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Abstract

This paper investigates the impact of different Simultaneous Localization and Mapping (SLAM) algorithms on semantic point
cloud classification, by analyzing how reconstruction characteristics affect downstream classification tasks. Four SLAM approaches
(RTAB-Map, LIO-SAM, DLO, and LeGO-LOAM) are used to process identical raw LIDAR and IMU data acquired by a sensorized
mobile robotic platform, producing reconstructions with markedly different point density and geometric quality. A Random Forest
classifier based on multi-scale geometric features is then applied to the SLAM-derived point clouds and to reference data acquired
using Terrestrial Laser Scanning (TLS), assessing both in-domain classification performance and cross-dataset generalization. The
results show that classification accuracy and class-wise reliability strongly depend on SLAM-induced point cloud characteristics,
with denser reconstructions yielding higher performance. Cross-dataset experiments further reveal an asymmetric generalization
behavior, whereby models trained on SLAM-derived point clouds transfer more robustly to denser datasets than models trained on
TLS data. Feature importance analysis links this behavior to a shift toward coarser geometric descriptors as point density decreases.
To support reproducibility and to encourage further investigations, including the evaluation of alternative classification strategies,

the SLAM and TLS point clouds are released as an open-access dataset, together with manually annotated ground-truth labels.

1. Introduction

Simultaneous Localization and Mapping (SLAM) algorithms
are increasingly used not only for robotic navigation, but also
for autonomous three-dimensional mapping and reconstruc-
tion of real-world environments. The diffusion of SLAM-
based portable laser scanners has enabled rapid and flexible
data acquisition in complex indoor and outdoor scenarios, of-
ten providing higher efficiency and greater spatial complete-
ness than traditional surveying techniques (Maset et al., 2021).
These advantages, however, usually come at the expense of
a reduction in accuracy, precision, and level of detail when
compared to established approaches such as Terrestrial Laser
Scanning (TLS) (Conti et al., 2024, Matellon et al., 2024).
Therefore, integration strategies combining SLAM, TLS, and
Unmanned Aerial Vehicle (UAV)-based photogrammetric data
have also received attention to exploit the complementary
strengths of surveying techniques (Chiabrando et al., 2019, Ma-
set et al., 2022).

In many applications, data acquisition and point cloud gen-
eration are not the final outcome of a survey. In the archi-
tectural and built heritage domain, point clouds are increas-
ingly exploited within scan-to-BIM workflows, where three-
dimensional data form the basis for information-rich modeling
of the built environment. In this context, semantic segmentation
and classification of point clouds play a crucial role (Croce et
al., 2021), as they support the automation or semi-automation
of modeling pipelines. While these processing steps have been
extensively investigated for TLS-derived point clouds, their ap-
plication to SLAM-generated data remains comparatively un-
derexplored.

The non-uniform density, higher noise levels, and trajectory-
related artifacts typical of SLAM reconstructions introduce ad-

ditional challenges with respect to static datasets. Moreover,
as these properties vary across SLAM algorithms, they are ex-
pected to directly influence classification performance. For this
reason, this study investigates how different SLAM approaches
affect classification results by applying a consistent classifica-
tion workflow to point clouds reconstructed from identical raw
measurements using different SLAM algorithms. The objective
is to quantitatively assess the impact of SLAM-induced point
cloud characteristics on the reliability of semantic classifica-
tion.

The remainder of the paper is structured as follows. Section 2
reviews the relevant state of the art. Section 3 describes the
study area, the data acquisition setup, and the adopted methodo-
logy. Section 4 presents and discusses the experimental results,
while Sect. 5 concludes the paper and outlines perspectives for
future work.

2. Related Work

The semantic segmentation and classification of three-
dimensional point clouds have long represented a central re-
search topic within the fields of geomatics, computer vision,
and digital built heritage. The primary aim is to partition raw
point cloud data into homogeneous and semantically meaning-
ful subsets, supporting the interpretation of the surveyed envir-
onment and subsequent modeling and analysis tasks.

