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ABSTRACT:

In this contribution, we illustrate how to use high-resolution 3D data and images to model the global shape of a tunnel and to survey
its equipment, in a semi-automatic way using pattern recognition and machine learning techniques. We first implement a robust B-
spline fitting algorithm, based on a parametric family of M-estimators that allows an efficient deterministic optimization strategy, to
accurately model the tunnel lining using range data, despite the presence of acquisition artifacts and significant perturbations related
to the equipment and some surface defects. The residual maps from the robust fit can be exploited to segment the equipment in an
unsupervised manner using clustering algorithms, but at the cost of post-processing which makes the method rather ineffective for
routine use. However, we deploy it to annotate data for the supervised learning of a deep learning model, namely Mask R-CNN. We
comment on the first results, obtained on a still limited number of examples, and from image data only, and discuss the possibilities
of improving the method, in the immediate or longer term.

1. INTRODUCTION

The survey of existing tunnels can have several purposes, such
as documentation and BIM (Building Information Modeling)
or safety diagnostics. This task is often costly and error-prone
when performed on-site. Nowadays, sensors can provide high-
resolution 3D data (e.g. in the form of depth maps) and images.
In this paper, we illustrate how pattern recognition and machine
learning techniques can be used to exploit this data, with the
aim of performing tunnel surveys off-line, as automatically as
possible.

Global shape Equipment Local texture

Image Depth

LCMS 

Figure 1. Outline of the approach taken

In (Foucher et al., 2019), we showed how it was possible to ad-
apt a high-resolution sensor, namely Pavemetric’s LCMS (Laser
Crack Measurement System), initially designed for road surface
inspection (Laurent and Hébert, 2002), to tunnel data surveying
by equipping a vehicle with a carrying platform configurable in
height and angle. The LCMS sensor analyzes the projection of
a laser line on the tunnel lining, providing at each acquisition a
depth profile and an intensity profile. These are progressively
aggregated as the vehicle moves forward to form images and
depth maps, with a spatial resolution of 1×2 mm and a sub-
millimeter depth resolution. As for any laser-based sensor, the
∗ Corresponding author

LCMS measurement can be disturbed by optical phenomena,
occlusions or defocus. When identified by the sensor, the res-
ulting invalid / out-of-range (IOoR) values are indicated in the
depth image by an arbitrary constant (depicted as green pixels
in the diagram of Fig. 1).

Depth maps include information at different scales: a global en-
velope that represents the general geometry of the tunnel (met-
ric scale), foreground objects that often correspond to its equip-
ment (decimetric to centimetric scale), and the local texture of
the lining, whose alterations may be related to the presence of
defects or structural elements such as joints (centimetric to mil-
limetric or sub-millimetric scale). Moreover, images convey
appearance information, which can also be valuable to detect
objects of interest, or defects.

In this contribution, we focus on developing methods to extract
objects at these different scales (see Fig. 1), from image and/or
depth data. More specifically, we are interested in modeling the
general shape of tunnels and in segmenting their equipment,
leaving defect detection outside the scope of this paper. The
latter topic, especially crack, water leakage and exposed iron
detection from images is receiving considerable attention in the
recent years and we refer the reader to e.g. (Gupta and Dixit,
2022) or (Nguyen et al., 2022) for a recent overview. Note
that works explicitly using depth information for crack detec-
tion (Gui et al., 2019) are still rather rare in the literature.

Modeling the shape of tunnels, mainly for profilometry pur-
poses, is a relatively classical task. However, the appearance
of robust methods, allowing to adjust composite surfaces in the
presence of atypical data, or outliers, is quite recent. In the spirit
of (Xu and Yang, 2020), we first implement a robust B-spline
fitting algorithm to accurately model the tunnel surface using
range data, despite acquisition artifacts and significant perturb-
ations related to equipment or to surface defects. The contribu-
tion here is that we rely on a parametric family of M-estimators
which allows an efficient deterministic optimization strategy,
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and an increased robustness. The proposed method is described
in Section 2 of this paper.

The second contribution of the paper relates to the segmentation
of equipment. Apart from paper (Xu et al., 2021), where some
examples of equipment appear as “interferences” in the context
of defect detection, we are not aware of any work specifically
involving equipment in tunnels. Two techniques are explored
here. A first, unsupervised approach uses the residuals of the
robust fit, i.e. a version of the depth map corrected from the
global shape of the tunnel, to identify equipment. It is described
in Section 3. A second approach, supervised, is based on a deep
learning model (namely Mask R-CNN). It operates on image
data, while its learning is performed from data labeled with the
previous method (hence, using range data). It is described in
Section 4.

