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ABSTRACT:

Multimedia camera calibration is a challenging, yet increasingly important task. Due to the lack of software with appropriate
models, implicit calibrations with standard single-media models are often performed, despite the well-known fact that
distance-dependent errors arise from neglecting the specific multimedia influences. This becomes particularly relevant when test
field calibrations are employed. We present a thorough simulation approach that shows the influence of distance-dependent errors
when performing implicit calibration. Results show major accuracy decreases for performing measurements far from the calibration
distance while closer distances may compensate the errors quite well. Furthermore, we investigate on the behavior of different test
field geometries and angles between interface and optical axis which particularly affects the achievable accuracy.

1. INTRODUCTION

Multimedia photogrammetry has evolved to an important and
widely-used means for many applications, such as construction
inspection (Hover et al., 2012; Kahmen and Luhmann, 2022),
marine habitat monitoring (Marre et al., 2019), wreck surveying
(Prado et al., 2019; Rofallski et al., 2020), optical navigation
(Johnson-Roberson et al., 2010; Servos et al., 2013) or fluid
dynamics (Maas, 1995).

For underwater photogrammetry, cameras are generally placed
in a waterproof housing viewing through a clear interface into
the water. For the interface, either planar (flat) or hemispherical
(dome) ports are used. Dome ports, aligned concentrically with
the entry pupil of the lens, allow for mitigation of many image
degrading aberrations, including refraction. However, dome
alignment still remains a challenging task as the entry pupil
is generally non-tangible and varies with focal length, focus
distance and lens design (Menna et al., 2016).

Distinct challenges with underwater imagery on the one hand
include reduced image quality due to chromatic aberration,
dispersion, turbidity and color shift towards blue and green
(Maas, 2015). On the other hand, the geometric image
formation model is changed due to refraction occurring
at different media intersections in the ray path. This
generally renders the pinhole model invalid if no distinct
shapes of interfaces (i.e. well-centered dome ports) are
used, introducing distance-dependent systematic errors when
neglecting refractive effects (Treibitz et al., 2012).

Compensation for refraction in the optical ray path with flat
ports can be performed either explicitly by calibrating refractive
media with their shape, position, orientation and refractive
properties or implicitly by partly absorbing refraction effects
using pinhole models with additional parameters (Shortis,
2015). Since most publicly available software packages (both
commercial and open-source) do not provide any explicit
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calibration models, implicit calibration is still widely performed
and resulting errors have to be accepted. However, the
magnitude of the implicit approach’s errors is dependent
on several parameters, such as the orientation and position
of refractive interfaces and refractive indices of the media.
Often, cameras are calibrated in a laboratory or water tank
beforehand, as self-calibration in situ may fail due to limited
variation in acquisition geometry or little object structure.
Hence, differences between calibration and acquisition distance
introduce errors to the bundle when neglecting refraction, as
stated by Kahmen et al. (2020).

In this contribution, the distance-dependent distortion in
multimedia photogrammetry is evaluated for a variety of
different calibration distances, assuming a test field calibration.
The so calibrated interior orientation parameters are then
introduced to bundles with different scaling of object space
to obtain errors in object space. We use both the implicit
compensation with the Brown model, including three sets of
distortion parameters (Brown, 1971) and an explicit ray tracing
approach, according to Rofallski and Luhmann (2022).

This paper outlines as follows: After a review on related work
regarding multimedia photogrammetry and investigations on
implicit calibration, the basic data set and simulation procedure
is illustrated. Then, influencing parameters are varied to show
the effects of the specific parameter. Eventually, noise is
exemplarily added to the data. Results are discussed and
findings depicted to provide a theoretical guideline on the
subject in the conclusion.

2. RELATED WORK

As the general pinhole model is rendered invalid, alternative
projection functions were developed over the years. This
includes extended pinhole camera models with additional
parameters to correct distortions directly (Maas, 1995; Elnashef
and Filin, 2019; Nocerino et al., 2021), extensions to non-single
viewpoint cameras (Agrawal et al., 2012; Treibitz et al.,
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2012) or virtually shifted cameras (Telem and Filin, 2010;
Jordt-Sedlazeck and Koch, 2012). Kotowski (1987) introduced
a fully flexible but computationally very expensive ray tracing
bundle adjustment to account for refraction. Here, all image
points are described as vectors that are refracted at each media
intersection. The major advantage of this approach is complete
control over all refracting interfaces in the ray path which can
explicitly be calibrated in the bundle adjustment. Extensions
regarding the integration to bundle adjustment and optimization
are given by Mulsow (2010), Mulsow and Maas (2014) and
Rofallski and Luhmann (2022).

