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Abstract

Recent advancements in remote sensing have enabled increasingly detailed analysis of forest canopies using a range of platforms,
from satellites to ground-based systems. This study focuses on zenith multispectral imaging beneath deciduous tree crowns to
assess canopy openness and vegetation activity. We conducted two experiments: First, we evaluated the spectral similarity between
a 10-lens multispectral camera and a spectrometer in a controlled environment. Using Spectral Angle Mapping (SAM) and common
Vegetation Indices (VIs), we found that reflectance data acquired at 0.5 m distance under diffuse light closely matched spectrometer
measurements. Second, we monitored seasonal foliage development between February and July 2025, capturing ground-based
reflectance from 400–850 nm. The inclusion of near-infrared (NIR) bands significantly improved the detection of vegetation activity
throughout the growth season. Our results indicate that absolute reflectance values from images captured at greater zenith distance
are uncertain due to angular and illumination effects, but relative changes between bands remain informative. Among the tested
indices, the Green Normalised Difference Vegetation Index (GNDVI) aligned well with reference data and remained unsaturated
during peak foliage months.

1. Introduction

Recent advances in remote sensing have significantly enhanced
our ability to observe and analyse the Earth’s surface, particu-
larly in forestry, which spans about a third of global land. Re-
mote sensing platforms vary in range—from high-altitude satel-
lite sensors and mid-range aircraft systems to close-range plat-
forms like drones, handheld devices, and backpack-mounted
sensors that capture fine-scale detail. Each offers distinct ad-
vantages depending on the application and scale of observation
(Ecke, 2025).

The field of canopy openness is well researched and forest can-
opy photography has been done since 1960s (Chianucci, 2019).
Most work use fish-eye lens with a large field of view, also
called hemispherical photography. Canopy analysis can also
be divided into down-looking (nadir) and up-looking (zenith)
direction. In this research field, most works choose the blue
band or a mean grey image as the base for the segmentation of
sky and non-sky area. Variations of thresholding has been in-
troduced, concluding that local or region based thresholding is
superior to global based. As this research field gained more and
more importance, the availability of commercial software grew
(Li et al., 2023).

As most approaches use cameras sensitive only to visible light,
the discussion of leaf area indices (LAI) often mixes wood and
leaf areas. The separation only becomes possible with the in-
troduction of near-infrared (NIR) data (Chianucci, 2019). Most
work also estimated the plant state and leaf area on greenness
level (Li et al., 2023). A new approach of adding NIR to canopy
openness analysis was published by Chapman (2007). He used
manual filters for his Nikon Coolpix 950 to separate bands. He
also noted the important distinction that satellite-derived pixel
values capture sunlight reflected from objects, whereas zenith
measurements capture diffuse and transmitted radiation. Zou
et al. (2009), who also used manual filters, criticised that im-

Figure 1. Camera images from forest canopy observation
experiment, visualised as coloured-infrared. This excerpt only

shows March and June.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W11-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-95-2025 | © Author(s) 2025. CC BY 4.0 License.

 
95



ages could not be taken simultaneously as the filter needed to be
changed in between captures. The authors analysed the depend-
ency between angular diversions from zenith with the wood and
leaf area index. A few years later, Chianucci et al. (2021) ana-
lysed the change of canopy parameters with daily RGB images
from beneath the canopy in combination with Sentinel-2 im-
agery to assess phenological observations.

In this study, we first examine the difference in light reflectance
captured by a 10-lens multispectral camera and a spectrometer
in a controlled environment. Spectral Angle Mapping (SAM)
is a common approach to determine the differences of surfaces
numerically (Dennison et al., 2004; Jiang et al., 2020; European
Space Agency, 2025). We use this measure to analyse how
well the reflectance captured by the camera in a controlled set-
ting matches the reflectance captured by the spectrometer. The
spectrometer data serves as the reference data in all our experi-
ments. Next to SAM, Vegetation Indices (VIs) are also taken as
indication for similarity, as these are common indices and like-
wise independent to change of brightness. Second, we examine
how the inclusion of red-edge and near-infrared (NIR) bands
from a 10-lens multispectral camera improves canopy openness
and tree condition monitoring. We compare various VIs to ana-
lyse their sensitivity to changes in vegetation activity during the
growth season. Our research focuses on a small forest area, cap-
turing tree crowns from a zenith perspective below the canopy.
Between February and July 2025, we analyse foliage reflect-
ance across wavelengths ranging from 400 to 850 nm.