Finally, in Section 5, we conclude the paper and consider ways
to improve the proposed methods.

We note that a preliminary and abridged version of the first two
sections of this paper appeared in (Tual et al., 2021).

2. ROBUST DEPTH MAP MODELING

In the first place, we model the global shape of the tunnel by
fitting a surface on the depth data {xk, yk, dk}k∈[1,K]. To this
end, we use a B-spline model, as in (Xu and Yang, 2020). It is
a surfaceM parameterized by (u, v) ∈ [0, 1] × [0, 1], defined
as a combination of n×m polynomial basis functions :

M(u, v) =

n∑
i=1

m∑
j=1

Ni(u)Nj(v)βj+m(i−1) (1)

where Ni and Nj are cubic spline functions. These are defined
from a nodal vector using the recursive Cox - de Boor formula,
see (Piegl and Tiller, 2012) for details. The placement of the
nodes points allows to finely control the local level of descrip-
tion of the surface: distant nodes provide a coarse representa-
tion, while close nodes allow a finer one. Since duplicating a
node decreases by one the level of continuity of the curve, it is
even possible to model discontinuities.

In the discrete setting, noting M = [x,y,d], the (K × 3) mat-
rix of depth data, eq. (1) can be written as M = Xβ, where
X is the so-called design matrix and β is a (nm × 3) matrix
of control points. Each row k of the design matrix contains all
combinations of the basis functions evaluated at point (uk,vk).
Each column contains the 2D spline corresponding to the con-
trol point βj+m(i−1). For more details on the construction of
the design matrix, we refer the reader to (Piegl and Tiller, 2012).

X =


(Ni(u1)Nj(v1))(i,j)∈[1,n]×[1,m]

...
(Ni(uk)Nj(vk))(i,j)∈[1,n]×[1,m]

...

 (2)

The estimation of the unknown vector β can be done in a least
squares (LS) sense, i.e. by minimizing the sum of squared re-
siduals: JLS =

∑
k r

2
k, where the k-th residual is defined as

rk = ∥Mk −Xk,.β∥2. (3)

Figure 2. B-spline tunnel surface modeling with LS (top) or
robust (bottom) fit. The adjusted surface is shown in brown,

superimposed on the 3D data, green squares are control points

However, since LS are sensitive to erroneous data, IOoR points
as well as foreground objects and artifacts tend to attract the
surface and distort it unduly (see the example of LS fit in Fig. 2,
top). To prevent this, we use a robust estimation technique,
namely M-estimators, which minimize the criterion:

JM (β) =

k=K∑
k=1

ρ(rk), (4)

where the so-called potential function, ρ, is chosen in the
Smooth Exponential Family (Tarel et al., 2002):

ρ(r) =

{
1
α

[
(1 + r2)α − 1

]
α ̸= 0

ln(1 + r2) α = 0
(5)

where α is a parameter that controls the shape of ρ (see Fig. 3,
top). Taking α = 1, one obtains the quadratic (non-robust)
function, while α = 0.5 leads to the quasi-Laplace potential,
which is close to the Huber potential. Smaller α values lead
to non-convex potentials, whose influence functions (Hampel
et al., 1986) are redescending, providing enhanced robustness
to outliers as α decreases. For α = 0, one obtains the t-
Student function, used in (Yang et al., 2019, Xu and Yang,
2020). The alpha = 0 case corresponds to the Geman-McClure
function (Geman and McClure, 1985), which has a horizontal
asymptote and is particularly tolerant to outliers. In order to
avoid the local minima problems related to the optimization of
non-convex criteria, it is strongly advisable to use them in a con-
tinuation approach, i.e. decreasing α gradually, starting each
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Figure 3. SEF potential (top) and weight (bottom) functions, as
introduced in (Tarel et al., 2002)

time the optimization from the solution found with the previ-
ous value. To perform the optimization of criterion (4), which
leads to nonlinear normal equations, we use the half-quadratic
theory, which defines an augmented loss function with the same
minimum as JM :

JWLS(β, w) =
∑
k

wkr
2
k + ξ(wk). (6)

