseline evaluation

Sim-2 Dense Forest (sim) High Branch-dense scene
with randomized
obstacle layout

Autoencoder and CPN
stress test

RW-1 Open Field Low Grass clearing with dis-
tant trees

Real-world baseline test

RW-2 Sparse Forest Medium Mixed hardwood area
with moderate vegeta-
tion

Basic obstacle avoid-
ance

RW-3 Dense Spruce A High Tight conifer spacing,
many thin low branches

Complex navigation and
recovery test

Table 1. Environmental descriptions of the test environments
and corresponding purposes.

2.4.1 Simulated Experiments Simulation experiments
were carried out using the RotorS simulator (Gao et al., 2019)
with Gazebo (Koenig and Howard, 2004) as the physics engine.

The environments were designed to emulate a variety of forest
scenarios, including open clearings, sparse mixed woods,
and dense spruce forests, with varying obstacle densities and
structural complexity.

The drone was initialized at a fixed starting location and
commanded to reach a goal approximately 30 meters away
while navigating through synthetic trees and branches. These
scenarios were constructed to evaluate basic performance in
cluttered navigation tasks. Collision outcomes, trajectory sta-
bility, and mission success rate were measured across multiple
flights.

Furthermore, these experiments were designed to allow a dir-
ect comparison with the simulated experiments in the previ-
ous work presented by Karjalainen et al. (2023), which high-
lighted limitations in detecting small, thin branches common in
Finnish forests. To assess improvements, a set of twelve sim-
ulated forest environments, originally developed for the work
of Karjalainen et al. (2023) were reused. These environments
follow three difficulty levels (”easy”, ”medium”, and ”hard”)
categorized by the tree density. Specifically, three densities of
0.1, 0.15, and 0.2 trees per square meter were used, with four
different forest layouts per density. High-definition tree mod-
els containing dense fine-branch structures (Globe Plants Team,
2022) were employed to test the perception limitations observed
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in previous methods.

In total, two experiments were conducted with 180 simulated
flights each, allowing for robust statistical comparison of nav-
igational performance, obstacle avoidance, and generalization
across varying environmental complexities.

In the first experiment the baseline presented in the ORACLE
work (Nguyen et al., 2024) was tested, while the second experi-
ment included tests with the sevae-ORACLE planner (Kulkarni
et al., 2023b) and all the refinements explained in Figure 2.

Figure 3. rotorS forest

Figure 4. Example of the vegetation present in RW-2

Figure 5. Example of the vegetation present in RW-3

2.4.2 Real-World Experiments Three main experiments
were conducted in the forests of southern Finland, each com-
prising four or five separate flights. All tests were carried out
without GNSS to simulate the typical localization constraints of

under-canopy flight. The drone was manually armed, and from
takeoff onward, all motion decisions were made autonomously
by the neural-network-based planner.

Before conducting real-world tests, extensive validation of the
onboard odometry system was performed. Early attempts using
open-sourced VIO algorithm, VINS-Fusion (Qin et al., 2018),
with the IMU from the autopilot or from the D435i resulted in
drift and unstable pose estimates. These issues were resolved by
switching to off-the-shelf T265 camera with built-in VIO cap-
ability, which provided sufficiently stable real-time odometry
for flight control.

The experiments were designed to progressively challenge the
system in increasingly complex environments. The first exper-
iment was conducted in a small open field ( 4×4 m²) to verify
the basic functionality of the navigation system in the absence
of obstacles.

The second experiment took place in a small mixed forest
( 15×15 m²) with varied vegetation, including trunks, branches,
and dense lower foliage.

The third and most complex experiment was conducted in a
dense spruce forest with limited visibility and high-contrast
lighting conditions caused by sunlight and shadows. Four
flights were conducted with increasing trajectory lengths (15,
30, 60, and 80 meters).

A summary of the experimental environments is provided in
Table 1, and the corresponding performance results are presen-
ted in Section 3.

3. Results

3.1 Simulation Results

In RotorS simulations, the proposed sevae-ORACLE model
demonstrated, in the second experiment (Sim-2), robust nav-
igation in sparse and moderately dense forests as visible from
Table 2. At a tree density of 0.1 trees/m², the drone achieved a
100% success rate across all tested speeds (1.0, 1.5, 2.0 m/s),
with no collisions observed. In moderately dense forests (0.15
trees/m²), performance remained strong at lower speeds, while
three out of 20 flights at 2.0 m/s resulted in collisions, yielding
an 85% success rate. Minor contacts with vegetation were toler-
ated if the drone was able to continue the mission and complete
the trajectory.

In the most challenging dense forest (0.2 trees/m²), the drone
surpassed expectations, achieving 95% success at 1.0 m/s and
90% at 1.5 m/s, despite the network not being trained on such
complex scenes. However, at 2.0 m/s, performance dropped to
65%, with the drone frequently failing to react in time to avoid
obstacles.