Kang et al. (2012) discussed the issue of neglecting refraction
with varying arrangements of the optical axis and interface
plane. The authors investigated underwater imagery (both
simulated and real) and adjusted combinations of the camera
constant and radial-symmetric distortion on natural feature
points. The findings were that for mostly perpendicular
arrangements of optical axis and interface, no significant loss
of accuracy is present and the given calibration of distortion
and camera constant suffice for high accuracy. However,
the stated accuracy of 0.7mm for an object with an extent
about 200mm (equals 1:286 relative accuracy) is well below
expectable accuracy in underwater photogrammetry.

Kahmen et al. (2019) focused on stereo data sets and especially
considered relative and exterior orientation when neglecting
refraction. Especially, a change in the stereo-baseline which
results in erroneous scaling of object space, was found which
can only partly be compensated by other correlated parameters
of exterior and interior orientation. Based on that paper,
the authors extended their work in Kahmen et al. (2020) by
extensive simulations. The influence of varying acquisition
distances was addressed when neglecting refraction for stereo
systems. Authors focused their work on orientation parameters
mostly and did not include bundle adjustment or deviations
from perpendicularity of optical axis and interface.

Rofallski and Luhmann (2022) evaluated a laboratory data
set and compared an own ray-tracing-based methodology to
ray tracing by Mulsow and Maas (2014) and the Brown
model. Results showed a small accuracy decrease of about
10% for a perpendicular setup and a major decrease of
50% for an intersection angle of about 80◦ with implicit
compensation. In Sedlazeck and Koch (2012), the authors
thoroughly investigated changes of implicit parameters for both
interior and exterior orientation, just as object coordinates by
altering the intersection angle of optical axis and interface
with synthetically rendered images. The simulations assume
self-calibration with natural features for SfM. It is shown that
errors in object space occur either radially-symmetric in case
of perpendicular setups and more complex shapes and higher
magnitude with a slanted setup.

Hemmati and Rashtchi (2019) investigated refraction with
varying intersection angles and different glass thicknesses.
The average reprojection error was increased by more than
50% when non-perpendicular views through the interface were
performed in air. Nocerino et al. (2021) tackled the distance
dependence by including a second order polynomial as a
distance-dependent correction term to the bundle adjustment
and evaluated the method in large-scale simulations.

In extension to these works, our contribution towards the
assessment of accuracy and errors for implicit multimedia
calibration are investigations on the following subjects:

• Calibration distance vs. measurement distance for test
field calibrations with nearly equal geometry

• Test field geometry (2D vs. 3D)
• Variation of thee angle between optical axis and interface
• Analysis of object points through full bundle adjustments
• Analysis of both implicit and explicit approaches with

simulated noise

3. METHODOLOGY

The methodology is based on the assumption of a test
field calibration, consisting of a calibration stage where
interior orientation parameters (IOP) are determined and a
measurement stage where determined IOP are fixed to their
calibrated values and a bundle adjustment only solves for
exterior orientations (EOP) and object coordinates (OP).

Table 1. Setup parameters for both evaluated data sets. d1 is the
distance from the perspective center to the first interface.

Camera constant c -10mm
Principal point x′

0 = y′
0 =0mm

Distortion parameters 0
µair 1.00028
µglass 1.49
µwater 1.3318
d1 20mm
Interface thickness 8.42mm
Image noise σ 0

No. cam. stations 100
No. object points 208
No. image points
(approx. per bundle)

8500 (2D)
17000 (3D)

The original geometry was based on a test field and a
semi-spherical set of camera stations, consisting of 25 positions
where at each, four rolled images were taken, resulting in
100 camera stations. To maintain comparable acquisition
geometry, both EOP and OP were equally scaled to any
given radius r of the semi-sphere. Regardless of calibration
or measurement stage and the used model for IOP and
refraction, all image coordinates were simulated individually
with an IOP and refraction setup, as depicted in Table 1.
Refractive parameters consisted of orientation parameters for
two plane-parallel interfaces and refractive indices (µi) for
the three involved media, air, glass and water. Definitions
followed the descriptions in Rofallski and Luhmann (2022).
The provided parameters were used, unless stated otherwise.