The augmented problem has two unknowns, but when β is
fixed, the minimizer of JWLS is given by the so-called weight
function: wk = wα(rk) = ρ′(rk)/2rk, ∀k ∈ [1,K] and when
w is fixed, minimizing JWLS with respect to β is a weighted LS
problem, which can be straightforwardly solved. In these condi-
tions, it is wise to use a strategy of alternate optimizations w.r.t.
each variable, which leads to an iteratively reweighted least
squares (IRLS) algorithm (Holland and Welsch, 1977). As can
be seen from the shape of the weighting function (Fig. 3, bot-
tom), strong residuals, related to outliers, receive a low weight,
the more so as α is low, while small ones have a weight close
to one. In this framework, it is easy to cancel the weight of the
IOoR points, using an indicator vector, o. Finally, a factor σ is
introduced to account for the scale of residuals. The whole pro-
cess is described in Algorithm 1. As shown on Fig. 2 (bottom),
robust estimation is almost insensitive to the presence of cable
trays, lighting and artifacts. The remaining brown areas mostly
correspond to parts of the surface occluded by equipment.

Several practical details need to be taken into account when
implementing this algorithm. The Spline basis functions have
a rather limited spread, so the design matrix contains a large
majority of zeros. This is why it is advantageous to manipu-
late it with sparse arithmetic. On-the-fly code generation with
the Python library Numba (Lam et al., 2015), allows to signi-
ficantly accelerate calculations. Using the properties of mul-

Input: Vector of α values: α ;
Scale parameter: σ ;
Matrix of observations: M ;
IOoR indicator vector: o ;
Design matrix: X ;
Output: Estimated control points: β̂
Initialization β̂

(0) ← β̂LS =
(
XTX

)−1
XTM ;

t← 0 ;
foreach α do

i← 0 ;
repeat

R(t) ←M−Xβ̂
(t)

;
r
(t)
k ← ∥R

(t)
k ∥2, ∀k ∈ [1,K] ;

w
(t)
k ← (1− ok)⊙ wα

(
r
(t)
k
σ

)
, ∀k ∈ [1,K] ;

W(t) ← diag
k

(w
(t)
k ) ;

β̂
(t+1) ← β̂WLS =

(
XTW(t)X

)−1

XTW(t)M ;

evol = maxj∈[1,nm]

(
∥β̂(t+1)

j − β̂
(t)

j ∥2
)

;
t← t+ 1; i← i+ 1 ;

until (i > nitermax) or (evol < evolmin);
end
β̂ ← β̂

(t)
;

Algorithm 1: Robust estimation of β̂ with IRLS

tiplication by diagonal matrices also makes the calculation of
β̂WLS lighter. Finally, sub-sampling the data allows to reduce
the memory and computational resources used.

The scale parameter σ can be estimated alternately with the es-
timation of β̂, as in (Yang et al., 2019). However, this solution
is known to be rather unstable. Moreover, in our case, the data
are quite similar between tunnels. So it makes sense to leave the
choice to the user’s experience. A value about 1 mm is conveni-
ent in most situations. Another important issue is the number of
nodes in the spline model. It should be chosen in such a way as
to avoid any over- or under-fitting effect. In (Yang et al., 2019),
where the task was to fit 1D profiles using evenly spaced nodes,
this choice was automated by monitoring a goodness-of-fit cri-
terion. However, the number of nodes is not the only element
to be fixed: their positioning is also very important, and can
hardly be automated. Here again, we rely on interactivity.

To manage all these aspects, we have developed a user interface,
shown in Fig. 4. It is made of five panels. At the bottom, there
is a global representation of the tunnel, on which the region cor-
responding to the data displayed in 3D in the bottom-left panel
is indicated. This area represents a surface of about 2 × 6 m.
The top left panel gives access to the parameters of the process.
The result is shown as a brown overlay in the bottom-left panel.
The top right panel displays either the original intensity or depth
images, the map of residuals, or the final IRLS weights. Finally,
the bottom right panel allows to visualize a profile along a line
represented in green in the top right panel.

In practice, the surface estimation is done in two steps. A coarse
estimation pass is first performed considering 1 point out of 30,
with alpha between 1 and 0 and 8 nodes in each (u, v) direction
(which is the minimum number of nodes for cubic B-splines).
A second pass allows to refine the result of the first one, by tak-
ing 1 point out of 5, alpha between 0 and -0.7, and more nodes,
placed by the user. By carefully positioning the nodes (duplic-
ate nodes can be used to model discontinuities), the surfaces
can be adjusted very finely. In the example shown in Fig. 4, a
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Figure 4. Screenshot of the interface for robust fitting (better visualized by zooming on the electronic version of the figure)

cable with a diameter of about 25 mm can be seen. In an ex-
ample shown in (Tual et al., 2021), a plate with a thickness of
about 5 mm was distinguishable.