2. Method

In the first step, the radiometric quality of the camera image
pixel values is assessed. We therefore begin in a controlled
laboratory setting (Section 2.1) and compare reflectance from
stable coloured fields. Thereafter, in a natural forest setting and
from tree crown images, foliage pixels are extracted and crown
metrics as well as vegetation indices calculated (Section 2.2).

2.1 Radiometric Quality Assessment

The radiometric quality is quantified in this work by three types
of metrics, which compare multispectral camera image pixel
values with reference values. The first metric is Spectral Angle
Mapping (SAM) by Kruse et al. (1993):

SAM = cos−1
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(1)
where C is the reflectance value per colour band, b is the current
band number, n the total band number, image is the reflect-
ance values from image and ref the reflectance values from
reference source. This similarity measure is unaffected by gain
factors, as vector angles remain constant regardless of mag-
nitude. It therefore allows direct comparison between lab spec-
tra (reference) and remotely sensed reflectance (images). For
example, if the image and reference data are identical, then
SAM equals 0°. In contrast, if the reflectances are not equal,
the highest possible radian angle is SAM = 1.57° (or π

2
).

The second metric is the commonly known Relative Mean
Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
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RMSE and SAM correlate as analysed by Dennison et al.
(2004).

Lastly, the third type of similarity metric is Vegetation Indices
(VIs). We use Normalised Difference Vegetation Index (NDVI)
(Rouse et al., 1974), Red Edge NDVI (reNDVI) (Roujean
and Breon, 1995) and Normalised Difference Red Edge Index
(NDRE) (Gitelson and Merzlyak, 1994):

NDVI =
NIR −R

NIR +R
(3)

reNDVI =
RE −R

RE +R
(4)

NDRE =
NIR − RE
NIR + RE

(5)

where NIR (near-infrared), R (red), RE (rededge) are pixel
values in the respective bands. NDVI tends to saturate more
quickly than NDRE with respect to chlorophyll concentrations
(Gitelson and Merzlyak, 1994) and saturates in dense, multi-
layered canopy (Haboudane et al., 2004). NDVI shows a non-
linear relationship with LAI values (Haboudane et al., 2004;
Delegido et al., 2013).

Values are averaged over pixel values taken within a defined
window, as visualised in Figure 3.

2.2 Crown Image Processing

Images taken at zenith direction from forest tree crowns were
processed to collect information on crown size and character.
First, tree crown images were segmented into sky and non-sky
regions. The sky segmentation is using an adaptive threshold
based on a local mean filter with a moving window. The fol-
lowing equations 6 to 15 are taken from Alivernini et al. (2018)
and adaptions by us are indicated.

From the resulting sky mask, the total sky gaps gT and large
sky gaps gL are determined. Note, that gT is equal to all sky
pixels. The region size per sky and non-sky needs to be determ-
ined first. This is done using NumPy’s bincount function, which
counts the occurrences of integer values (1 and 0) representing
sky and non-sky pixels. The mean region size µg and variance
σ2
g are then computed as follows:

µg =
1

N

N∑
i=1

gi (6)

σ2
g =

1

N

N∑
i=1

(gi − µg)
2 (7)

where gi represents the size of an individual sky region, and N
is the total number of sky regions.

The threshold gthresh between large sky gaps gL and small sky
gaps gS is defined as:

gthresh = µg +

√
σ2
g

N
+ a (8)

where
√

σ2
g

N
accounts for the standard error of the mean region

size. gL >= gthresh are large gaps, and gS < gthresh small gaps.
We added the constant a which adds a number of pixels to the
dynamic threshold.
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The pixel number of large sky gap gL is computed as:

gL = gT − gS (9)

Based on these sky gap parameters Crown Cover (CC), Foliage
Cover (FC), Crown Porosity (CP), Gap Fraction (GP) and Leaf
Area Index (LAI) were computed. Note that FC is a regional
subset of CC. LAInc as the standard approach uses Beer’s law
(Beer, 1852), assuming random foliage distribution. LAIc as
clumping corrected version accounts for non-random structure.