We used a planar (2D) and a cuboidal (3D) test field for our
evaluations (Figure 1). The dimensions of the test fields hence
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(a) Planar test field (2D) (b) Cuboidal test field (3D)

Figure 1. Two test fields for calibration. Additionally, the 3D
test field was used for all measurement stage evaluations.
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(b) Exemplary image
coordinates r = 100mm

(c) Bundle geometry r = 1000mm
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(d) Exemplary image
coordinates r = 1000mm

Figure 2. Examples of the bundle geometry and exemplary
image coordinates for two different scaling radii r (all units are

mm). Mind the disappearing points in the top part in (d).

ranged, analogous to the scaling of the exterior orientations,
from 25mm × 40mm × 20mm for the smallest to 2.5m
× 4.0m × 2.0m for the largest geometry. Regardless of the
calibration test field, all bundle data sets at measurement stage
were simulated with the cuboid test field which provided a
spatial geometry. Scaling was provided by two individual scale
constraints for each geometry.

Figure 2 provides an insight on both the bundle geometry
and the resulting image coordinates on two exemplary
images at different scaling. The image coordinates change
non-linearly by small margins due to refraction and introduce
the unresolvable distortions for implicit compensation.

For the calibration stage, each configuration was calibrated at an
average acquisition distance r (distance to the OP barycenter)
of 50, 200, 500, 1000 and 2000mm with accordingly
scaled geometry. Afterwards, each calibrated IOP (including
orientation of the interface and refractive index of water for
the explicit approach) were fixed to their calibrated values.
The subsequent measurement stage consisted of one bundle
for each acquisition distance from 50 to 5000mm in steps of
25mm with the fixed calibration values, resulting in 200 bundle
data sets per calibrated distance and configuration (Figure 3).
The image scale, including a factor of 1.3318 for the apparent
increase of camera constant, thus ranged from 1:3.75 to 1:375.

For accuracy evaluation, 3D coordinates from each bundle
adjustment were transformed through 6DOF transformation
onto the scaled reference coordinates that went into the image

0 50 75 100 [...] 200 [...] 2000 5000

r [mm]

[...]

Figure 3. Relation between calibration distances (red) and
measurement distances (green)

Table 2. Notations for the different simulated configurations

Interior orientation and refraction

BRN Brown model with radial-symmetric and
tangential-asymmetric distortion and affinity and
shear parameters. All parameters are adjusted.

RTO Ray tracing in object space, according to Rofallski and
Luhmann (2022) with IOP according to Brown. All
parameters are adjusted.

XX ° Intersection angle between optical axis and bundle
invariant interface plane

Calibration setup

2D Calibration is performed with planar test field

3D Calibration is performed with a cuboidal test field

XXX Calibration distance. XXX denotes average distance to
the test field’s barycenter in mm, according to the radius
of the used semi-sphere.

σX Image noise, applied to each coordinate component. X
is given in fractions of a pixel

coordinate simulation for each given scaling. Resulting
RMSXYZ values and relative accuracies (RA: ratio of maximum
object extent to RMSXYZ value; Luhmann et al., 2020) were
computed. Considering RA has the major advantage of
removing image scale which affects all photogrammetric data
sets, regardless of the medium. By elimination, effects of
refraction become obvious.

Notations regarding the data sets are provided in Table 2. For
example, a data set with error-free image coordinates, calibrated
at 500mm distance on the cuboid test field with the Brown
model and perpendicular arrangement of optical axis and the
planar interface would be named BRN 2D 500 σ0 90°.

4. SIMULATIONS WITHOUT NOISE

Several configurations were simulated to show model errors
with an implicit approach by using the Brown model with all
parameters taking part in the adjustment. We first present
results of error-free image coordinates (both calibration and
measurement stage) and compare two different calibration test
fields; one being planar (2D) and one being cuboidal (3D).
Subsequently, we focus on the 3D test field and change the
intersection angle of the optical axis and the interface while
maintaining error-free image coordinates. We refrain from
varying the distance of the interface from the optical center for
reasons of readability and complexity.

Eventually, effects of image noise are presented to investigate
the relations between image noise and model errors.
Additionally, a ray tracing approach by Rofallski and Luhmann
(2022) is compared to show results of strict modeling for noisy
data. For this entire section, refer to Figure 4, showing absolute
RMS values of the transformed coordinates after adjustment
(left) and the resulting RA (right).