3. UNSUPERVISED EQUIPMENT SEGMENTATION

At the end of the robust fitting process described in the pre-
vious section, one obtains a map of residuals, defined as the
distance between the observations and their prediction by the
fitted model. As can be seen on Fig. 5 (left), points on the sur-
face of the wall have small residuals, while objects of interest
have centimetric to decimetric residuals. Equipment, mostly
located in front of the tunnel surface, has positive values, while
hollow objects, such as joints or cavities, have negative values.
Invalid/out-of-range data have large, positive residual values. In
a first approach to equipment segmentation, we use the appar-
ent homogeneity of residuals on objects (as well as their spa-
tial consistency) to implement an unsupervised clustering tech-
nique.

Figure 5. (Left) Residuals of robust surface adjustment.
Invalid/out-of-range points appear in green. (Center)

segmentation result. (Right) result after manual post-processing
using S3A. Each object class appears in a different colour

In (Tual et al., 2021), we proposed to use a Gaussian Mixture
Model distribution, whose parameters were estimated by an EM
algorithm. A defect of this kind of algorithm is that it is neces-
sary to specify, or estimate, the number of clusters present in
the analyzed image. Moreover, the statistics of the classes do
not really meet the normality assumption. This is why we have
chosen to use the Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise (HDBSCAN) algorithm, pro-
posed in (Campello et al., 2015), that does not require the know-

ledge of the number of clusters. It is a hierarchical algorithm,
of Single-Linkage type, and thus, able to capture clusters of
arbitrary shape and sizes. It is also known to be relatively in-
sensitive to noise and outliers. The large size of the processed
images, their sometimes cluttered nature, as well as the pres-
ence of IOoR data, however, require some adjustments and we
have therefore defined a 5-step process.

1. HDBSCAN clustering on a coarse grid
In order to manage the computational issues related to
the large size of the images, we first consider subsampled
data (1 point out of 6). The feature vector used mixes re-
sidual and position information: we consider the triplets
(x, y, γr), where γ is a parameter allowing to adjust the
relative importance of spatial proximity and residual value
coherence. Applying the HDBSCAN algorithm, we obtain
a label map, at a coarse resolution.

2. Label propagation using k-nn
In order to recover the original resolution, we apply a
propagation technique based on the k-nearest neighbor al-
gorithm. The unlabeled pixels in the full-resolution grid
receive the most represented label among those of their k
nearest neighbors in the coarse label map. We consider
Euclidean distances, computed with the same feature vec-
tor as in step 1. At the end of this step, all points of the
image (at the original resolution) are in a cluster.

3. Grouping of background clusters
At the end of step 2, the elements of the tunnel lining
can be found in several different clusters, which must be
grouped together. To do this, we calculate the statistics
(mean and variance) of the residual values on each cluster.
Clusters with a mean residual of less than 2 mm (in abso-
lute value) and a standard deviation of less than 40 mm are
considered as background. If the image contains only the
background label, the process is over and the next image
can be processed. If not, there are objects of interest and it
is necessary to refine the labeling.

4. Handling invalid/out-of-range (IOoR) pixels
IOoR pixels can either correspond to entire, separate ob-
jects (see e.g. the light fixture on the top-left of Fig. 5)
or belong to existing objects. Therefore, groups of IOoR
pixels with an area greater than 200 pixels are given their
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own label, while smaller ones or isolated IOoR pixels
are assigned to existing clusters. To this end, we first
compute an extended label map, by a region growing
technique in the image domain (implemented in Scikit’s
expand label function), considering non-background and
non-IOoR clusters only: these are expanded until they
touch neighboring clusters or until the maximum enlarge-
ment distance is greater than a threshold of 70 pixels.
Then, the remaining IOoR pixels receive the (spatially)
closest label in the extended label map.

5. Elimination of small clusters
Finally, a morphological opening is performed on the la-
bel map and clusters of too small size (area less than 100
pixels) are deleted.