In the calculation of canopy structure metrics, the following
equations are used:

1. Crown Cover (CC): Proportion of total pixels occupied
by wood and foliage.

CC = 1− gL
pT

(10)

where gL represents the total number of pixels in large sky
gaps, and pT is the total number of pixels in the image.

2. Foliage Cover (FC): Proportion of total pixels occupied
by foliage. FC is by definition smaller than CC.

FC = 1− gT
pT

(11)

where gT represents the total number of sky pixels.

3. Crown Porosity (CP): The ratio of foliage cover to crown
cover, indicating leaf distribution patterns.

CP =
FC

CC
, if CC > 0, otherwise CP = 0 (12)

This avoids division by zero in cases where CC = 0.

4. Gap Fraction (GP): The probability of light penetration
through gaps in the canopy, or in other words, visibility of
sky through gaps within the canopy.

GP =
(1− CP )× ln(1− FC)

ln(CP )× FC
,

if CP > 0 and FC > 0, otherwise GP = 0 (13)

5. Leaf Area Index (LAI) without Clumping Correction
(LAInc): The standard LAI using Beer’s law, which as-
sumes a random foliage distribution, is given by:

LAInc = − ln(1− FC)

k
,

if (1− FC) > 0, otherwise LAInc = 0 (14)

where k is the extinction coefficient, which depends on
leaf angle distribution, and set to k = 0.5, same as from
(Alivernini et al., 2018).

6. Leaf Area Index (LAI) with Clumping Correction
LAIc: The clumping-corrected LAI accounts for non-
random foliage distribution:

LAIc = −CC × ln(CP )

k
,

if CP > 0, otherwise LAIc = 0 (15)

In all equations, if CC or FC are negative or 1, the result was
viewed as error and set to zero.

To improve foliage identification, we extended the FC definition
using NDVI (Equation (3)). Pixels, which were classified in
the first step as non-sky, and hold an NDVI ≥ threshold were
classified as foliage; those below the NDVI threshold as non-
foliage.

To analyse the change in leave activity further, two additional
vegetation indices are included, besides NDVI, reNDVI and
NDRE. The Green Normalized Difference Vegetation (GNDVI)
(Gitelson et al., 1996) derived by:

GNDVI =
NIR −G

NIR +G
(16)

and the Modified Chlorophyll Absorption Ratio Index 2
(MCARI2) (Haboudane et al., 2004) with:

MCARI2 =
1.5 · (2 · NIR − 1.3 · RE − 0.7 ·B)√

(2 · NIR + 1)2 − 6 · NIR + 5 ·
√
R− 0.5

,

(17)
where B, G, RE and NIR are pixels from the blue, green,
rededge and near-infrared band, respectively.

3. Experiments

For all experiments we used the drone camera MicaSense
RedEdge MX Dual System, which has comparable spectral
bands to the satellite Sentinel 2. Two separate cameras, each
with five bands, make up the camera system (Figure 2), along
with a Downwelling Light Sensor (DSL2). The 10 indi-
vidual lenses each have a 47.2° horizontal field of view, a
synced global shutter and an automatic exposure time. The
camera bands are sensitive in the following electromagnetic
wavelengths in nm (band span): coastal blue 444 (28), blue
475 (32), green 531 (14), green 560 (27), red 650 (16), red
668 (14), rededge 705 (10), rededge 717 (12), rededge 740 (18)
and near-infrared 842 (57). Notable is the shift in view per
lens in the 10-lens camera system at 0.5 m distance (Figure 2
and Figure 3). The raw multispectral images were acquired as
one image per band and then aligned and stacked into image
size (905, 1220, 10). Reference reflectance values were meas-
ured with a CI-710S SpectraVue Leaf spectrometer (CID Bio
Science, Inc.), which uses a CMOS linear array sensitive to
200–1100 nm wavelengths with a 3 nm bandwidth. For spec-
tral comparison, the spectrometer bands closest to the camera’s
were selected, though a bandwidth mismatch remains.

