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Abstract

Recent advances in digitization technologies have transformed the preservation and dissemination of cultural heritage. In this
vein, Neural Radiance Fields (NeRF) have emerged as a leading technology for 3D digitization, delivering representations with
exceptional realism. However, existing methods struggle to accurately model anisotropic specular surfaces, typically observed, for
example, on brushed metals. In this work, we introduce ShinyNeRF, a novel framework capable of handling both isotropic and
anisotropic reflections. Our method is capable of jointly estimating surface normals, tangents, specular concentration, and anisotropy
magnitudes of an Anisotropic Spherical Gaussian (ASG) distribution, by learning an approximation of the outgoing radiance as an
encoded mixture of isotropic von Mises-Fisher (vMF) distributions. Experimental results show that ShinyNeRF not only achieves
state-of-the-art performance on digitizing anisotropic specular reflections, but also offers plausible physical interpretations and
editing of material properties compared to existing methods.

1. Introduction

Brushed metals, textured fabrics, or treated glass are common
anisotropic materials that exhibit complex reflection patterns
and are frequently found in cultural heritage collections. Ac-
curate digital reproduction of these materials is essential for the
preservation and dissemination of cultural heritage.

Neural rendering techniques, such as Neural Radiance Fields
(NeRF) methods [Mildenhall et al., 2020] or Gaussian Splatting
[Kerbl et al., 2023], represent the state-of-the-art for digitizing
and rendering 3D scenes from image collections. They enable
dense, fine-grained 3D representation of objects along with the
scene illumination, surpassing classic photogrammetry. These
methods rely on consistent appearance across views, performing
best in Lambertian scenes with uniform illumination. However,
they often struggle with shiny objects, exhibiting strong view-
dependent specular reflections.

Specular reflections on anisotropic materials remain a persistent
challenge in neural rendering. Most existing approaches rely
on non-interpretable learned features to model view-dependent
appearance, rather than physical scene properties such as ma-
terial parameters or ambient illumination. Advanced methods
incorporate physically grounded reflectance models primarily
designed for isotropic behavior and therefore struggle to capture
anisotropic reflections, largely due to the absence of reliable
surface tangent information. This problem is also exacerbated
by the lack of public datasets containing anisotropic objects
with accurate, fully represented ground-truth material proper-
ties, which hinders the rigorous evaluation of existing methods.
Common digital 3D object collections provide mesh geometry
and texture (ShapeNet [Chang et al., 2015], Objaverse [Deitke
et al., 2023]), and sometimes rendered RGB views, depth and
normal maps (DISN [Xu et al., 2019], Shiny Dataset [Verbin
et al., 2022]) but generally do not include per-point or per-pixel
tangent directions.

This work introduces ShinyNeRF, the first NeRF variant to model
both isotropic and anisotropic specular reflections within a uni-

Reference view e↑ e↑, κ↓ e↑, κ↓, ϕ+π
2

Figure 1. ShinyNeRF novel view synthesis varying the learned
reflectance parameters. Anisotropy e controls elongation of
specular highlights, concentration κ reduces the reflection
sharpness and the tangent ϕ sets the anisotropy orientation.

fied, physically-grounded reflectance framework. While achiev-
ing geometry reconstruction and specular rendering comparable
to state-of-the-art approaches, ShinyNeRF is the only method
offering interpretable material parameters that enable physical
understanding and material editing of both isotropic and aniso-
tropic effects, as shown in Figure 1.

The main contributions of this work are:

- Anisotropic reflectance formulation for radiance fields.
An anisotropic specular model for NeRF parameterized
by concentration, anisotropy, and tangent orientation, with
differentiable tangent–bitangent–normal reflection frames.

- Ground-truth synthetic benchmark with anisotropic
material properties. We release two object datasets provid-
ing 3D geometry, texture, normals, tangents, and anisotropy
parameters for quantitative evaluation of anisotropic view
synthesis and estimated material properties.

ShinyNeRF code, demos and data are available at https://mu
ltimedia-eurecat.github.io/ShinyNeRF/.
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2. Related Work

This section reviews neural scene representations for photoreal-
istic novel view synthesis, focusing on the NeRF formulation,
view-dependent appearance modeling, and orthonormal basis
construction methods most relevant to our approach for aniso-
tropic neural rendering.