The segmentation process includes a number of paramet-
ers (those listed above and those specific to HDBSCAN).
These parameters were optimized using quality measures
specific to unsupervised classification, such as the adjusted
Rand index (ARI), see (Hubert and Arabie, 1985) or the V-
measure (Hirschberg and Rosenberg, 2007). The former meas-
ures the similarity of two assignments by assessing the classific-
ation of pairs of samples, and normalizing for what would have
happened by chance. The latter is the harmonic mean of homo-
geneity (each cluster should only contain members of a single
class) and completeness (all members of a given class should
belong to the same cluster). Although optimized, the values ob-
tained in our experiments remain rather low (typically, about
0.61 to 0.65 for both metrics, that range in [0,1]). This confirms
the tendency to over-segmentation that can be observed in the
image of Fig. 5 (center).

The segmentations can be manually edited using specialized
software such as S3A (Jessurun et al., 2020). A manual in-
tervention is anyway necessary to assign a semantic label (e.g.
wire, light, safety sign) to each identified cluster. An example
of corrected result is shown in Fig. 5 (right). It is therefore not
possible to completely avoid user interaction and this makes the
process impractical for industrial routine. However, the method
is more efficient than a purely manual segmentation. We used it
to annotate data to develop the supervised learning method that
will be described in the next section.

4. SUPERVISED EQUIPMENT SEGMENTATION

The supervised deep learning architecture Mask R-CNN (He et
al., 2017) appears well adapted for image-based equipment seg-
mentation. Indeed, this approach allows to distinguish multiple
instances of objects, with possible overlaps. To obtain a seg-
mentation of object instances, the algorithm first extracts fea-
ture maps from an input image, by a succession of convolution,
pooling. It uses dropout operations to avoid over-fitting. In a
second step, bounding boxes and classes of objects of interest
are extracted according to a process derived from the Faster R-
CNN architecture (Ren et al., 2015). Compared to the latter,
Mask R-CNN also computes the pixel-by-pixel mask of each
object of interest in a bounding box. This second step operates
at several scales to perform the segmentation of objects of dif-
ferent sizes. In this paper, we implement the Mask R-CNN ar-
chitecture using only intensity images to perform a multi-class
segmentation. In table 1, we list the 14 equipment categories
that have been identified. Note that some elongated objects,
such as cables or cable trays, will appear in pieces on a series

of contiguous images. Others have a smaller extension (light-
ing, signs...) and will be visible, at best on a single image, but
sometimes in two pieces on two successive images.

cable 503 joints 132
lightings 84 cable tray 121
SOS exit 19 electric box 85
SOS reflective sign 12 traffic sign 5
front emergency sign 2 SOS ID 10
emergency exit sign 19 formwork 3
emergency exit 4 location plate 4

Table 1. Equipment list and number of equipment occurence.

For training and evaluating the Mask R-CNN model, we built
a database of 415 images. We divide the database according
to the usual train-validation-test paradigm as follows: 64% of
the images for learning, 20% for validation and best model se-
lection, 16% for testing. It may be noticed that the different
classes are very imbalanced. The number of object occurrences
can range from a few units for some categories to several hun-
dred for others. As is usual for deep learning networks, we use
a pre-trained model to extract the feature maps. The learning
process is therefore focused on the instance segmentation mod-
ule from the training images. In the model learning phase, data
augmentation methods are applied to increase the variability of
the data set and thus improve model performance. For this pur-
pose, at each epoch we apply a transformation (Gaussian noise,
median blur, contrast variations, rotation, image compression)
on each image. The values applied are chosen randomly within
a pre-defined range. Among the 150 training epochs, we select
the model that minimizes the loss function of Mask R-CNN.

Figure 6. Instance segmentation result without any
postprocessing operations

The first results, based on this rather limited database, show that
segmentation performance is class-dependent. On the examples
in Fig. 6, we can observe that the wires, cable trays, lighting
and electric box are well identified, but the model does not de-
tect the joint visible in the middle of the images. A quantitative
evaluation confirms that objects such as cable trays, lights, or
decametric plates, which are numerous in the database, are re-
latively well detected: we observe a good true detection rate,
around 95% for each class, with a precision around 80%. The
results obtained on less represented objects are very variable,
and it is necessary to increase the corpus of data to be able to
draw conclusions. Finally, joints are, surprisingly, little detec-
ted. This effect is under investigation, but we think that the use
of depth in addition to the image information could be interest-
ing for this type of structural element.