4.1 Planar and cuboidal test field calibrations

Supporting Figure 4, Table 3 shows accuracy-related
parameters of the investigation on 2D and 3D test fields.
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(a) BRN 50mm - RMS
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(b) BRN 50mm - Relative accuracy
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(c) BRN 200mm - RMS
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(d) BRN 200mm - Relative accuracy
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(e) BRN 500mm - RMS
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(f) BRN 500mm - Relative accuracy
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(g) BRN 1000mm - RMS
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(h) BRN 1000mm - Relative accuracy
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(i) BRN 2000mm - RMS
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Figure 4. RMS values (left) and relative accuracy (right) of the measurement stage for calibration distances 50mm, 200mm,
500mm, 1000mm and 2000mm. All data sets were simulated without image noise and with implicit compensation.
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This includes the radius range in which 20% of the maximum
relative accuracy was retained. This is to provide a measure of
the width of an accuracy peak, close to the calibration distance
and gives an estimate of the depth limits where maximum
accuracy for the implicit approach can be anticipated.

Table 3. Min. and max. RMS and relative accuracy (RA) for 2D
and 3D data sets. RA ± 20% denotes the range of radii where
RA remained within 20% of the max. RA. Note that for curves
at 50mm, a range could not be computed, as the lower end that

fell below the given accuracy was not simulated.

Min RMS
[mm]

Max RMS
[mm]

Min RA
[1:n]

Max RA
[1:n]

RA ± 20%
[mm]

BRN 2D
50 σ0 90° 0.02 17.09 297 3296 -

BRN 2D
200 σ0 90° 0.03 4.63 391 7391 55.6

BRN 2D
500 σ0 90° 0.03 1.79 322 18733 113.3

BRN 2D
1000 σ0 90° 0.03 0.80 304 35458 233.1

BRN 2D
2000 σ0 90° 0.03 0.30 295 69158 469.9

BRN 3D
50 σ0 90° 0.02 17.54 290 3210 -

BRN 3D
200 σ0 90° 0.03 4.68 400 7943 52.10

BRN 3D
500 σ0 90° 0.03 1.81 330 20373 101.6

BRN 3D
1000 σ0 90° 0.03 0.81 311 38439 213.0

BRN 3D
2000 σ0 90° 0.03 0.30 302 75502 424.8

Considering the blue and red lines from Figure 4 which
show the results for calibration with the planar (blue) and
the cuboidal (red) test field. Generally, a trend towards an
accuracy maximum at the calibrated distance, visible in both
RMS and relative accuracy for all data sets can be observed.
This peak accuracy window was rather small for short distances
compared to the longer distances which, by association, had
a lower air/water ratio. The window, where 20% of the
maximum relative accuracy was retained, roughly doubled for
each distance step. Absolute RMS minima were, among all data
sets, rather similar, hence enabling equal maximum absolute
accuracy among these data sets. Secondly, after non-linear
accuracy convergence towards the maximum below and around
the calibration distance, the RMS values increased linearly with
distance, as would be the case in a single-media case, too. This
can be observed in the relative accuracy as an asymptotic line
which all data sets converged to on different levels. The values
were close to the shown minimum relative accuracy values.
Absolute and relative accuracy rose highest for the longer
calibration distances (Figure 4, (j) and entire right column).
Lastly, a small accuracy gain was observed for all data sets with
the cuboidal test field at a maximum of about 10%, best visible
in Figure 4 (h, j) for 1000mm and 2000mm.

4.2 Variation of intersection angle

For all following investigations, only the 3D test field was
considered for calibration and the intersection angle between
optical axis and interface was varied from the perpendicular
setup that was used in the data sets, thus far.

The red, yellow, purple and green lines in Figure 4 show
the results for the calibrations with 90◦, 89◦, 88◦ and 85◦

intersection angles, respectively. Supporting the graphics, the
same metrics as in the preceding section are shown in Table 4.

Table 4. Values for variation of intersection angle. Refer to
Table 3 for further details.