Early approaches proposed in the literature are predomin-
antly based on geometric and topological criteria, exploit-
ing local point cloud properties such as surface orienta-
tion, curvature, point density, and neighborhood relation-
ships. Region-growing, model-fitting, and clustering-based al-
gorithms have demonstrated good performance, particularly in
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structured environments (Grilli et al., 2017). Region-growing
methods are widely used to extract planar surfaces from point
clouds of historic buildings, while model-fitting techniques en-
able the segmentation of both simple and irregular geomet-
ric elements. Moreover, model-fitting and clustering-based al-
gorithms support surface defect detection and deformation ana-
lysis by evaluating deviations between the point cloud and fitted
geometries (Yang et al., 2023). However, these methods mainly
address geometric segmentation, i.e., the partitioning of point
clouds into clusters sharing similar geometric characteristics,
and offer limited capabilities when semantic interpretation is
required.

As aresult, increasing attention has been devoted to approaches
capable of incorporating semantic information into the seg-
mentation process. The development of Machine Learning
(ML) techniques has significantly influenced point cloud se-
mantic segmentation and classification. Supervised ML mod-
els, such as Random Forest (RF) and Support Vector Machines
(SVM), have been extensively investigated, particularly in the
context of TLS and photogrammetric point clouds for architec-
tural and cultural heritage applications (Grilli and Remondino,
2020). Several studies emphasize the importance of selecting
discriminative features and appropriate computation scales to
optimize classification performance (Grilli et al., 2019). In
many cases, classification strategies are designed to be integ-
rated within scan-to-BIM workflows, supporting the automated
or semi-automated generation of parametric building elements
(Moyano et al., 2021). Hierarchical classification approaches
have also been proposed, in which an initial coarse classifica-
tion is refined through subsequent stages to identify more de-
tailed architectural elements (Ceccarelli et al., 2023). Such
multi-level strategies have demonstrated their potential to en-
hance both the robustness and the interpretability of classifica-
tion results, particularly in complex and heterogeneous heritage
scenarios.

More recently, a growing body of literature has focused on
Deep Learning (DL)-based methods, evaluating different neural
network architectures and performing comparative analyses
both among DL models and between traditional ML and DL
approaches (Matrone et al., 2020, Pierdicca et al., 2020). These
studies consistently indicate that no single methodology clearly
outperforms the others across the heterogeneous scenarios typ-
ical of architectural and built heritage applications. Instead,
classification performance is strongly influenced by the data
characteristics and the required level of semantic detail. As a
result, the selection of an appropriate classification strategy re-
mains closely tied to the specific requirements of the intended
application and the objectives of the downstream modeling pro-
cess.

All the aforementioned studies primarily rely on point clouds
acquired through TLS and photogrammetric techniques, includ-
ing both terrestrial and UAV-based surveys. Despite the sub-
stantial progress achieved in semantic segmentation and classi-
fication, the application of these methods to data acquired using
SLAM-based systems is still limited. Some studies have ex-
plored the adaptation of segmentation and classification work-
flows originally developed for TLS data to SLAM-derived point
clouds, suggesting that semantic segmentation performance is
not severely affected by differences in point cloud character-
istics. In particular, variations in accuracy and level of de-
tail appear to have a limited impact on classification outcomes,
without significantly compromising the results (De Geyter et
al., 2022). Other works have demonstrated that SLAM-based

devices, such as the BLK2GO laser scanner, can produce point
clouds suitable for semantic analysis, achieving promising clas-
sification results when using RF-based models (Franzini et al.,
2023).

Nevertheless, a systematic comparison of point clouds gener-
ated by different SLAM algorithms with respect to classifica-
tion performance is still largely missing. Most existing stud-
ies do not explicitly investigate how variations in the adopted
SLAM technology influence downstream semantic processing
stages, leaving a gap in the understanding of the relationship
between data acquisition strategies and advanced point cloud
interpretation. Within this context, the present work aims to
contribute to a critical assessment of the potential and limita-
tions of SLAM-derived point clouds for semantic classification
tasks, also in comparison with TLS reference data, by explicitly
analyzing how classification performance varies as a function of
the adopted SLAM algorithm when applied to the same input
dataset.