Experiment 1: Radiometric Quality Assessment. In a con-
trolled indoor setting, we placed a ColorChecker Video calibra-
tion board (Calibrite LLC) 0.5 m away from the camera under
diffuse sunlight (Figure 2). Median pixel values were extracted
from each colour field using manually selected 2×2 patches.
For the larger grey field on the board’s backside, a 15×15 patch
was used. All fields were measured with the spectrometer thrice
and an average was derived as the final reference data. Its built-
in light source illuminated samples for an average of 6 ms. For
the Vegetation Indices (VI) calculations, the following bands
are used: R = red band 668 nm, RE = rededge band 705 nm,
NIR = NIR band 842 nm.

Experiment 2: Forest Canopy Observation. Three plots
were selected in an urban forest area in Darmstadt, Germany.
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Figure 2. Camera used in all experiments (left) and Colour calibration board (right) visualised per band, sorted by lens order. Yellow
numbers indicate original band numbers.

Figure 3. Visualisation of colour calibration board grey field and
the corresponding patch area per band. Bands are sorted by

wavelengths.

Plot 1 (49.86293367, 8.690704) has the densest canopy, fully
covering the image scene; plot 2 (49.86291908, 8.69039499)
has less dense cover; and plot 3 (49.86275099, 8.69016504)
has the least canopy cover (Figure 1). The plots, located only
a few metres apart, contain medium-aged European beech with
heights up to 20 m. At this distance, the camera image cov-
ers about 17.5 m horizontally. Starting on February 25, 2025,
images were taken every four weeks at sunrise. The camera is
placed on a tripod at the same position within each plot and 1 m
above ground in zenith direction. Note that due to technical
failure, for plot 1 and plot 3 in June only camera bands 1-5
(blue 475 nm , green 560 nm red 668 nm, rededge 717 nm and
near-infrared 842 nm) could be used. Reference data was only
taken during the leaf-on season, visible in these plots from April
on. To obtain reference data, one small twig was gathered at a
height of 10–12 metres in the tree crown. Three trees were se-
lected per plot and five spectrometer measurements were taken
per twig, scattered over several leaves. Spectrometer measure-
ments were conducted seconds after the twig was cut from the
tree. In total, 15 measurements were taken per plot and month
and then averaged to form the reference data. For tree crown
image processing, all images were normalised by excluding the
lower and upper 2% percentiles across all channels of each im-
age and stretching the remaining pixel values to the range 0 -
255. Thus, the relative pixel values between channels are un-
changed. For the sky segmentation, we used the red band as
basis, as it generally shows a strong contrast between sky and
living vegetation. During the sky gap threshold determination,
we set a = 1000 in Equation (8). Furthermore, we set the
vegetation threshold separating foliage and non-foliage for the
FC calculation to NDVI > 0.3, as (Carlson and Ripley, 1997;
Huete et al., 1997) indicate it to be the lower limit of photosyn-
thetically active green vegetation. For the VI calculations, the

bands 1-5 are used: B = blue band 475 nm, G = green band
560 nm, R = red band 668 nm, RE = rededge band 717 nm,
NIR = NIR band 842 nm.

4. Results

First, the result of the radiometric quality assessment are
presented (Section 4.1) with a visual comparison of signatures
(Figure 4) derived from camera image and spectrometer as ref-
erence for the colored fields (Figure 2) and as table for the
grey field (Table 1). This is supported by numeric compar-
ison of SAM and VIs (Table 2). Second, we present results of
the forest canopy observation experiments (Section 4.2), with a
data series from February to July over all three plots regarding
canopy characteristic (Figure 5), signature evolution (Figure 6)
and VIs evolution (Figure 7).