Min RMS
[mm]

Max RMS
[mm]

Min RA
[1:n]

Max RA
[1:n]

RA ± 20%
[mm]

BRN 3D
50 σ0 89° 0.02 17.03 298 3305 -

BRN 3D
50 σ0 88° 0.01 16.55 306 3502 -

BRN 3D
50 σ0 85° 0.01 13.96 364 3419 -

BRN 3D
200 σ0 89° 0.03 4.59 401 8034 51.6

BRN 3D
200 σ0 88° 0.03 4.53 400 7692 53.3

BRN 3D
200 σ0 85° 0.03 4.01 394 5959 66.2

BRN 3D
500 σ0 89° 0.03 1.78 330 18674 110.6

BRN 3D
500 σ0 88° 0.04 1.79 329 13945 147.7

BRN 3D
500 σ0 85° 0.07 1.75 321 6453 357.1

BRN 3D
1000 σ0 89° 0.03 0.80 311 30837 268.5

BRN 3D
1000 σ0 88° 0.06 0.86 310 17019 425.0

BRN 3D
1000 σ0 85° 0.11 1.11 302 6403 1765.9

BRN 3D
2000 σ0 89° 0.04 0.31 302 47357 681.1

BRN 3D
2000 σ0 88° 0.10 0.43 301 17983 1757.4

BRN 3D
2000 σ0 85° 0.15 0.88 293 6312 -

In general, an accuracy-degrading trend can be observed for all
calibration distances when the intersection angle was changed
from 90◦, showing the optimum for implicit compensation.
Especially in the longer calibration distances, this effect was
particularly large. However, the 85◦ data at 50mm and
200mm showed a surprising trend towards better accuracy at
longer measurement distances whereas the small measurement
distances were equally or minimally inferior to other data sets.
The higher relative accuracy from 90◦ data disappears with
increasing calibration distance (Figure 4 a,b,c,d). The same
also applies to the 88◦ data set with smaller magnitude. From
500mm, accuracy for higher deviations from perpendicularity
decreased rapidly to considerably poorer values.

The minimum absolute RMS values of 89◦ were similar to
the 90◦ cases. However, with the lower angles, these minima
could not be achieved. Similarly, overall maximum relative
accuracy decreased by up to 92% (2000mm), compared to 90◦

cases. The distinct peaks that were visible for perpendicular
arrangements, disappear with lower angles, too. This resulted
in a rather flat curve for relative accuracy and a shift of the peak
for the 85◦ case towards lower end at approximately 750mm.

4.3 Discussion

Considering the error-free simulations, we discuss the effects
of pure modeling that are shown with the data. Results indicate
that accuracy of implicit underwater test field calibration is
highly error-prone to deviations from the calibration distance.
This behavior however does not propagate unrestricted off the
charts but rather converges asymptotically to a horizontal line
in relative accuracy space or a linear growth in absolute RMS
space. This implies that the effect of refraction, as modeled
here, only affects results to a certain distance after which other
effects prevail. Especially image measurement accuracy and its
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relation to the acquisition distance was not considered for this
study. Hence, effects of image degradation and atmospheric
variations are to be considered, as well when working on real
tasks. Additionally, depth of field is a considerable factor in
very close ranges, as is the case with the small distances of
50mm and 200mm. The small focal depth strongly reduces
image measurement accuracy, especially with spatial test fields.
Consequently, the shown small ranges of high accuracy are
possibly the only areas that can be imaged in focus and might
supersede the long measurement distances for this case.

All accuracy peaks in both RMS and relative accuracy were
slightly shifted towards longer distances. This may also be
caused by underlying effects of neglected image measurement
accuracy which tended to increase relative accuracy towards
longer distances when remaining constant. A small accuracy
gain towards the cuboidal test field was observed. Since the
cuboidal geometry offers a wider depth, the calibration values
for this geometry should provide some decorrelation and hence
receive the shown higher accuracy with higher peak and a wider
range than the 2D calibrations.

The calibration distances of 50, 200, 500, 1000 and 2000mm
relate to air/water ratios of approx. 40/60, 10/90, 4/96, 2/98
and 1/99, respectively. The radii can be transformed to this
ratio and results show equal behavior. Hence, the given data
does not only apply for the shown calibration and measurement
radii but rather for a generalized case with the specific geometry
of a semi-shaped sphere and the used test field. Kahmen et
al. (2020) found that the refraction effect decreases with higher
water percentages water which is also derivable from our data.
They considered absolute deviations from spatial intersections,
whereas our data shows this for monocular bundle adjustment.