NeRF Formulation NeRF [Mildenhall et al., 2020] optimizes
a neural network encoding the appearance and geometry of a
3D scene by rendering the color observed by the camera rays of
an input set of views. The network has two components: (i) a
spatial MLP that maps 3D positions x to a non-negative density
τ(x) and a feature vector b(x), and (ii) a directional MLP that
outputs RGB radiance c(x, d̂) given b(x) and the unit view
direction d̂. For a camera ray r(t) = o+ t d̂ sampled at depths
{ti} with intervals ∆ti = ti+1 − ti, let τi denote the density at
the sample point r(ti) and let ci denote the RGB color at that
point and direction. Volume rendering along the ray yields:

C(o, d̂) =
∑
i

wi ci,

wi = e−
∑

j<i τj ∆tj
(
1− e−τi∆ti

)
.

(1)

where wi weights the contribution of each point in the camera
ray to the rendered color C(o, d̂).

The network parameters are optimized with an ℓ2 photometric
loss with respect to the ground-truth observed color Cgt(o, d̂),

Lrgb =
∑
(o,d̂)

∥∥C(o, d̂)− Cgt(o, d̂)
∥∥2

2
. (2)

View-Dependent Appearance Approaches to modeling view-
dependent effects in neural scene representations can be categor-
ized into three main strategies.

Multi-lobe encodings approximate bidirectional reflectance dis-
tribution functions (BRDFs) as weighted sums of pre-oriented
lobesfrom a shared, predefined bank of directions (or orthonor-
mal axes). By relying on this fixed lobe set, they remain memory-
efficient and fast to evaluate, since only per-point weights or
lobe bandwidths are predicted. However, the fixed orientations
constrain expressiveness, so capturing sharp specular highlights
or strong anisotropy typically requires many lobes. Because the
lobe decomposition is not tied to the local surface frame, view
dependence is often absorbed into latent appearance features
rather than explicit reflectance parameters, limiting physical in-
terpretability and controlled relighting or material editing. Meth-
ods following this approach include NRFF [Han and Xiang,
2023], Spec-Gaussian [Yang et al., 2024], and AniSDF [Gao et
al., 2025].

Reflected-ray querying methods use reconstructed surface geo-
metry to compute reflected rays and query specular appear-
ance along them, rather than regressing an explicit physical
BRDF. NeRF-Casting [Verbin et al., 2024] traces reflected cones
through the scene, aggregating features along each cone and
decoding them via a small MLP. SpecNeRF [Ma et al., 2023]
instead models specular appearance by encoding reflected ray
directions with a learnable Gaussian directional encoding, us-
ing roughness to control the Gaussians’ scale, and decoding the
resulting embedding to predict specular color.

Analytic reflectance models, most notably Ref-NeRF [Verbin
et al., 2022] and NeRO [Liu et al., 2023], regress parameters
of physically motivated reflectance functions at each spatial
point. By tying view dependence to analytic reflectance laws,
these methods generalize better to novel lighting and viewing
conditions. Ref-NeRF reparameterizes view dependence us-
ing reflection directions and structures outgoing radiance into
diffuse and specular components together with surface rough-
ness. This is supported by the isotropic Integrated Directional
Encoding (IDE), a closed-form encoding of spherical harmon-
ics integrated under a von Mises-Fisher (vMF) distribution that
yields smooth, roughness-conditioned representations of reflec-
ted radiance. NeRO extends this approach to reflective objects
by combining a neural SDF surface with an explicit microfa-
cet BRDF. It employs a two-stage optimization: geometry is
first recovered using split-sum and IDE-based approximations,
then fixed while environment lighting and BRDF parameters are
refined through Monte Carlo sampling.

Most of these methods assume isotropic reflectance, where
the BRDF fr depends only on the angles between incoming
(ωi) and outgoing (ωo) light directions relative to the sur-
face normal n, and is invariant to rotations around n. Form-
ally, fr(n,ωi,ωo) = fr(n,Rnωi,Rnωo) for any rotation Rn

about n. This assumption fails for anisotropic materials such
as brushed metals, hair, and woven fabrics, where reflectance
depends on both the view angle and the surface tangent orienta-
tion. Modeling such materials requires both a consistent tangent
estimation and BRDF parameterization that capture directional
anisotropy [Ward, 1992, Burley, 2012]. Forcing anisotropic
effects through isotropic parameterizations leads to geometry
deformations that attempt to compensate for missing anisotropic
reflectance, rather than achieving geometrically consistent re-
flectance [Barreiro et al., 2025].

