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ABSTRACT: 

Mobile robotic systems show great potential for automation and a vast selection of tasks in everyday life and industrial facilities. The 

most important fields of application are related to limiting human exposure to harmful conditions and greatly increasing work safety, 

among other cost-driven factors. One of these field is the mining industry. While in surface mining automation of several tasks is 

already being done e.g., using drones, in GNSS-denied underground environments using such innovation at a market-ready level is 

significantly more challenging, also due to the difficulties of spatial data acquisition needed, e.g., for navigation. This paper presents a 

system calibration procedure (6D pose estimation) of a multi-sensor mobile robot developed for inspecting underground mining tunnels 

and infrastructures. We introduce the sensors setup for the acquisition of spatially-related data (images, laser scans) and propose a 

multi-step calibration workflow of the different perception devices, such as RGB, thermal cameras and LiDARs, in a coherent reference 

frame. The quality of subsequent calibration stages is investigated based on the visual results and derived statistical measures. The 

propose procedure allowed the relative pose estimation of all sensors without specialized setups and targets, utilizing only natural urban 

scenes and a standard checkerboard pattern. 

 

1. INTRODUCTION 

Underground environments, such as mines, are normally 

precarious and dangerous places. Underground mining tunnels 

require regular inspections to ensure environment mapping, the 

safety of personnel, smooth running of infrastructures (e.g. 

conveyor belts, ventilation, Etc.), detection of anomalies (Dabek 

et al., 2022), etc. Therefore, using a wheeled robotics solution 

equipped with multiple sensors and based on Simultaneous 

Localization And Mapping (SLAM) algorithms to inspect mining 

tunnels is a safer and more reliable solution (Chakravorty, 2019), 

and different best practices are available in the literature (Ghosh 

et al., 2017; Jacobson et al., 2020; Szrek et al., 2021; Zhou et al., 

2021; Duarte et al., 2022). 

The need for reliable and precise 3D surveying data and maps of 

underground spaces - often unsafe and dangerous for humans - 

has motivated the development of a multi-sensor wheeled robotic 

system suited to these domains. This paper describes the robotic 

system developed within the activities of the EIT Raw Material 

AMICOS project for the autonomous exploration of underground 

mining environments to support mapping processes. The robot 

carries six sensors (plus lights) which need to be relative oriented 

(6DOF pose estimation) in order to properly fuse all acquired 

data. 

 

2. RELATED WORKS 

2.1 Mobile robots for inspection and 3D mapping in mining 

Underground mining environments, in operations or abandoned, 

feature numerous objective challenges for autonomous vehicles: 

low-light conditions, dust, absence of GNSS signal, small 

obstacles, uneven ground, etc. Initial efforts to tackle these 

challenges released large and bulky solutions but already able to 

autonomously navigate and explore long corridors of 

subterranean environments mainly with a single LiDAR scanner 

onboard (Ferguson et al., 2003; Baker et al., 2004; Huber and 

Vandapel, 2006; Silver et al., 2006). 

More recently, also boosted by the developments and 

improvements in SLAM methods, the trend showed integration 

of multiple sensors. Vidas et al. (2013) integrated a thermal 

camera and a 3D LiDAR to create a 3D spatial thermographic 

map of the surveyed area. Neumann et al. (2014) presented a 

multi-sensor exploration vehicle for mapping underground 

mining sites composed of radar, cameras, multiple LiDARs and 

an IMU sensor. Kim and Choi (2021) proposed an autonomous 

driving robot to perform 3D mapping of mining tunnels based on 

two 2D LiDARs placed horizontally and vertically. A solid-state 

LiDAR (SSL) for mining mapping was presented by Wei et al. 

(2021). 

Mobile robots equipped with various sensors are widely used for 

inspecting and mapping mining scenarios and infrastructures. 

Anomalies in the operation of machines were searched with 

LiDAR and thermal (IR) images (Dabek et al., 2022), while 

Skoczylas et al. (2021) merged LiDAR and acoustic data to 

monitor belt conveyors used in a mineral processing plant. 

Robotics-based 3D documentation of the mining environment for 

virtual reality applications was presented by Grehl et al. (2015). 

While many automatic procedures for monitoring infrastructure 

in the surface mining industry are commercially available, 

especially using drones, in underground mines, autonomous 

mobile robotics applications are so far limited (Shahmoradi, 

2020). In the scope of the AMICOS project, one of the developed 

solutions tackles the issue of automating the monitoring and 

diagnostics of belt conveyor infrastructure in underground mines. 

The data acquired during the tests of the wheeled mobile robot 

developed for this use case has proven to be successful in 

different aspects of autonomous robot operation in mining 

conditions, e.g. detecting humans in the working environment 

(Szrek et al., 2021) and repeatedly following the path (Szrek et 
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al., 2022), as well as in automating the monitoring of conveyor 

belt elements such as idlers (Dąbek et al., 2022) and the belt 

(Trybała et al., 2020). While the data analysis from a single 

sensor can already allow for achieving useful results, precise 

calibration of a whole sensor suite would allow for fusing the data 

from a multitude of sensors and, as a result, open a way for novel 

analysis methods. A multi-sensor robot developed for this case is 

described further in Section 3. 