3. Materials and Methods
3.1 Data Acquisition Setup

To assess the influence of SLAM algorithms on point cloud
classification, the dataset presented in (Tiozzo Fasiolo et al.,
2023) was adopted in this study. Data were acquired using
the mobile robotic platform Scout 2.0 by AgileX Robotics,
a wheeled ground robot designed for outdoor environments
(Fig. 1). The platform was equipped with a Velodyne VLP-
16 Light Detection and Ranging (LiDAR) sensor and an Xsens
MTi-630 9-axis Inertial Measurement Unit (IMU), both moun-
ted on top of the robot. The LiDAR sensor provides full 360°
horizontal coverage through 16 laser channels, with a measure-
ment range of up to 100 m, while the IMU integrates gyroscope,
accelerometer, and magnetometer measurements to deliver ori-
entation, angular velocity, and linear acceleration data at high
frequency.

Figure 1. The robot employed to collect the data (left) and a
close-up view of the onboard sensors (right).

The experimental test was carried out in a 45 m x 45 m court-
yard (measured along the centerline of the surrounding cor-
ridors), located within the main building of the Rizzi scientific
campus of the University of Udine (Italy). This outdoor envir-
onment comprises covered walkways, structural elements, fur-
niture, and vegetation (Fig. 2(a)).

3.2 SLAM Processing

The raw LiDAR and IMU measurements were stored in ROS
bag files and subsequently post-processed using four distinct
SLAM algorithms: Real-Time Appearance-Based Mapping
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(a) TLS point cloud.
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(b) Manually labeled TLS point cloud, training set.
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(c) Manually labeled TLS point cloud, test set

Figure 2. Reference TLS point cloud: (a) RGB view; (b) training
set; (c) test set. Point clouds (b) and (c) are colored by point
class.

(RTAB-Map), LiDAR Inertial Odometry via Smoothing and
Mapping (LIO-SAM), Direct LiDAR Odometry (DLO), and
Lightweight and Ground-Optimized LiDAR Odometry and
Mapping (LeGO-LOAM).

More in detail, in the graph-based SLAM algorithm RTAB-Map
(Labbé and Michaud, 2019), scan matching is performed on
voxelized point clouds using an Iterative Closest Point (ICP)-
based point-to-plane registration. A motion prediction, based
on a constant-velocity model and optionally supported by IMU
data, is used to initialize the alignment. The global map is incre-
mentally updated after scan-to-map registration, while motion-
induced scan distortion is neglected under the assumption of
limited platform velocity. Differently from RTAB-Map, LIO-
SAM (Shan et al., 2020) adopts a tightly coupled formula-
tion that integrates LiDAR and IMU data within a factor graph
framework. Edge and planar features are exploited for LIDAR
scan matching, while IMU measurements provide both motion
priors and distortion correction. The optimization incorpor-

ates LiDAR odometry, IMU integration, and loop closure con-
straints, and supports LIDAR-IMU extrinsic pre-calibration. A
lighter processing strategy is followed by DLO (Chen et al.,
2022), which performs scan matching directly on voxel-filtered
point clouds without explicit feature extraction. Registration is
carried out on a local submap using a Generalized ICP formu-
lation, optionally supported by IMU gyroscope data for motion
prediction. However, loop closure and explicit distortion com-
pensation are not included. Finally, LeGO-LOAM (Shan and
Englot, 2018) relies on a feature-based approach specifically
designed for ground robots. Edge and planar features, includ-
ing ground points, are extracted and used in a two-stage scan
matching process to estimate the platform pose. IMU meas-
urements are exploited to estimate sensor orientation and com-
pensate for motion distortion, while a loop closure mechanism
is adopted to mitigate drift.

As aresult of these methodological differences, the four SLAM
algorithms produced point clouds with markedly different char-
acteristics in terms of density, noise, and geometric quality
(Tiozzo Fasiolo et al., 2022, Tiozzo Fasiolo et al., 2023).
RTAB-Map generated the densest reconstructions, although
with a slightly higher noise level; DLO and LeGO-LOAM res-
ulted in significantly sparser point clouds, whereas LIO-SAM
provided an intermediate density with limited outliers and a bal-
anced noise level, representing a favorable trade-off between
point cloud completeness and geometric quality. It is worth
noting that RTAB-Map, LeGO-LOAM, and DLO can be oper-
ated either in LiDAR-only or LIDAR-IMU configurations. In
this work, the IMU-assisted configurations were adopted for all
three methods.