ONB from a Single Normal The reflection behavior at aniso-
tropic surface points is naturally tied to the orthonormal basis
(ONB) defined by the normal, tangent and bitangent directions.
A central challenge of ONB construction methods from a single
unit normal is the presence of discontinuities on the unit sphere,
which leads to discontinuous tangent parameterizations and
noisy gradients near the corresponding singular regions. Clas-
sical approaches select an auxiliary direction and complete the
basis using cross products [Hughes and Moller, 1999]. Faster
variants with fewer operations typically introduce branches or
special-case handling for numerical stability [Frisvad, 2012],
whereas branch-free formulations of higher algebraic complex-
ity still retain a reduced but unavoidable singular region [Duff et
al., 2017]. For neural rendering of anisotropic reflections, ideal
ONB constructions should offer explicit control over tangent
orientation while remaining smoothly differentiable.

3. Methodology

The ShinyNeRF architecture is shown in Figure 2. Similar to
NeRF-based methods [Mildenhall et al., 2020], our method uses
a spatial MLP to estimate a dense representation of the diffuse
color component cd and specular tint s, a volume density τ , and
a bottleneck feature vector b. In addition, ShinyNeRF extends
the spatial MLP to estimate the following material parameters:
the surface normal n̂′, the specular concentration κ ∈ [1,∞)
as in Ref-NeRF [Verbin et al., 2022], and crucially for aniso-
tropic reflections, the anisotropy coefficient e ∈ [0, 1], and the
tangent orientation angle ϕ ∈ [0, π]. These parameters are used
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Figure 2. ShinyNeRF architecture. The spatial MLP is extended
with additional parameters for the anisotropic reflectance model
(anisotropy coefficient e, tangent orientation ϕ). The outgoing

specular radiance is encoded by a pretrained ASG2vMF network
and then forwarded to the directional MLP responsible for

rendering the specular color cs. Yellow blocks represent trainable
MLPs, while blue blocks are non-learnable analytic expressions.

to analytically calculate an IDE vector that compactly encodes
the outgoing radiance function. The IDE output together with
the bottleneck vector b feed a subsequent directional MLP, re-
sponsible for the prediction of the specular color component cs.
The rendered color c of each camera ray is finally obtained from
the combination of the diffuse and specular components in this
manner: c = cd + s⊙ cs.

Anisotropic Reflectance Model To extend the modeling cap-
ability of Ref-NeRF, the BRDF is based on the Anisotropic
Spherical Gaussian (ASG) [Xu et al., 2013] distribution,

ASG(v; [x,y, z], [λ, µ], c) = c·max(v·z, 0)·e−λ(v·x)2−µ(v·y)2 ,
(3)

where v is the input direction, z, x, y are the orthonormal lobe,
tangent and bitangent axes, respectively; λ and µ are the lobe
bandwidths along the x- and y-axes, and c is the lobe amplitude.

We derive the axial bandwidths from the predicted anisotropy e
and concentration κ coefficients as follows:

µ = 1
2
κ (1− e), λ = 1

2
κ (1 + e), (4)

where the isotropic case reduces to e = 0 and µ = λ. The scalar
e ∈ [0, 1] acts as an anisotropy control: larger values increase the
difference between λ and µ, producing more elongated specular
lobes. Without loss of generality, we set λ ≥ µ, so the tangent
axis x corresponds to the minor bandwidth and the bitangent
axis y to the major bandwidth of the lobe.

ASG Approximation via vMF Mixture Building upon the
IDE in Ref-NeRF, this work represents the function of outgoing
radiance by approximating the ASG distribution as a mixture of
N isotropic von Mises-Fisher (vMF) distributions. Representing
elongated anisotropic shapes with mixtures of isotropic lobes
or kernels is a well-established technique in classic anisotropic
reflectance modeling and texture filtering [Kautz and McCool,
2000, McCormack et al., 1999, Wang et al., 2009].

First, consider the following vMF formulation

vMF(v; z, κ) = N (κ) exp
(
κ z · v

)
, (5)

where z and κ are the vMF mean direction and concentration,
respectively, and N (κ) is a normalization constant on S2.

Then, we define the vMFs mixture approximating an ASG as:

p̂ASG(v; {αi, zi, κi}) =
L∑

i=−L

αi vMF(v; zi, κi), (6)

where αi are normalized mixture weights for N = 2L + 1
vMFs, and zi = Rx(θi) z is the orientation of the i-th vMF with
respect to the z axis, rotated by an angle θi around the x-axis.
To make the approximation independent of lobe orientation,
both the N vMFs and the ASG are expressed in the canonical
frame, [x,y, z] in Equation (3), aligning the principal direction
of the ASG lobe with the +z axis (north pole). The N vMF
components of the mixture are then placed along the y-axis of
major bandwidth, where the ASG exhibits greater elongation.
Figure 3(a–b) illustrates a toy example with N = 3 vMF.