Without any post-processing operations, we observe that many
objects appearing only partially in the images are not correctly
detected and identified. To overcome this issue, we supplement
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the test datasets by generating “in-between” images with 50%
overlap, as shown in Fig. 7. During the inference stage, the
selected model is applied to this augmented test data set. Ob-
jects must be detected in at least two contiguous images to be
retained. Two situations are possible :

• When an object is detected at most three times in contigu-
ous images, we consider it to be a small-size object. In
this case, we keep the predicted object whose bounding
box center is the most central in the image. For example,
in Fig. 7, we can see that the lighting is detected, at least
partially, in the three images. The bounding box of light-
ing in the bottom image is the most central. In the end,
only this one is retained.

• When an object is predicted in more than three images and
the bounding boxes of the detected objects reach the left
and right edges of each image, it is most likely a linear
object, such as a cable. In this case, the predictions are
joined to form a single object in an assembly of contiguous
images, as illustrated in Fig. 8.

Thanks to these post-processing operations, the performance
seems visually better. However, this first impression needs to
be consolidated by a quantitative evaluation, which is the sub-
ject of an ongoing work.

Figure 7. Results obtained on two contiguous images (top) and
on their “in-between” image (bottom)

5. DISCUSSION AND CONCLUSIONS

In this contribution, we have introduced an approach that al-
lows the extraction of semantic information on a metric (tunnel
shape) and centimetric (equipment) scale, based on the analysis
of depth maps acquired in tunnels. We also explored a deep
learning approach for tunnel equipment segmentation from im-
ages.

First, we described a method for estimating the control points of
B-Splines surfaces using a parametric family of M-estimators,
which achieves a high degree of robustness to outliers caused
by invalid/out-of-range data, artifacts, and equipment. The res-
ulting tunnel wall modeling can be made accurate enough to
distinguish objects of interest a few millimeters thick, provided
the node points of the B-Spline are judiciously placed. For now,
we rely on user interaction to position these points. It is neces-
sary to place enough points to have a good approximation of the
surface, while avoiding over-fitting; it is necessary to duplicate
some nodes to correctly model surface discontinuities. At the
same time, care must be taken not to position node points on
the equipment to avoid modeling them as if they belonged to
the surface. All this can lead to dilemmas and makes the auto-
mation of node placement a difficult model selection task. To
go beyond the method proposed in (Yang et al., 2019) in a re-
latively simple setting, that relies on traditional figure-of-merit
monitoring techniques, the use of machine learning is an ap-
pealing research issue (Laube et al., 2018). We aim to invest-
igate techniques that use image data to train an algorithm on
where to position control points in order to fit a spline surface
on depth data. Another, more challenging research prospect is
to develop deep learning models capable of fitting the tunnel
shape directly from the image and depth data, without human
intervention and in a robust manner.

Modeling the surface of tunnels can be useful in itself for struc-
tural geometry control applications. It also enables the correc-
tion of raw depth information, making it easier to distinguish
small objects. Unfortunately, unsupervised segmentation based
on residual depth information alone leads to over-segmentation
of objects of interest, as we have experienced. This processing
step therefore also requires user intervention.

In this paper, we also experimented on a supervised instance
segmentation deep learning model, namely Mask R-CNN based
on image data. The first results, obtained from a rather lim-
ited database, are encouraging but show that the segmentation
performances depend on the classes, and in particular on their
number in the training set. These results must be rapidly con-
solidated, based on an increased corpus of data. In addition, the
post-processing still needs to be finalized so that the method can
be evaluated at the scale of an entire structure, and not only on
individual images.

Finally, the segmentation techniques we have deployed are
based on either depth data or image data, and we see that neither
of them gives complete satisfaction. The joint use of 3D and im-
age is a good direction of improvement in supervised instance
segmentation, but raises questions about the best way to com-
bine the two modalities. The most obvious approach, called
early fusion, is to combine the two into a two-channel image. It
raises the question of the normalization of data, since depth and
intensity have very different ranges. Our approach of correcting
the depth data for the overall tunnel shape, that requires signi-
ficant human intervention might not be fully justified in this
context. We might imagine using less precise information, but
requiring a lesser degree of supervision. Finally, other fusion
techniques, like late fusion, as proposed in (Aakerberg et al.,
2017), would probably be less sensitive to data normalization.
All these aspects will be investigated in the near future.
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Figure 8. Merging of linear object pieces detected in contiguous images.
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