4.1 Radiometric Quality Assessment

On the grey field (Figure 3), the average standard deviation
of raw image pixel values within the selected window is 6.67
(6.5 %) (Table 1). The mean image pixel values in the ori-
ginal reflectance signature of the homogeneous grey field is
102 ± 7.6, and after normalising these values with the respect-
ive white and black fields, the average is at 58 ± 5.6. In com-
parison, the mean grey value in the reference data is 59 ± 1.1.
With the normalised reflectance values, SAM is 0.1° and RMSE
is 9.9 %, which is close to the mean RMSE across the coloured
fields.

band (nm) 444 475 531 560 650 668 705 717 740 842
camera mean 99 102 104 94 105 97 111 94 100 118

camera st.d. 6.6 7.0 6.6 6.6 6.6 6.6 6.7 6.9 6.2 6.9
camera normalised 55 57 59 54 66 54 59 52 54 69

reference 61 60 60 60 59 59 58 58 58 57
factor 1.11 1.05 1.01 1.11 0.90 1.09 0.99 1.11 1.07 0.83

Table 1. Reflectance on grey field of colour calibration board.
st.d.: standard deviation; normalised: values scaled using
white/black fields; Reference: pre-calibrated values from

spectrometer; factor = normalised / reference.

All reflectance on the coloured patches were normalised on
their respective white and black fields, which is why the lines in
Figure 4 are straight for white and black. According to SAM,
the reflectance difference is overall similar, with highest spec-
tral difference between image and reference being on the green
field (0.09), lowest on the purple field (0.02), and with an over-
all average of 0.05 (Table 2). The green field is of most interest
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Figure 4. Reflectance signatures from reference (top) and image
pixels (bottom) on calibration board colour patches. Values are

normalised using black and white fields.

colour fields yellow red purple blue cyan green mean
SAM (radians) 0.04 0.04 0.02 0.03 0.05 0.09 0.05
RMSE (%) 4.22 2.61 3.72 6.37 18.39 13.80 8.24
NDVI diff 0.02 0.01 -0.02 -0.02 0.01 0.01 0.00
reNDVI diff -0.02 -0.02 0.00 -0.02 -0.02 -0.01 -0.01
NDRE diff 0.03 0.03 0.00 0.02 0.04 0.04 0.02

Table 2. Radiometric quality results. All are normalised on white
and black fields. Vegetation Index (VI) diff = VIreference - VIimage.

as it aligns with the target objects: green tree leaves. In contrast,
RMSE show more variability with the second-highest RMSE
value on the green field (13.8 %). For vegetation indices, over-
all average differences are 0.00 (NDVI), –0.01 (reNDVI), and
0.02 (NDRE).

Notably, the signature on the purple field shows higher reflect-
ance above 700 nm than the white field (Figure 4), a consistent
effect across repeated measurements. Above 700 nm, material
properties dominate more than visible colour as this is beyond
the human visible wavelength, and the calibration board is de-
signed for RGB cameras. This phenomenon is also in the ref-
erence data, with addition of NIR values above white in other
coloured fields too.

4.2 Forest Canopy Observation

Results for Crown Canopy (CC), Foliage Canopy (FC), Canopy
Porosity (CP) and LAInc without clumping correction are visu-
alised in Figure 5. In February and March, CC values within
each plot remain low in these months, and decrease from plot 1
to plot 3 with the expected density decline. Thereafter, the val-
ues increase until May and remain stable in June and July in

Figure 5. Tree crown segmentation results for metrics CC, FC,
CP and LAInc. Colour scales indicate minimum, maximum and

mean values.

plot 1 and plot 2. Only plot 3 shows an unaligned low value
in April and June. Overall CC values rise approximately from
0.8 to 1. As the trees do not carry leaves in the winter months,
FC values show the expected trend of increasing values towards
July. Plot 3 with the lowest crown density holds in winter higher
values than plot 1 and plot 2. From April on, plot 3 shows in-
creasing values up until May, but lower than the other two plots.
However, as no leaves are on the trees in February and March,
an FC value of near zero was expected. Overall the FC val-
ues rise approximately from 0.3 to 0.7. The ratio between CC
and FC is expressed by CP. While CC remains almost constant
over the months, FC increases rapidly. Thus, by definition, CP
shows a similar pattern than FC, with overall values rising ap-
proximately from 0.3 to 0.7. LAInc commences in February
with around 0.64 in plot 1 and plot 2, meaning little amount of
leaves. The values increase to approximately 2.4 with increas-
ing values from plot 3 to plot 1 as the canopy density increases.
Further, Gap fraction (GP) and LAIc with clumping correction
indicate more leaves in winter than in spring. In more detail, in
February plot 1 and plot 2 begin with 0.7 and increase to 1.56
and 1.48 in May, respectively. Plot 3 increases from 0.82 to
1.41. LAIc declines from 1.95, 1.91 and 1.40 for plot 1-3 in
February to 0.54, 0.61 and 0.57.