To reduce the number of variables needed in Equation (6) and
enforce symmetry, we center a vMF towards z0 = z with θ0 = 0
and concentration κ0, and the rest of vMFs are arranged as two
symmetrical lateral sets of size L, satisfying that θ−i = −θi,
κ−i = κi, and α−i = αi. Thus, the probability distribution
p̂ASG can be parametrized by a vector q̂ of size 3L+ 2,

q̂ = [{θi, κi, αi}Li=1, κ0, α0]. (7)

A lightweight auxiliary MLP, referred to as ASG2vMF, is em-
ployed to estimate the parameters q̂ in Equation (7) defining
the vMF mixture modeling from the ASG with bandwidths λ
and µ. For numerical stability, the ASG2vMF receives a vec-
tor of log-bandwidths as input: [log λ, logµ, log(µ/λ)]. The
log-ratio log(µ/λ) characterizes the degree of anisotropy, with
log(µ/λ) = 0 corresponding to the isotropic case where µ = λ.
Each log-component passes through a positional encoding with
10 frequency bands for capturing high-frequency details.

The ASG2vMF network is optimized by minimizing
the Kullback–Leibler [Kullback and Leibler, 1951] and
Jensen–Shannon [Lin, 1991] divergences:

Lasg = KL(pASG∥p̂ASG) + β · JS(pASG, p̂ASG), (8)

where pASG(v;λ, µ) is the normalized ASG target probability
density function defined over the upper hemisphere v · z ≥ 0.
The weight β = 0.3 controls the JS contribution, which acts as a
symmetric and bounded regularizer that discourages degenerate
mixtures, whereas the KL term drives a mode-covering fit to the
target pASG. In practice, both distributions are evaluated on a
fixed grid over the main lobe hemisphere and normalized by the
sum of their values weighted by each cell solid angle, ensuring
the integral sums one and it is directly comparable. During
training of the ASG2vMF, the ASG bandwidth range is set to
λ, µ ∈ [10−2, 600] with λ ≥ µ, and arbitrary combinations
of (λ, µ) are sampled. During ShinyNeRF optimization, the
ASG2vMF weights are frozen.

The number of vMFs involves a trade-off between precision
and computational efficiency, as shown in Figure 4. The ASG
approximation error decreases rapidly with the number of com-
ponents, being N = 29 a reasonable middle-point. Figure 5
shows a visual comparison of the ASG approximation with a
vMF mixture for different anisotropic bandwidth values.

Anisotropic Orientation The ASG-based BRDF, approxim-
ated by the mixture of isotropic vMFs, is reoriented according
to the orthonormal basis composed by the surface normal n̂′,
surface tangent t̂, and bitangent b̂. This ONB is constructed
from the predicted n̂′ = (nx, ny, nz) and the tangent orienta-
tion ϕ. The tangent is initialized to t̂0, a vector belonging to the
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(a) ASG in canonical frame.
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(c) vMF mixture in reflection frame.
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Figure 3. ShinyNeRF anisotropic reflection model: the pretrained ASG2vMF network approximates the ASG (λ, µ) in a canonical frame
as a symmetric mixture of vMF functions, each defined by a concentration κi, an elevation θi, and a weight αi (not depicted). Vectors in
red-green-blue denote orthonormal basis. The mean direction zi of the vMFs is finally rotated according to the direction of reflection ω̂r .

Figure 4. (a) ASG approximation error, (b) memory cost and
(c) time per epoch for ShinyNeRF with varying number of vMF
components N . The vertical dotted line marks the chosen number
N = 29. Reported values use a training batch size of 3000 rays.

plane z = 0 and orthogonal to n̂′, and the bitangent must be
orthogonal to n̂′ and t̂0. It is calculated as follows:

t̂0 =
(−ny, nx, 0)

∥(−ny, nx, 0)∥2
, b̂0 = n̂′ × t̂0. (9)

To steer the vector basis towards the final anisotropic orientation
ϕ, the following rotation is applied in the normal plane:

t̂ = cosϕ t̂0 + sinϕ b̂0, b̂ = − sinϕ t̂0 + cosϕ b̂0. (10)

Note that this ad-hoc controllable ONB construction is not con-
tinuous at the poles, if n̂′ = (0, 0,±1). In practice, these special
cases are handled by a small tolerance epsilon.