3.3 Reference Data and Annotation

In addition to the SLAM-derived reconstructions, a point cloud
acquired using a Leica BLK360 G1 TLS was included as a ref-
erence dataset. In this work, the reference role is intended in
terms of higher point cloud completeness and density, as well
as lower noise with respect to the SLAM-based reconstructions,
rather than as a benchmark for geometric accuracy.

Both the TLS (Fig. 2) and the SLAM-derived point clouds were
manually annotated according to nine semantic classes: ground,
vegetation, facades, windows, railings, columns, beams, stairs,
and others. Manual labeling was performed using TerraScan
by Terrasolid, a software suite specifically designed for point
cloud management and processing. The availability of dedic-
ated manual classification tools, together with advanced three-
dimensional visualization capabilities, enabled a detailed and
systematic inspection of the data. In particular, the use of cross-
sections and the isolation of specific portions of the point cloud
facilitated accurate and consistent label assignment across the
different classes.

To support transparency and reproducibility, the manually clas-
sified point clouds generated in this study have been made
publicly available through the open-access Zenodo repository
at the following link: https://doi.org/10.5281/zenodo.
18269477.

3.4 Classification Framework

Point cloud classification was performed using the well-
established Random Forest (RF) algorithm, as implemented in
the 3DMASC framework developed by a research group at the
University of Rennes (Letard et al., 2024). The acronym MASC
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stands for Multiple Attributes, Scales and Clouds, reflecting the
multi-scale and multi-level nature of the approach. The frame-
work can be employed either through a graphical user interface,
available as a plugin for the open-source software CloudCom-
pare, or via a command-line interface. In the present study,
the latter option was adopted, and the workflow was executed
within a Python environment by leveraging standard machine
learning libraries, including scikit-learn.

Random Forest was selected as classification algorithm due to
its robustness and proven effectiveness in point cloud semantic
analysis, particularly in architectural and built heritage applic-
ations. RF models can efficiently handle high-dimensional fea-
ture spaces and heterogeneous data, and they exhibit good gen-
eralization capabilities in the presence of noise and class im-
balance. Moreover, as a machine learning approach rather than
a deep learning one, RF does not require large training data-
sets to achieve stable performance, making it suitable for scen-
arios with limited labeled data. Finally, the interpretability of
feature importance make RF a reliable choice for comparative
analyses involving point clouds with different characteristics,
such as those produced by different SLAM algorithms.

The complete set of features employed by the RF classifier con-
sists of 19 descriptors, namely the Z coordinate, roughness,
mean curvature, surface density, first-order moments, and a
set of features based on the covariance matrix. The latter in-
clude the sum of eigenvalues, omnivariance, eigenentropy, an-
isotropy, planarity, linearity, PCA1, PCA2, surface variation,
sphericity, verticality, and the first, second, and third eigenval-
ues. With the exception of the Z coordinate, all features were
computed at five neighborhood scales (0.05 m, 0.1 m, 0.25 m,
0.5 m, and 1 m), resulting in a total of 91 descriptors used as
input to the classifier and enabling geometric properties to be
captured at different spatial extents.

In the first experiment, which represents the main experimental
setup of this study, the labeled point clouds were subdivided
into training and test sets following an approximate 25-75%
split, as reported in Tab. 1 and illustrated in Fig. 2(b) and
Fig. 2(c). The training subsets were used to train the classi-
fication models, while the test subsets were employed for the
quantitative evaluation of classification performance. For the
four SLAM-derived point clouds, the training and test partitions
were defined by adopting the same spatial subdivision estab-
lished for the TLS point cloud, thus ensuring spatial consistency
across datasets. As a consequence of differences in point dens-
ity distribution, the actual percentages of points assigned to the
training and test sets vary among the considered point clouds.