The original method of FC calculation by Alivernini et al.
(2018), which is solely based on the gap sizes in sky pixels,
was replaced by our FC method based on NDVI values of non-
sky pixels. In February, our FC is on average over all plots
64% lower than the original method, while in June our FC is on
average 27% higher.

Regarding the signature of foliage pixels (Figure 6), the first
two months over all plots do not resemble a typical vegetation
signature. Signatures are based on all foliage pixels, which are
non-sky pixels with NDVI > 0.3. With the growth of leaves, the
NIR value (842 nm band) increases and reflectance in visible
light decreases relatively, indicating a rise in photosyntheses
activity or a reduction of false objects classified as foliage. Be-
ginning from May, the usual dip upwards in the green is notable
only in plot 2. In addition, the standard deviation decreases in
plot 1 and plot 2 as more pixels are included as the basis for the
signature. For example in plot 1 the amount of non-sky pixels
with NDVI > 0.3 increases from 28 % to 73 % in May. This
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(a) image data (b) reference data

Figure 6. Mean signatures of (a) image data February to July and (b) reference data for leaf-on months April to July. Standard
deviation as vertical bars for better visibility only for selected months.

trend is not notable in plot 3 as the standard deviation increases
in the visible light from February to July, even though the un-
derlying pixel amount increases from 34 % to 68 %.

Reference leaf measurements could not be taken in February
and March as no leaves were present, hence Figure 6 on the
right only shows signature from April. The typical contrast
between low light reflectance of blue and red with the higher
reflectance of green is more prominent in the reference data
than the image derived data (Figure 6). Furthermore, rededge
values are lower in the leaf-on months in the image derived sig-
nature than the reference. Overall, changes between 740 nm
and 842 nm are not similar between the images and the ref-
erence. SAM between the signatures derived from the images
and their reference for plot 1 in April is 0.13°, and 0.55° in
May. Note that camera images are not calibrated and absolute
numbers vary with changes of absolute light quantity during
measurements. In contrast, the reference data is calibrated be-
fore each measurement day and is in direct contact with the
leaf during measurement, thus the light quantity and direction
is stable over all measurements.

The popular NDVI increases from zero to around 0.6 (Figure 7).
The reference data is showing higher values between April and
July. From April to May, the NDRE derived from camera im-
ages increases more than the reference. Then, from May to
July, the reference remains stable and the image derived index
decreases lightly. A similar trend between camera images and
reference is given by reNDVI, but values are shifted by 0.5.
GNDVI shows the most similar VI values overall between cam-
era image and reference shows. The steepest increase between

February and May shows MCARI2, however similar values in
April and higher in May to July than the reference values. Over-
all, VIs increase with the growth of leaves, aligning with the
significant difference in reflectance signature in Figure 6.

5. Discussion

Radiometric Quality Assessment. When taking the variab-
ility of the grey field reflectance, VIs based on bands blue
(444 nm), red (560 nm) and rededge (717 nm) should be
avoided in our setup. The use of the alternative bands reduces
a maximum difference over all VIs from 0.1 to 0.04. To give
context regarding SAM, Dennison et al. (2004) tested threshold
angles between 0.05° and 0.2° for accepting the classification
as an endmember in six vegetation land cover classes. Jiang et
al. (2020) found thresholds between 0.02° and 0.1° for various
minerals through empiric testing. Thus, our angle values are
well in acceptable ranges. Regarding VI, Bannari et al. (1995)
state that radiometric deterioration alone can cause a relative
error of 9 %, next to error source of spectral responses of the
sensors. During multiple measurements using the spectrometer
an average standard deviation of 0.02 for NDVI values was ap-
parent, before all triplets were summarised into one mean value
as reference signature. Therefore, a maximum difference of
0.04 and average of 0.02 between image and reference values
over all VIs is good.