The comparison between Table 2 and Table 3 clearly demon-
strates that the system developed for this work achieves overall
better results than those reported in the work presented by Kar-
jalainen et al. (2023). Specifically, seVAE-ORACLE consist-
ently achieves a higher success rate across all tested conditions.
Its performance is particularly notable in scenarios involving
medium velocity and very dense forests, where it reaches a 90
% success rate compared to 65% in the work from Karjalainen
et al. (2023). In other scenarios, the difference in success rates
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is less pronounced, but seVAE-ORACLE still shows an advant-
age.

In contrast, the first experiment (Sim-1) demonstrated that the
baseline ORACLE (Nguyen et al., 2024) model achieved a 0%
success rate across all environments, highlighting the critical
importance of the improved perception module in the sevae-
ORACLE variant.

Density (tree/m2) [1 m/s] [1.5 m/s] [2 m/s]
0.10 20/20 20/20 20/20
0.15 20/20 20/20 17/20
0.20 19/20 18/20 13/20

Table 2. Success rates with refined sevae-ORACLE for different
tree densities and speeds in RotorS.

Density (tree/m2) [1 m/s] [1.5 m/s] [2 m/s]
0.10 20/20 19/20 19/20
0.15 20/20 18/20 17/20
0.20 18/20 13/20 12/20

Table 3. Success rates with the work from Karjalainen (2023)
and Karjalainen et al. (2023) for different tree densities and

speeds in the same simulated forest environments that were used
in this study.

3.2 Real-World Results

The first test, done in the open field (RW-1), revealed initial is-
sues with grass misinterpretation and sunlight glare, which were
mitigated by integrating a perception model trained on open ter-
rain and refining the angular velocity controller. After these
adjustments, the drone successfully completed four out of five
autonomous flights.

In the mixed forest (RW-2), the drone completed all five
flights successfully, demonstrating precise obstacle avoidance
and smooth trajectory following. The planner occasionally
guided the drone close to tree trunks, which was interpreted
as a learned behavior from training in cluttered environments,
where proximity to obstacles could increase available maneuv-
ering space. Minor contact with leaves was observed in some
flights but did not lead to failure.

In the cluttered spruce forest (RW-3), results were mixed. The
first two flights were completed successfully. However, in the
third and fourth flights, the drone lost control after approxim-
ately 45 meters, resulting in collisions with tree trunks. These
failures were attributed to odometry drift and the reduced reac-
tion time during abrupt transitions from open to cluttered areas.
Despite speed reductions and threshold adjustments, the system
showed limitations in handling extreme complexity, highlight-
ing the need for incorporating real-world data into training for
better generalization.

Flight No. Goal (xyz) Max. Vel. Flight Out-
come

1 [15.0, 0.0, 1.0] 1.0 m/s Yes
2 [30.0, 0.0, 1.0] 1.0 m/s Yes
3 [60.0, 0.0, 1.0] 1.0 m/s Success up

to 45 meters;
lost control
after sudden
acceleration
in an open
area.

4 [80.0, 0.0, 1.0] 0.8 m/s Success up
to 45 meters;
similar beha-
vior to Flight
3.

Table 4. RW-3 Flight Test Results

Figure 6. Planner real-time Representation Example (the green
spheres represent the safe actions, and the blue one represent the

chosen action that optimize the trajectory)

These results validate the neural network-based planner and
show promising sim-to-real transfer. Failures in dense forests
highlight the need for real-world data in training and improve-
ments in odometry and control near transition zones.

4. Discussion

The experimental evaluation demonstrates that the fine-tuned
navigation system performs reliably across both simulated and
real-world forest environments. The results highlight the value
of combining domain-specific perception enhancements with
robust planning strategies to address the unique challenges of
navigating in cluttered spaces denied by GPS, such as forests.

A central contribution of this work is the use of a fine-tuned
autoencoder trained on synthetic forest-like data, and the valid-
ation of it via multiple test flights in simulated and real forest
environments. This model successfully captured small and se-
mantically relevant details in depth images, which are often lost
when training on more generic datasets. The inclusion of a se-
mantic weighting scheme during training, highlighting pixels
associated with narrow structures such as branches, proved to
be effective in improving obstacle perception, particularly in
dense environments.
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Beyond improvements to the perception module, the system
also benefited from architectural and behavioral refinements.
The conservative risk-avoidance policy, together with frequent
trajectory replanning, enabled emergent recovery behaviors.
Although not explicitly trained for recovery, the drone was able
to stop, reorient, and resume navigation after near-collisions or
contact with small obstacles. This robustness is particularly im-
portant when operating in highly variable unstructured environ-
ments.

Nevertheless, several limitations remain. The most persistent
challenge involves detecting and avoiding thin obstacles such
as branches, which often go unnoticed due to the sparsity and
noise in stereo depth data. These issues were especially pro-
nounced in the most difficult test (RW-3), where poor lighting
and visual aliasing further compromised depth estimation and
visual-inertial odometry. Failures in odometry were also a crit-
ical factor, as the system relies on the Intel RealSense T265 for
pose estimation. In environments with repetitive textures or low
visual features, the T265 suffered from significant drift and, in
some cases, complete tracking failure—posing a major threat to
safe and reliable navigation.