. Surface density Training set Test set
Point cloud 5 ) )
pts/m*~ (r = 0.5 m) n. points - % n. points %

TLS BLK360 24,416 9,641,000 - 23% | 31,975,151 -77%
SLAM[1] RTAB-Map 6,132 7,631,659 - 25% | 22,773,002 - 75%
SLAM[2] LIO-SAM 226 265,284 - 25% 763,084 - 75%
SLAM(3] DLO 20 38,758 - 27% 105,007 - 73%
SLAM[4] LeGO-LOAM 9 17,230 - 27% 46,178 - 3%

Table 1. Key characteristics of the datasets and training—test
splits used in the first (main) experiment.

Initially, a separate RF model was trained for each training
set, including the TLS dataset and the four SLAM-derived
point clouds, and evaluated on the corresponding test set. Sub-
sequently, each trained model was cross-applied to the remain-
ing test sets, resulting in a total of 25 classification runs.

To further assess the robustness of the classification results with
respect to variations in the amount of training data, a second,

complementary experiment was conducted. This experiment
aimed at evaluating the impact of a reduced training set on
model performance, while keeping the test set exactly the same
as in the first experiment, in order to ensure full comparability
of the results.

Starting from the TLS point cloud, a reduced training subset
corresponding to approximately 11.3% of the available points
was selected. By adopting the same spatial subdivision, re-
duced training sets were then defined for the SLAM-derived
point clouds, corresponding to 15.3% for RTAB-Map, 15.8%
for LIO-SAM, 16.3% for DLO, and 16.4% for LeGO-LOAM.

4. Results and Discussion
4.1 In-Domain Classification Performance

This section reports the classification results obtained for each
point cloud by training and testing the Random Forest model
on the corresponding training and test subsets, as defined in the
main experiment. A qualitative overview of the classification
outcomes is provided in Fig. 3, which visually highlights the
spatial distribution and consistency of the predicted semantic
classes across the different datasets. The figure also allows an
immediate comparison between the TLS classified point cloud
and the four SLAM-based reconstructions.

From a quantitative perspective, the evaluation was carried out
using the metrics commonly adopted in point cloud classifica-
tion, namely Overall Accuracy (OA), precision, recall, and F1-
score. Precision, recall, and F1-score are reported in Tab. 2 both
as class-wise mean values and as weighted averages, computed
according to the number of points belonging to each class. The
weighted formulation is particularly informative in this context,
as simple class-wise averaging may be overly penalizing, as-
signing the same importance to poorly represented classes as to
classes characterized by a substantially larger number of points.
A detailed breakdown of the classification performance for each
semantic class is provided in Tab. 3.

Point cloud OA Mean value Weighted mean value
Prec Rec Fl1 Prec Rec F1
TLS BLK360 0.968 | 0.867 0.764 0.770 | 0.965 0.968 0.961
SLAM[1] RTAB-Map 0.946 | 0.889 0.796 0.830 | 0.941 0946 0.943
SLAM[2] LIO-SAM 0.910 | 0.869 0.696 0.735 | 0.905 0910 0.903
SLAM([3] DLO 0.834 | 0.741 0.530 0.541 | 0.832 0.834 0.819
SLAM[4] LeGO-LOAM | 0.851 | 0.769 0.540 0.558 | 0.848 0.851 0.838

Table 2. Classification results for the main experiment. Overall
Accuracy (OA), Precision, Recall, and F1-score were computed
on the test set from the same point cloud as the training data,
averaged across the nine classes.

As shown in Tab. 2, the TLS dataset achieves the highest val-
ues in terms of OA and across all weighted metrics, confirming
the suitability of dense and low-noise point clouds for super-
vised semantic classification tasks. Among the SLAM-based
reconstructions, RTAB-Map yields the best performance (OA
= 0.946, weighted F1-score = 0.943), followed by LIO-SAM
(OA = 0.910, weighted F1-score = 0.903). In contrast, DLO
and LeGO-LOAM exhibit noticeably lower accuracies, with
OA values of 0.834 and 0.851, respectively.