IDE Construction The anisotropic IDE used in ShinyNeRF is
derived from the N = 2L+1 vMF distributions that approximate
the ASG function of outgoing radiance as

IDEASG =

L∑
i=−L

αi IDEvMF(ẑi, κi), (11)

where IDEvMF is the isotropic IDE closed-form expression in-
troduced in Ref-NeRF [Verbin et al., 2022] after the vMF dis-
tribution. Each vMF is characterized by αi, ẑi and κi (weight,
mean direction and concentration, respectively), obtained after
the ASG approximation via vMF mixture.

In Equation (11), the vMF mixture (or the ASG lobe, equi-
valently) is reoriented from the canonical frame towards the
direction of reflection ω̂r . Following Ref-NeRF, d̂ is the unit ray
direction from camera to surface, and the reflection direction is
computed as ω̂r = 2(−d̂ · n̂′)n̂′ + d̂ using the predicted normal

0 1

λ = 10
µ = 10

λ = 270
µ = 0.01

λ = 600
µ = 133

λ = 66
µ = 0.01

A
SG

vM
F

m
ix

tu
re

y

x

Figure 5. ASG approximation with N = 29 vMFs.

n̂′. Thus, the mean direction ẑi of each vMF in the reflection
frame is a rotated version of zi from Equation (6).

As shown in Figure 3(c), the rotation that expresses IDEASG in
the reflection frame amounts to two successive rotations: R2R1.
The first rotation matrix R1 aligns the canonical ASG axes with
the surface frame, i.e., [t̂ b̂ n̂′] = R1[x y z]. Then, following
the Rodrigues’ formulation, the second rotation R2 transforms
the surface frame to align the normal with the reflection direction
ω̂r , i.e., [t̂r b̂r ω̂r] = R2 [t̂ b̂ n̂′].

Note that processing each IDEvMF involved in Equation (11)
independently would require multiple forward passes of the
directional MLP, significantly increasing computational cost.
Alternative multi-lobe approaches concatenate all lobe encod-
ings [Han and Xiang, 2023, Yang et al., 2024, Gao et al., 2025],
increasing the encoding size and consequently the computational
overhead. In contrast, the weighted summation in Equation (11)
follows directly from the linearity of the IDE integral, requir-
ing only one forward pass per ray while maintaining a compact
encoding dimensionality.

Loss Function ShinyNeRF is trained using the photometric
reconstruction loss Lrgb from Equation (2) combined with addi-
tional geometric regularization loss terms. The complete loss
function is

LShinyNeRF = Lrgb + βpredLpred + βgradLgrad

+ βorientLorient + βdistLdist + βpropLprop,
(12)

where the hyperparameters βpred = 3× 10−3, βgrad = 3× 10−4,
βorient = 0.01, βdist = 3 × 10−3 and βprop = 3 × 10−4 are
empirically chosen weights for the auxiliary terms.

Asymmetric Normal Loss – This term is adopted from NeRF-
Casting [Verbin et al., 2024] to enforce consistency between
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the predicted normals n̂′ and the geometric normals n̂ (defined
as the normalized negative gradient of the volume density τ ),
penalizing deviations in both directions:

Lpred = Lcos
(
sg(w), sg(n̂), n̂′)

Lgrad = Lcos
(
w, n̂, sg(n̂′)

)
,

(13)

where sg(·) denotes stop-gradient and

Lcos(w, n̂, n̂′) =
∑
i

wi

(
1− n̂i · n̂′

i

)
(14)

penalizes different angle orientation between the normalized
n̂i and n̂′

i along each ray according to the volume rendering
weights wi. Lcos is equivalent, up to a constant factor, to the
squared ℓ2 used in NeRF-Casting for unit-norm normals.

Lpred in Equation (13) aligns n̂′ with the geometry encoded by
n̂ and w derived from the density τ , while Lgrad reciprocally
updates n̂ and w toward n̂′. The loss is asymmetric because of
the different weights, βpred and βgrad, used in Equation (12).

Normal Orientation Loss – Following Ref-NeRF [Verbin et al.,
2022], Lorient is adopted to penalize back-facing normals (i.e.,
predicted normals pointing away from the camera):

Lorient =
∑
i

wi max
(
0, n̂′

i · d̂
)2
. (15)

This term encourages visible samples along each camera ray
(those with large wi) to satisfy n̂′

i · d̂ < 0, enforcing normals
that point towards the camera (opposite to the view direction d̂).

Distortion Loss – Following mip-NeRF 360 [Barron et al., 2022],
Ldist is used to reduce floater artifacts and fragmented geometry
results that can occur in NeRF approaches. For each sample
position ti with weight wi along a ray, it minimizes

Ldist =
∑
i,j

wiwj

∣∣∣ ti + ti+1

2
− tj + tj+1

2

∣∣∣+1

3

∑
i

w2
i (ti+1−ti).