Despite these challenges, the system showed that vision-based
planners trained entirely in simulation can transfer effectively
to the real world, particularly in sparse forest environments.
These findings support the viability of deep learning-based nav-
igation systems in complex natural environments, while also
pointing toward areas—such as sensor fusion and depth qual-
ity enhancement—where future improvements could yield sub-
stantial gains.

5. Challenges and Future Works

Despite demonstrating promising performance in forest navig-
ation, the current system is subject to several limitations that
constrain its robustness and generalizability. The most critical
of these lies in the accuracy and reliability of the odometry es-
timation. The current setup relies primarily on the Intel Real-
Sense T265 visual-inertial odometry (VIO) sensor. While this
solution offers lightweight, real-time pose estimation without
GPS, it exhibits substantial drift and even complete failure un-
der conditions of low luminosity or rapid motion (in particular
rapid curves and change of direction), scenarios frequently en-
countered in natural forest environments. These failures can
lead to incorrect state estimates, causing unsafe behavior dur-
ing navigation, particularly when the drone attempts to execute
precise maneuvers in cluttered spaces. Addressing this core
limitation is essential for deploying the system in more com-
plex and unstructured real-world scenarios. Future work should
explore odometry fusion strategies that combine VIO with ad-
ditional sensing modalities such as LiDAR sensors to enhance
pose robustness. Moreover, a replacement of the Realsense
T265 sensor with a VIO open-source algorithm like the ones
presented from Campos et al. (2021) or Pritchard et al. (2025),
is considered fundamental.

A second limitation concerns the dependence of the percep-
tion module on stereo depth cameras. While these sensors are
effective in general, they often struggle to capture fine-scale
structures like thin branches, especially under poor lighting,
occlusions, or in the presence of motion blur. Although the
autoencoder is capable of learning latent representations that
abstract some of this missing detail, its performance remains

fundamentally constrained by the quality of the raw depth in-
put. Augmenting the perception pipeline with RGB informa-
tion could help mitigate these limitations. A multimodal en-
coder that jointly processes depth and RGB could provide a
more semantically rich and structurally complete understand-
ing of the environment. Such an encoder could be trained using
self-supervised or cross-modal consistency objectives to ensure
complementary use of the two modalities.

Additionally, the current system relies on a discrete motion
primitive library to generate trajectories. While this approach
is computationally efficient, it lacks the adaptability required
for complex or highly dynamic environments, where obstacles
are irregularly spaced or unexpected behaviors are needed.
Future improvements could involve adopting learning-based
or sampling-based planners that operate in continuous action
spaces and are guided by neural predictions derived from latent
representations.

From a hardware perspective, the inclusion of alternative depth
sensing modalities, such as lightweight time-of-flight (ToF)
sensors or solid-state LiDAR, could enhance obstacle percep-
tion. However, these additions introduce trade-offs in terms of
payload and power consumption. A complementary direction is
to improve the quality of the stereo depth input via lightweight
depth completion methods. For instance, integrating a sparse-
to-dense completion network such as GuideNet-Lite (Tang et
al., 2021) could significantly improve depth map density and
accuracy, thereby strengthening the input to the autoencoder
and subsequent navigation pipeline.

Finally, an important direction for future work involves scaling
the system to handle cooperative multi-agent navigation and ex-
ploration under forest canopies. In such scenarios, the ability
to share pose information between agents could mitigate indi-
vidual localization errors and improve global trajectory plan-
ning, especially in GNSS-denied environments.

6. Conclusion

This paper evaluated a fully vision-based navigation system
for autonomous drones operating in cluttered forest environ-
ments without reliance on GNSS. The approach combines a
semantically-informed autoencoder with a collision prediction
network to enable safe and efficient trajectory planning based
solely on depth perception.

The system was validated in both simulated and real-world con-
ditions, demonstrating reliable performance in open and mod-
erately cluttered forest scenarios, and showing resilience un-
der more challenging conditions despite occasional failures. In
particular, the semantically-enhanced latent representations im-
proved the ability of the drone to perceive and react to small
obstacles such as branches, which are typically difficult to de-
tect using stereo depth sensors alone.

Real-world experiments confirmed that the system could handle
uncertainty in sensor input by stopping or rerouting when ne-
cessary, even without explicit recovery mechanisms. These
results support the potential of simulation-trained, perception-
driven navigation strategies to generalize to real environments
when appropriately tailored to the domain.

While limitations remain, particularly in odometry reliability
and the detection of fine structures, the outcomes demonstrate
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that a lightweight, learning-based navigation stack can offer a
viable foundation for autonomous drone operation in complex
natural environments.
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