Deviations from perpendicularity showed the higher impact
on the accuracy of implicit modeling in our simulations with
growing impact towards longer distances. Generally, deviations
of 1◦ could mostly be compensated to a large extent, especially
when short calibration and measurement distances were chosen.
However, the actual impact can only be assessed by simulation
and real data that include image measurement uncertainty as
a function of image scale. Higher angle deviations showed
larger errors which are most likely not to be compensated by
implicit calibration and are in accordance with practical data
from Rofallski and Luhmann (2022) or Kahmen et al. (2020).

5. SIMULATIONS WITH NOISE

To assess the influence of image noise, we ran two simulations
with added constant noise. Expectable accuracy of 1/20 to
1/50 px on elliptical targets are expected in air (Luhmann et
al., 2020). With image degradation, Maas (2015) claims an
accuracy loss of factor 5 in multimedia environments. Hence,
following the lower bound, we assumed an image measurement
accuracy of 1/4 px (1.2 µm) per coordinate direction to be
a practically relevant magnitude. Additionally, we used 1
px (4.8 µm) as an error margin for applications with lower
accuracy demands which could base on natural features.

Since noisy data produces errors even with correct modeling,
we additionally investigated the behavior of an explicit ray
tracing (RTO) approach by Rofallski and Luhmann (2022) and
compared it to the implicit compensation. The basic principle
remained equal to the implicit data sets with a two-step
procedure of calibration and introduction of the calibrated
values as fixed parameters in the measurement stage.

5.1 Variation of noise

Figure 5 shows the relative accuracy for the 90◦ case with
3D test field, with the two stated measurement accuracies,
included as normally distributed noise to both coordinate
directions. With noise of 1/4 px, it can be observed that the
smaller calibration distances (50, 200, 500) and their accuracy
peaks mostly remained at approximately the same magnitude
as in the error-free simulation for the implicit compensation.
On the contrary, the longer calibration distances had a
reduced accuracy and showed distinctive noisy behavior. The
explicitly calibrated bundle indicated a rather noisy behavior
but remained constant for almost all data sets over the entire
measurement distances. The magnitude was of a comparable
magnitude as the 2000mm data set from the implicit calibration
at its peak. Other than that, explicit calibration obtained
considerably higher relative accuracies as the implicit approach.
A slightly lower accuracy was obtained from the very long
calibration distances of RTO (1000mm and 2000mm) at short
measurement distances which rose to the mean of all data sets
at about 10-20% of their respective calibration distance (best
visible in Figure 5 b, bottom left part).

For a noise of 1 px, both implicit and explicit calibrations lost
considerable accuracy. The longer calibration distances from
implicit calibration obtained an equal peak accuracy and tended
closer to the shorter calibration distance’s relative accuracies.
The ray tracing also showed a large loss in relative accuracy and
gained a higher accuracy only for short measurement distances
below 1000mm. Other than that, the accuracy, again, remained
constant over the entire measurement range.

5.2 Discussion

All findings from this section are with the caveat that no
extensive random sampling was performed and statistical
means can differ with larger samples. We therefore refrained
from showing any statistical metrics. However, especially
for the explicit calibration, the accuracy appears to be widely
constant, hence including at least six samples for each noise
magnitude with ray tracing calibration.

Within noise, the relative accuracy for the 2000mm data set
reached an equal level, compared to the explicit ray tracing
approach around the calibration distance. This rather surprising
accuracy is only valid if, on the one hand, image measurement
accuracy remains constant over distance. Affected by turbidity
and depth of field, this may not be achievable in practical
applications. On the other hand, a test field of the given size
would have to be manufactured to the required accuracy and
be handled under water, in the first place. In our data set,
the simulated test field for the 2000mm data set had a total
extent of approximately 1.0m × 1.5m × 0.8m. Furthermore,
the range where a comparable accuracy could be obtained,
according to our sample, is rather small. With an explicit
model, calibration could be performed almost anywhere in
the depicted range and accuracy remain constant, within the
considered parameters. This may be limited by correlations
that can be considerably higher than for in-air models and
harder to compute with noisy data (Maas, 2015; Sedlazeck
and Koch, 2012). Effects of correlation become apparent in
the two longer distances with RTO 1000 and 2000mm which
had a lower accuracy towards the low end. As we discussed
already, accuracy for Brown was at longer distances (i.e. higher
air-to-water ratios) nearly as good as an explicit compensation.
Hence, the entire parameter space can mostly be described
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Figure 5. Relative accuracy of noise data of 3D data set with 90◦ angle (equals combination of red lines in Fig. 4 b, d, f, h, j) for
implicit modeling (left) and explicit ray tracing (right). Standard deviation per coordinate was set to 1/4 px (top) and 1 px (bottom).

without refraction and hence introduces overparametrization
and thus large correlations to an explicit approach.