As discussed in Sect. 3, RTAB-Map and LIO-SAM generate
denser and more complete reconstructions, whereas DLO and
LeGO-LOAM produce substantially sparser point distributions.
The reduced point density negatively affects the stability of
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(f) Color legend.

Figure 3. Qualitative classification results on the test point clouds. For visualization purposes, point size was increased for the DLO
and LeGO-LOAM datasets to improve readability.

Classes TLS BLK360 SLAM[1] RTAB-Map SLAM[2] LIO-SAM SLAM[3] DLO SLAM[4] LeGO-LOAM
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
Ground 0.995 0999 0.997 | 0978 0991 0984 | 0971 0.982 0976 | 0.957 0.964 0961 | 0.983 0.967 0.975
Vegetation | 0.984 0.235 0.380 | 0.898 0.897 0.898 | 0.837 0.871 0.854 | 0.670 0.892 0.765 | 0.676 0.813  0.738
Facades 0.956 0994 0974 | 0947 0975 0961 | 0.883 0.951 0916 | 0.794 0.873 0.832 | 0.806 0.919  0.859
Windows 0.991 0920 0.954 | 0969 0971 0.970 | 0.962 0.938 0.950 | 0.892 0.739 0.808 | 0.896 0.779  0.834
Railings 0.822 0954 0.883 | 0.914 0.810 0.859 | 0.873 0.662 0.753 | 0.756 0.450 0.564 | 0.751 0.432  0.549
Columns 0.846 0.990 0.912 | 0937 0976 0956 | 0.897 0.957 0926 | 0.781 0.766 0.774 | 0.750 0.784  0.767
Beams 0.728 0942 0.822 | 0943 0.791 0.860 | 0.907 0.494 0.640 | 0.922 0.030 0.058 | 0.765 0.026  0.050
Stairs 0.966 0.741 0.839 | 0932 0.481 0.634 | 0969 0.148 0.256 | 0.632 0.042 0.078 | 0.964 0.132  0.232
Others 0.510 0.101 0.168 | 0480 0.270 0.345 | 0.526 0.257 0.345 | 0.267 0.014 0.027 | 0.333 0.008 0.016

Table 3. Class-wise classification results for the nine semantic classes considered, reported in terms of Precision, Recall, and F1-score.

local geometric features and, consequently, the separability of
semantic classes in the feature space used by the classifier. The
gap between the best-performing SLAM solution (RTAB-Map)
and the worst-performing one (DLO) exceeds 11 percentage
points in terms of OA, suggesting that the choice of the SLAM
algorithm alone can significantly influence not only the geomet-
ric characteristics of the reconstruction, but also the final quality
of semantic labeling.

The class-specific metrics reported in Tab. 3, together with the
visual inspection of the classified point clouds in Fig. 3, indicate
that classes characterized by simple geometry and large spatial
extent—most notably ground and facades—are reliably iden-
tified across all datasets. Very high performance is achieved
for TLS and RTAB-Map, while satisfactory values are still ob-
served even for the sparsest SLAM reconstructions. Slightly
lower but relatively stable performance is also obtained for win-
dows and columns. A distinctive behavior is observed for the
vegetation class, which exhibits a low F1-score in the TLS data-
set due to poor recall, whereas substantially higher values are
achieved on SLAM-derived point clouds. This effect is mainly
attributable to differences in point distribution and acquisition
geometry, which influence the representation of vegetation ele-
ments in the point cloud. The most critical classes are beams,
stairs, and others, for which decreasing point density leads to
a severe degradation in classification performance. In particu-

lar, very low Fl1-scores are observed for the DLO and LeGO-
LOAM datasets, reflecting the difficulty of identifying thin or
weakly represented structural elements in sparse point clouds.
Overall, these results confirm that the characteristics induced by
the adopted SLAM algorithm substantially affect the reliability
of classification at both global and class-specific levels.