(16)
The first term in Ldist penalizes broadly distributed density or
separated density peaks along the ray, and the second term pro-
motes narrow, concentrated intervals where weights wi are large.

Proposal Loss – Following Zip-NeRF [Barron et al., 2023],
a lightweight auxiliary MLP is used to estimate a coarse dis-
tribution of volume density for efficient sampling, restricting
ShinyNeRF evaluations to regions with non-negligible density.
Let (t, w) and (t̂, ŵ) denote the sample positions and volume
rendering weights of NeRF and the proposal MLP along a ray,
respectively. The fine-scale samples (t, w) are drawn from the
coarse proposal distribution (t̂, ŵ), with weights ŵ predicted by
the proposal MLP, which is trained with

Lprop =
∑
i

1

ŵi

[
max

(
0, sg(wt̂

i)− ŵi

)]2
. (17)

Lprop encourages a smooth, anti-aliased proposal distribution
by penalizing proposal weights ŵi that fall below correspond-
ing smoothed NeRF weights wt̂

i , obtained by blurring and res-
ampling (t, w) at positions t̂.

4. Experiments

This section presents the evaluation of ShinyNeRF and the pro-
posed anisotropic reflectance model. The conducted experiments
validate three key claims: (1) the proposed tangent estimation
enables stable learning of anisotropic materials, (2) the method

accurately reconstructs directional specular highlights on both
simple and complex geometries, and (3) the approach general-
izes across diverse lighting conditions and material parameters.

Implementation Details We used 8 hidden layers of width 256
and ReLU activations both in the spatial MLP and directional
MLP of ShinyNeRF (Figure 2). The input of the spatial MLP
follows an integrated positional encoding of 3D samples x as
in [Barron et al., 2022], while the directional MLP takes as input
the 32-dimensional bottleneck feature vector, the 72-dimensional
anisotropic IDE encoding (degree 5) and the 1-dimensional dot
product d̂ ·n̂′. The auxiliary proposal MLP (4 hidden layers with
256 units and ReLU activations) is trained jointly with ShinyN-
eRF, while the auxiliary ASG2vMF MLP (3 hidden layers with
128 units and LeakyReLU activations) is pre-trained offline and
kept frozen during ShinyNeRF optimization.

ShinyNeRF was trained on two NVIDIA RTX 3090 GPUs with
a batch size of 6000, requiring approximately 30 GB of GPU
memory. Training employs the Adam optimizer with β1 =
0.9 (momentum) and β2 = 0.999 (second moment decay for
adaptive learning rates). The learning rate is initialized at 5.0×
10−4 and decays exponentially to a final value of 5.0×10−6 after
a warm-up period of 2500 steps with sine scheduling. Gradients
are clipped to a maximum norm of 1.0×10−3 to ensure training
stability. With this configuration, training an object takes around
20 hours, reducing training time by 80% compared to Ref-NeRF.

Datasets Evaluation is performed on three synthetic datasets
that target different aspects of anisotropic appearance modeling.
All scenes contain 68 training views and 33 test views.

Anisotropic Synthetic Dataset (ASD) was introduced in Spec-
Gaussian [Yang et al., 2024] and comprises a set of objects
with pronounced specular reflections under direct point lighting
without environment maps. Anisotropic material parameters are
roughly constant for each object. Since the original dataset in-
cluded only RGB views, we re-rendered the objects in Blender to
generate normal and tangent maps as ground-truth geometry. All
views and maps have a resolution of 270×270 pixels. This data-
set is used to evaluate the method on varying geometries under
controlled illumination and homogeneous reflectance behavior.1

Anisotropic Spheres (ASPH) is a novel dataset created and pub-
licly released for this work. It consists of four spheres rendered
under different environment maps, with systematic variations in
anisotropic material parameters (anisotropy strength and spec-
ular concentration). All views and maps are rendered at a res-
olution of 270×270 pixels. This dataset is used to evaluate the
performance of the method on simple geometries under complex,
varying environment illumination and reflectance behavior.