 

2.2 System calibration 

 

For single sensors, RGB camera calibration is a well-known 

procedure in the photogrammetric and computer vision 

communities (Remondino and Fraser, 2006). For thermal 

camera, the essence of the calibration process is to obtain hot 

reference points with known dimensions located on a flat surface. 

Liu et al., 2018 tested the heating of an ordinary checkerboard 

printed on paper and achieved good results. Another proposed 

method was a grating made of nickel-chromium heat-resisting 

wires. The points of crossing the grating formed reference points 

for the camera calibration. LiDAR calibration is usually 

addressed from a geometric or radiometric point of view 

(Kaasalainen et al., 2009; Habib et al., 2011; Kashani et al., 2015; 

Kersten and Lindstaedt, 2022). 

There are many approached for the 6D pose estimation of pairs 

of sensors (Debattisti et al., 2013; Guidel et al., 2017; Beltran et 

al., 2022). Velas et al. (2014) proposed a calibration algorithm 

for a Velodyne laser scanner and a camera using a 3D marker that 

is visible for both the camera and the LiDAR. Markers are based 

on simple shapes, such as squares or circles and the detection of 

their edges. After their identification in the images and point 

cloud, feature correspondences are found and the calibration 

process is performed. Huang and Grizzle (2020) presented a 

method of object position estimation for integrating camera and 

LiDAR images. Thanks to the use of additional targets, they 

significantly reduced projection error (up to 50%). Chen et al. 

(2020) described a different approach for extrinsic calibration 

between a camera and a 3D LiDAR based on camera images 

acquired with an infrared filter. In this case, specially prepared 

2D and 3D points were used to calculate the geometric 

parameters. The experiments were carried out with the use of the 

Velodyne VLP-16 sensor. 

Despite the rich selection of research on calibrating single 

sensors or pairs of different devices, only some established 

methods of computing the relative poses between many sensors 

working in the same system are available. Synchronization is 

generally an issue as USB devices are known for unknown large 

time offsets (Olson, 2010) and sequential approaches are usually 

privileged (Oliveira et al., 2022). 

Some works tackle the problem considering sensor measurement 

uncertainties, thereby allowing sensors with very different error 

characteristics to be used side by side in the calibration (Pradeep 

et al., 2014). A planar target for the simultaneous calibration of 

cameras, LiDARs and radar sensors was presented in Domhof et 

al., (2019) whereas Glira et al. (2022) and Jiao et al. (2021) 

presented an online target-free calibration method for multi-

sensor systems. 

 

 

3. PROPOSED MULTI-SENSOR WHEELED ROBOT 

The realized multi-sensor wheeled robot is composed of RGB 

and thermal cameras, RGB-D sensor and two LiDAR scanners 

(Table 1 and Figure 1). The sensors are connected to a companion 

computer via USB and Ethernet ports. Where required, additional 

converters are used to convert the signal to the appropriate 

standard. Due to the limited number of connectors, one of the 

devices is connected via an external LAN card using the USB 

port. A PC running Ubuntu Linux and ROS (Robot Operating 

System) collects the data. ROS is a popular metasystem used in 

robotics. It allows the acquisition of sensory data, sends control 

commands to the robot, and carries out specific actions. ROS 

programs mostly run using a Publisher-Subscriber 

communication system. Each sensor has its independent software 

module responsible for data reading and publication in the ROS-

supported format using the data stream called topic. The 

published data can be read and processed by the Subscriber 

module. Data visualization is done via Rviz installed with ROS.  

 

 

Figure 1: Sensors of the mobile robot (left) and the robot 

during a survey in an underground mine (right). 

 

The connection diagram for the sensory system is shown in 

Figure 2. Camera ST 1 and ST 2 are monochrome Basler cameras 

and operate in stereo mode. Data synchronization takes place at 

the recording computer level. The RGB-D Intel RealSense D455 

provides depth images, especially in low lighting conditions. It 

has a wide field of view and a range of up to 6 m with small 

external dimensions. The next sensors, RGB and IR cameras, 

work in pairs. The RGB camera lens has been selected to make 

its field of view similar to the IR camera. The IR camera sends 

the recorded image in analogue form, so it was necessary to use 

an analogue signal converter to USB standard (AV-USB). 