4.2 Cross-Dataset Generalization

Figure 4 summarizes the classification results obtained by ap-
plying each trained model to all available test sets, thus enabling
a direct assessment of cross-dataset generalization and model
transferability. Each row corresponds to a classifier trained on
a specific point cloud, while the columns report the perform-
ance achieved when the same model is applied to different tar-
get test sets. As previously reported, the model trained on the
TLS dataset achieves the highest performance when evaluated
on its own domain, consistently outperforming all SLAM-based
models in the in-domain setting. However, when transferred to
SLAM-derived point clouds, its performance progressively de-
grades. This decrease is relatively limited for the denser SLAM
reconstructions, namely RTAB-Map (SLAM[1] in Fig. 4) and
LIO-SAM (SLAM]2]), whereas it becomes more pronounced
for the sparsest datasets, DLO (SLAM[3]) and LeGO-LOAM
(SLAM[4]). This behavior highlights a strong dependency of
the TLS-trained model on the geometric characteristics of the
training data, particularly on point density and feature stability.
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Figure 4. Classification metrics obtained in the first experiment
for cross-dataset evaluation. Each row represents a trained
model, while the columns report the classification performance
achieved when applying the model to the different test sets.

An opposite trend is observed for models trained on SLAM-
derived point clouds. These classifiers exhibit good perform-
ance on their original datasets and preserve, or even improve,
their accuracy when applied to denser test sets, including the
TLS point cloud. This effect is especially evident for models
trained on the sparsest reconstructions, which benefit signific-
antly from the increased point density of the target datasets. In
these cases, the availability of richer geometric information in
the test data compensates for the limited representativeness of
the training samples. Overall, these results reveal a marked
asymmetry in model transferability. While models trained on
dense TLS data struggle to generalize to sparse SLAM-derived
point clouds, classifiers trained on SLAM data—particularly
on sparse reconstructions—tend to generalize more effectively
across datasets with varying density levels. This suggests that
training on geometrically simpler and noisier data encourages
the learning of more robust and scale-tolerant decision bound-
aries, ultimately enhancing cross-dataset generalization.

4.3 Feature Relevance and Scale Dependency

The analysis of feature relevance provides additional insight
into how differences in point cloud structure induced by the ad-
opted SLAM algorithms affect the internal behavior of the Ran-
dom Forest classifiers. In particular, it allows assessing which
geometric descriptors and which spatial scales contribute most
to the discrimination of semantic classes under varying density
and noise conditions.

Figure 5 reports the cumulative importance of features grouped
by spatial scale, while Fig. 6 details the contribution of in-
dividual features computed at specific neighborhood sizes for
each training dataset. The results reveal a clear relationship
between point cloud density and the spatial scale at which fea-
tures become most discriminative.
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Figure 5. Cumulative feature importance by scale for each RF
model.

For the TLS dataset and the denser SLAM reconstructions,
i.e., RTAB-Map (SLAM][1]) and LIO-SAM (SLAM][2]), most
of the informative content is concentrated at medium to small
neighborhood sizes (0.10-0.50 m). This indicates that local
geometric variations can be reliably captured and exploited by
the classifier when point density is sufficiently high. Con-
versely, for the sparse reconstructions produced by DLO
(SLAM[3]) and LeGO-LOAM (SLAM]J4]), feature import-
ance progressively shifts toward larger neighborhood sizes
(0.50-1.00 m), reflecting the need to aggregate geometric in-
formation over wider spatial extents to obtain stable descriptors.
Across all training datasets, the Z coordinate and vertical-
ity consistently emerge as the most influential variables, par-
ticularly at larger neighborhoods. These are followed by
covariance-based descriptors such as sphericity, anisotropy, sur-
face variation, and eigenentropy, whose relevance increases as
point density decreases. This trend confirms that, in sparse
point clouds, robust geometric characterization relies primarily
on coarse-scale features that integrate information from larger
neighborhoods.

Overall, these findings explain the observed asymmetry in
model generalization: models trained on sparse SLAM data
rely on coarse and robust features that transfer well to denser
datasets, whereas models trained on dense TLS data exploit
fine-scale features that are not consistently available in sparse
reconstructions, leading to reduced transferability.