Cultural Heritage Anisotropic Objects (CHAO) is a second data-
set introduced in this work. It comprises a Moroccan barad
teapot and a German medieval helmet, both exhibiting strong
anisotropic specularities. All views and maps are rendered at
a resolution of 512×512 pixels. This dataset is used to assess
the performance of the method on real cultural heritage objects
under complex geometry and environment lighting. The 3D
objects were obtained from the Sketchfab catalog.2

Using synthetic objects provides access to ground-truth an-
isotropic material properties defined in Blender. However,

1 The ASD scenes used for evaluation are: teapot, ashtray, jupyter, dishes.
2 https://sketchfab.com.
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Method PSNR ↑ SSIM ↑ LPIPS ↓ MAE◦ ↓
n̂ n̂′ t̂

A
SD

Ref-NeRF 29.51 0.851 0.259 42.83 23.83 -
Spec Gaussian 30.66 0.941 0.118 - 52.75 -

AniSDF 32.23 0.930 0.185 - 16.23 -
ShinyNeRF 32.66 0.938 0.176 29.01 23.61 48.14

A
SP

H

Ref-NeRF 29.93 0.929 0.144 33.57 2.16 -
Spec Gaussian 29.15 0.914 0.123 - 56.53 -

AniSDF 28.21 0.867 0.224 - 1.11 -
ShinyNeRF 36.42 0.971 0.102 8.86 1.33 1.36

C
H

A
O

Ref-NeRF 23.72 0.799 0.257 52.10 35.58 -
Spec Gaussian 23.78 0.854 0.174 - 51.88 -

AniSDF 26.01 0.850 0.206 - 7.75 -
ShinyNeRF 25.31 0.847 0.207 25.89 11.46 40.08

M
ea

n

Ref-NeRF 27.72 0.860 0.220 42.84 20.52 -
Spec Gaussian 27.86 0.903 0.138 - 53.72 -

AniSDF 28.82 0.882 0.205 - 8.36 -
ShinyNeRF 31.46 0.919 0.162 21.25 12.13 29.86

Table 1. Quantitative evaluation on the ASD, ASPH, and CHAO
datasets based on PSNR/SSIM/LPIPS for RGB renderings and

MAE◦ for geometric density-gradient normals n̂, predicted
normals n̂′, and tangents t̂ (only available in ShinyNeRF).

Blender’s anisotropy strength and specular concentration are
not directly comparable to the equivalent anisotropic parameters
learned by ShinyNeRF (e and κ, respectively), due to funda-
mental differences in BRDF parameterization and reflectance
models. Consequently, we rely on qualitative analysis to as-
sess whether the predicted anisotropic parameters reproduce the
patterns observed in the corresponding ground-truth properties,
and perform quantitative evaluation only on the output RGB
renderings and the estimated normal and tangent maps.

Evaluation Metrics Image quality is evaluated using standard
metrics in neural rendering: PSNR, SSIM [Wang et al., 2004],
and LPIPS [Zhang et al., 2018]. Geometric consistency of the
reconstructed objects is assessed using the mean angular error
(MAE◦) in degrees of the estimated normal and tangent vectors.

4.1 Results

Table 1 reports quantitative results on the test sets of the pro-
posed datasets, comparing ShinyNeRF to reference methods:
Ref-NeRF [Verbin et al., 2022], Spec-Gaussian [Yang et al.,
2024], and AniSDF [Gao et al., 2025]. ShinyNeRF attains
the highest PSNR in average, indicating the lowest pixel-wise
reconstruction error and closest agreement with the photomet-
ric training objective. However, improvements in SSIM and
LPIPS are less pronounced; on ASD, Spec-Gaussian achieves
the best LPIPS by a noticeable margin. We hypothesize that
subtle view-dependent effects and high-frequency content can
make perceptual metrics such as LPIPS less tightly correlated
with the global rendering quality, leading to less clear trends in
their values. Visual inspection of the RGB renderings reveals no
significant differences between ShinyNeRF and Spec-Gaussian,
as shown in Figure 6.

ShinyNeRF also achieves state-of-the-art geometry in both pre-
dicted and geometric normals, n̂′ and n̂, respectively. Geo-
metric density-gradient normals n̂ are reported only for NeRF-
based methods using a volume density field, i.e., Ref-NeRF and
ShinyNeRF in Table 1. AniSDF achieves the lowest MAE◦

for predicted normals n̂′, reflecting its generally sharper geo-
metry compared to ShinyNeRF. However, this level of sharpness

GT ShinyNeRF AniSDF Spec-Gaussian Ref-NeRF
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Figure 6. Qualitative comparison of RGB renderings and
predicted normals n̂′. Top to bottom: teapot (ASD dataset),

helmet and barad teapot (CHAO dataset).

can also amplify geometric artifacts in the presence of specu-
lar reflections that exceed AniSDF’s representational capacity,
such as the large cavity it produces on the helmet in Figure 6.
Overall, we find that ShinyNeRF achieves the best trade-off
between artifact-free reconstructions and global geometric ac-
curacy. Methods that ignore anisotropy, such as Ref-NeRF, tend
to explain anisotropic reflection effects via incorrect geometry,
as reflected in the higher n̂ MAE◦ in Table 1.