Forest Canopy Observation. Crown parameters CC, FC, CP,
GP and LAI cannot be compared to related work, as they de-
pend heavily on the individual scene. CC, FC, CP and LAInc
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Figure 7. Change of Vegetation Indices (VI) with dashed
trend-lines of image and reference data . Reference data

collection began in April. VI values derived from mean values in
Figure 6 and averaged over plots 1-3.

show an expected trend, aligning with visual interpretation of
the evolving scenes. GP and LAIc however do not. An explana-
tion could be that due to the use of CP in these equations, errors
in CC and FC may accumulate. Another explanation could be
a false choice of the extinction coefficient k more prominent in
LAIc than LAInc. When comparing the FC calculation based on
sky gaps (Alivernini et al., 2018) and our FC calculation based
on NDVI, both overestimate a winter scene but ours much less
than the gap based method. Our method detects emerging fo-
liage sooner due to its sensitivity to NDVI rather than gap size
alone. Camera bands were aligned in post-processing, lead-
ing to small mismatches on thin branches and near objects.
This can lead to false NDVI values. This is underlined by
the foliage signature (Figure 6) based on pixels declared as fo-
liage in February and March. These signatures do not seem to

be typical foliage signatures with a low reflection in blue and
red, slightly higher in green and a rapid increase towards near-
infrared wavelengths. The biggest uncertainty is the change of
sunlight and light direction. Images in May, June and July were
taken under full canopy cover and notably less light was reach-
ing forest ground than previous months. An adjustment in aper-
ture was needed to not underexpose the image. The amount of
light under the canopy is a major uncertainty which can lead to
more errors during image processing. Especially leaves, which
absorb most of the blue and red wavelengths, appeared almost
black in images from these three months. However, calibra-
tion is difficult, as the calibration field would need to be at the
same height as most of the crown, approximately 12 to 25 m,
and remain free of leaf cover. The camera image derived sig-
natures show a high standard deviation which suggests a high
uncertainty. SAM values between tree crown images and leaf
spectrometer data surpass acceptable angles of 0.2°. Regard-
ing Vegetation Indices (VI) as an indication of plant activity,
GNDVI and MCARI2 show the greatest change between leaf-
off and leaf-on season, with the former showing near identical
values as the reference. NDVI values where excluded below
0.3 in preprocessing and all VIs were calculated after this ex-
clusion, limiting this analysis.

6. Conclusion

The present study demonstrated the utilisation of ground-based
reflectance measurements obtained using a multispectral drone
camera. Zenith images were captured from beneath deciduous
tree crowns from February to July. In a controlled environment,
we demonstrated that reflectance data from multispectral im-
ages taken at a distance of 0.5 m with diffuse sunlight are com-
parable with spectrometer data obtained directly on the object
under artificial lighting. Moreover, including the near-infrared
band significantly improved the detection of foliage cover over
the growing season. Trends in foliage growth and increased
vegetation activity could be captured using a 10-lens camera.
However, as the experiment results indicate, absolute values
from tree crown imagery taken at zenith and approx. 15 m dis-
tance cannot be relied upon, hence analysis should target relat-
ive changes between bands only. Vegetation indices (VIs) can
be used to express vegetation activity, regardless of brightness
and gain. In our experiments, the Green Normalised Difference
Vegetation Index (GNDVI) showed the most promising results,
being close to the reference values and not saturated in May,
June and July. We conclude that extending to bands sensitive
to non-visible light should be standard practice in canopy open-
ness assessments, especially given the availability of off-the-
shelf cameras. In future work, a calibration of camera images
set in the zenith direction needs to be implemented. Lastly, us-
ing these terrestrial images as detailed, punctual reference data
for satellite data could be a research target.
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