6. CONCLUSION AND OUTLOOK

In this contribution, we provided a theoretical insight on
the accuracy assessment of implicit multimedia test field
calibration. Through simulations, error-free image coordinates
were strictly modeled with refraction and evaluated with an
implicit approach by adjusting all distortion parameters of
the Brown model. General findings were that the relative
accuracy converges towards an asymptotic line, meaning that
no unbounded errors arise from unmodeled refraction effects,
apart from general accuracy decrease through smaller image
scales. Comparisons were performed between 2D and 3D test
fields. Differences between the two could be observed but were
rather small in magnitude. Secondly, the angle between the
optical axis of the camera and the interface plane were altered.
Results showed a clear accuracy loss which was considerable
from 88◦ and below. Eventually, erroneous image coordinates
were introduced to the simulation and an own ray tracing
solution compared to implicit calibration. Results showed a
clear advantage for explicit modeling which was expectable.

Generally, the simulations show that implicit test field
calibration can be performed, even with little to no accuracy
loss, only if many parameters are carefully considered. This
includes a close distance to the calibration distance for
measurements which can be increased with larger distances
(and air-to-water ratios), if image measurement quality remains
high enough. Additionally, perpendicularity between optical
axis and interface should be maintained. Even small deviations
(>1◦) from this, result in large errors which are very unlikely
to be buried in measurement noise.

For future work, a deeper look into correlations and statistics of
the impact of noise for implicit calibration should be performed.
This especially includes realistic metrics of image measurement

accuracy, e.g. obtained from long term observations through
various types of water at different distances. For short ranges,
this also includes the depth of field.

The given simulations demanded high computational resources
with 200 bundles per calibration distance and configuration,
resulting in a total of 7000 bundles. Thus, we refrained from
full numerical simulations which would multiply this by the
thousands. For full understanding of the noise impact and the
expectable residual errors, it would be necessary to perform
extensive statistical simulations. Provided the model from
Rofallski and Luhmann (2022), this is feasible for a strict ray
tracing approach in comparable time as for Brown simulations.

We found that all data could well be described by a
second-degree rational function (Figure 6). Despite small
outliers at the beginning of the x-range, the coefficient of
determination, r2 as a measure of the goodness of a regression,
is in many cases above 0.99, indicating a good fit of the adjusted
function (Hughes and Grawoig, 1971). Further investigations
are needed to verify or refute this thesis for other data and, if
verified, how the coefficients and predictions can be interpreted.
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Figure 6. Exemplary data set (orange points) with adjusted
second-degree rational function (blue line). r2 = 0.9956
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T., 2020. Fusing ROV-based photogrammetric underwater
imagery with multibeam soundings for reconstructing wrecks
in turbid waters. J. Appl. Hydrogr. (116), 23–31.

Sedlazeck, A., Koch, R., 2012. Perspective and non-perspective
camera models in underwater imaging – overview and error
analysis. Lecture Notes in Computer Science, 7474, Springer,
Berlin, Heidelberg, 212–242.

Servos, J., Smart, M., Waslander, S. L., 2013. Underwater
stereo slam with refraction correction. Int. Conf. Intell. Rob. and
Sys. (IROS), IEEE, Piscataway, NJ, 3350–3355.

Shortis, M., 2015. Calibration Techniques for Accurate
Measurements by Underwater Camera Systems. Sensors,
15(12), 30810–30826.

Telem, G., Filin, S., 2010. Photogrammetric modeling of
underwater environments. ISPRS J. Photogramm. Remote
Sens., 65(5), 433–444.

Treibitz, T., Schechner, Y., Kunz, C., Singh, H., 2012. Flat
Refractive Geometry. IEEE Trans. Pattern Anal. Mach. Intell.,
34(1), 51–65.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W2-2022 
Optical 3D Metrology (O3DM), 15–16 December 2022, Würzburg, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-127-2022 | © Author(s) 2022. CC BY 4.0 License.

 
134