4.4 Robustness to Reduced Training Data

The second experiment was designed to evaluate the robust-
ness of the classification framework under reduced availabil-
ity of labeled training data. The quantitative results reported
in Tab. 4 show that halving the size of the training sets does
not lead to a substantial degradation of classification perform-
ance. For the TLS dataset, the overall accuracy decreases from
0.968 to 0.960, while for RTAB-Map it drops from 0.946 to
0.927. Similar trends are observed for LIO-SAM, DLO, and
LeGO-LOAM, with only moderate reductions in both OA and
weighted Fl-score. These results indicate that the proposed
classification workflow remains stable even when trained on a
limited number of labeled samples.
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(a) TLS model.

(b) SLAM[1] RTAB-Map model.

(c) SLAM[2] LIO-SAM model.

(d) SLAM[3] DLO model.

(e) SLAM[4] LeGO-LOAM model.

Figure 6. RF feature importance for each training dataset.

Point cloud OA Mean value Weighted mean value
Prec Rec F1 Prec Rec Fl1
TLS BLK360 0.960 | 0.862 0.729 0.755 | 0.956 0.960 0.952
SLAM[1] RTAB-Map 0.927 | 0.843 0.741 0.774 | 0920 0.927 0.919
SLAM[2] LIO-SAM 0.892 | 0.831 0.648 0.689 | 0.882 0.892 0.878
SLAM([3] DLO 0.827 | 0.682 0.518 0.531 | 0.820 0.827 0.812
SLAM[4] LeGO-LOAM | 0.838 | 0.747 0.527 0.547 | 0.835 0.838 0.826

Table 4. Classification results of the second experiment (reduced
training set). Performance metrics were computed on the test set
from the same point cloud as the training data, averaged across
the nine classes.

Further insights are provided by the cross-dataset evaluation
summarized in Fig. 7. The general transferability patterns ob-
served in the first experiment are largely preserved. Notably,
in several cross-domain cases—when models are applied to
point clouds different from those used for training—the clas-
sification performance is comparable to, or even slightly higher
than that obtained in the first experiment with larger training
sets. This behavior is particularly evident for models trained
on SLAM-derived point clouds, which benefit from being ap-
plied to denser target datasets, where the increased availability
of geometric information enhances class separability.

Overall, these findings suggest that classification performance
does not critically depend on the sheer size of the training
set, but rather on the representativeness of the training data.
This result further supports the suitability of RF classifiers for
semantic labeling tasks in scenarios characterized by limited
annotated data, as is often the case for SLAM-derived point
clouds.

TLS  SLAM[1] SLAM[2] SLAM[3] SLAM[4]

TLS PR 0754 | 0752 | 0.524 | 0.562
SLAMI1] [0 0.9 0727 | 0.729 09
SLAM[2] 0.820 0.736 | 0.749 038
SLAM([3] 0834 | 0810 | 0827 | 0.788 o
SLAM[4] 0834 | 0800 | 0763 | 0838 g

Figure 7. Overall accuracy obtained in the second experiment
for cross-dataset evaluation, using the same layout as in Fig. 4.

5. Conclusion

This study investigated how different SLAM algorithms, used
for three-dimensional reconstruction, influenced the classific-
ation of the resulting point clouds. The outcomes demon-
strated that point cloud characteristics induced by the SLAM
approach, particularly point density, have a strong influence on
classification accuracy and class reliability. An important res-
ult concerns model generalization: classifiers trained on dense
TLS data showed limited robustness when applied to sparse
SLAM point clouds, whereas models trained on SLAM-derived
data—especially sparse ones—exhibited better transferability
across datasets with varying density. Feature relevance ana-
lysis confirmed that these effects are linked to changes in the
spatial scales and geometric descriptors exploited by the clas-
sifier. The experiments further showed that stable classification
performance can be achieved even with reduced training data,
supporting the use of Random Forest models in scenarios suited
for SLAM surveying.

Future work will extend the analysis to alternative classifica-
tion strategies, including deep learning—based point-wise seg-
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mentation models, to assess whether similar trends hold for
approaches with higher representational capacity. In this con-
text, the public release of the ground-truth annotated datasets
is intended to facilitate reproducibility and to encourage further
experimentation and comparative studies by the research com-
munity.
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