The qualitative results in Figure 6 further illustrate ShinyNeRF’s
balanced performance in terms of rendering quality and geo-
metric accuracy. While individual methods may perform best
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Figure 7. Anisotropic material properties predicted with
ShinyNeRF on the ASPH spheres and the barad teapot (CHAO).
Higher intensity values correspond to larger values in e and κ.

on specific scenes or metrics, ShinyNeRF is consistently able
to capture sharp anisotropic highlights without noticeably com-
promising the reconstructed geometry.

While all methods in Table 1 estimate some notion of specular
concentration (e.g. inverse magnitude or material roughness in
Ref-NeRF, sharpness parameters in AniSDF and Spec-Gaussian),
only ShinyNeRF explicitly predicts surface tangents t̂ and the

anisotropy coefficient e at each 3D point, providing an addi-
tional level of material interpretability. As a result, it is the only
approach that supports editing not only the strength and concen-
tration, but also the direction of anisotropic specular reflections
(see Figure 1). Note that when the material exhibits weak or no
anisotropy (e.g., e ≈ 0 or in absence of specular highlights), the
ShinyNeRF is effectively unconstrained in its prediction of the
tangent orientation, since any t̂ leads to the same reflectance. In
such regions, the tangent MAE◦ can increase without affecting
the rendered appearance. This explains why the t̂ MAE◦ on
ASPH (highly specular spheres, shown in Figure 7) is much
lower compared to ASD and CHAO, where the objects exhibit
weaker or more limited specular behavior.

4.2 Limitations

The proposed method inherits several limitations from both
analytic reflectance modeling and NeRF-based optimization.

Reflectance Ambiguity – Recovering unique anisotropy variables
from a limited number of observations is an ill-posed problem.
Different anisotropy configurations can yield visually similar
view-dependent reflections, leading to eccentricity and concen-
tration estimates (e, κ) that deviate from the ground-truth pat-
terns while still explaining the measured appearance. In the
ASPH dataset, each sphere’s surface is divided into four sections
with different (e, κ) combinations and only the environment
map varies across spheres. As shown in Figure 7, the predicted
(e, κ) follow the ground-truth sections with varying fidelity,
with higher alignment when the environment map provides rich
texture and contrasted specular highlights are visible, which
ShinyNeRF can exploit as cues for anisotropy estimation.

Bounded Anisotropy Range – The ASG2vMF mapping relies on
a fixed, finite set of N vMF lobes, which bounds the mixture
capacity and limits the range of representable anisotropy. For
extremely sharp or highly elongated highlights, the pre-trained
network may therefore fail to reproduce the appropriate lobe
shape, leading to oversmoothed estimates.

Computational Cost – Runtime efficiency was not a primary ob-
jective in this work. ShinyNeRF is computationally heavier than
Gaussian Splatting [Kerbl et al., 2023] and other accelerated
neural rendering approaches [Chen et al., 2022]. Incorporating
speed-oriented components such as multi-resolution hash-grid
encodings [Müller et al., 2022] could reduce training and render-
ing time.

Loss Weight Sensitivity – The hyperparameter weights in Equa-
tion (12) can substantially affect both training stability and out-
put quality, a limitation shared with other neural rendering meth-
ods that rely on multi-term loss functions, such as Ref-NeRF and
AniSDF. Adaptive loss balancing strategies, such as uncertainty-
based weighting [Cipolla et al., 2018] or gradient normaliza-
tion [Chen et al., 2018] could mitigate this sensitivity.

5. Conclusion

This work introduced ShinyNeRF, a neural radiance field frame-
work that models both isotropic and anisotropic specular re-
flections by coupling volumetric rendering with an ASG-based
reflectance parameterization. ShinyNeRF estimates anisotropic
material properties via a pre-trained ASG2vMF network that
encodes the outgoing specular radiance, enabling the render-
ing of sharp anisotropic highlights while recovering plausible
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geometry. Quantitative and qualitative evaluations on synthetic
datasets with varying geometry and anisotropic complexity show
that ShinyNeRF delivers competitive or state-of-the-art perform-
ance in both RGB rendering quality and geometric accuracy.
Moreover, its interpretable decomposition of material properties
supports direct editing of the strength, concentration, and dir-
ectionality of specular reflections. These advances constitute a
step towards a more faithful digital preservation of anisotropic
materials, with direct applicability to tasks such as the realistic
reconstruction and dissemination of cultural heritage objects.
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