 

 

Figure 2: Diagram of connection of the sensory system. 
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Sensor type Sensor name Features Range FoV Notes 

RGB monocular 

camera 

Aptina AR0330 1/3" CMOS  

1920x1080 px 

- 96°x73° 2.2 µm px size 

Stereo camera Basler acA1440-220um Sony CMOS 1/2.9'' 

1440x1080 px 

- - 3.45 µm px size, up to 227 fps at 1.6 

MP resolution 

Thermal camera FLIR VUE-640 640x512 px - 69°x56° 9 mm focal length, 9Hz, 7.5 – 13.5 

μm spectral band 

RGB-D Intel RealSense D455 1280x720 px (depth) 

1280x800 px (RGB) 

< 6 m 86°x57° Integrated with a 9 DoF IMU 

LiDAR Livox Horizon ca 240K points/sec 90 m 82°x25° Integrated with a 9 DoF IMU, 905 

nm 

LiDAR Velodyne VLP-16 ca 289K points/sec 100 m 360°x30 Integrated rotating mechanism to 

achieve half-sphere 3D FoV, 905 nm 

Table 1: Specifications of the six sensors mounted on the robot. 

 

Two types of LiDARs are also included and used for mapping 

purposes. A Velodyne VLP-16 with 16 measurement lines that 

form layers and a scanning angle of 360 degrees. The Velodyne 

was vertically mounted on a rotating module based on a 

Dynamixel servo motor to increase the resolution of the acquired 

data. The second LiDAR is a Livox Horizon which has a smaller 

angular range but a more denser point cloud.  

The robot is remotely controlled with a radio-based steering 

panel (Figure 3). Thanks to the wireless connection, it is also 

possible to remotely observe the visualized sensory data on a 

standard Android-based tablet. The data from the LiDAR and 

optical sensors are supplemented by an additional inertial sensor 

NGIMU connected to the USB port. An independent battery 

powers the sensory system. The DC / DC converters provide the 

appropriate voltages to power the computer and the sensors 

requiring an external power supply. The sensor system is 

mounted on a column transported by a wheeled mobile robot with 

a skid steering driving system. 

 

 

Figure 3: Remote control panel. 

 

4. CALIBRATION PROCEDURE 

4.1 Overall process 

 

Since the measurement system consists of several types of 

sensors (LiDARs, cameras and inertial units), different means of 

calibration must be utilized to obtain the full characteristic of the 

system. A multi-step calibration process is proposed to calculate 

the internal parameters of all cameras and relative 

transformations between reference frames associated with each 

sensor (6D relative poses). The procedure is outlined in Figure 4. 

First, the intrinsic parameters of each camera are determined 

based on the tie points detected on a standard checkerboard. The 

RGB-D camera is selected as the main sensor, linking coordinate 

systems of cameras, thermal camera and LiDARs. 

In the next step, simultaneously acquired images of a 

checkerboard from RGB-D, stereo and RGB cameras are used to 

 
1 https://github.com/ethz-asl/kalibr 

estimate the relative transformation between those sensors. A 

similar procedure is performed with RGB-D and thermal camera 

data but using a heated checkerboard. Due to the size limitations 

of the heated bed for the pattern, it could not be used for 

calculating the extrinsic parameters of a whole camera system (a 

reduction in the calibration accuracy was noted). For the 

computation of the internal and external camera parameters, 

Kalibr1, the open-source ROS library was utilized with the 

appropriate code modification. 

 

 

Figure 4: Overview of the calibration procedure: observations 

linking coordinate frames of different sensors. 

 

The relative transformation between LiDAR coordinate frames is 

obtained by performing ICP registration of point clouds acquired 

in an indoor scene with a stationary robot. The Livox LiDAR is 

then localized in the RGB-D main coordinate frame through 

extraction and registration of corresponding line features 

identified both in the image and point cloud data. At the end of 

the process, all of the robot sensor's reference frames are 

transformed into the main frame based on the RGB-D camera. 

 

4.3. Intrinsic camera calibration 

 

For every camera in the system, the interior parameters were 

independently computed using the method presented by Zhang 

(2000). A pinhole camera model with radial and tangential 

(decentering) lens distortions for all-optical sensors is used (k1, 

k2 and P1, P2) whereas the skewness factor  was assumed to be 

insignificant, as the influence of those parameter on the mobile 

mapping process is normally negligible (Heikkila and Silven, 

1997). To correctly compute the internal parameters of the 

cameras, it was ensured to capture images with sufficient camera 

rotations, varying the distance camera-object and covering the 

entire sensor. The method detects a set of coplanar tie points of a 
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checkerboard pattern of known dimensions. Their projective 

transformations are used to initialize intrinsic camera variables 

([𝑓𝑥, 𝑓𝑦, 𝑐𝑥, 𝑐𝑦]) with a closed-form solution. Next, the distortion 

coefficients are calculated using a least-squares estimation. In the 

last step, all parameters are optimized through reprojection error 

minimization, performed with a non-linear Levenberg-

Marquardt algorithm. Finally, the quality of the calibration is 

evaluated by analyzing the standard deviations of obtained 

parameters and residuals plots. 

 

4.3 Multi camera bundle adjustment 

 

For all cameras operating in the range of visible light, a bundle 

adjustment to derive the relative camera poses was performed 

using set of images of a standard checkerboard pattern consisting 

of black and white fields (similar to the intrinsic calibration). This 

time, however, the data was captured simultaneously by all 

cameras in ROS, with image timestamps assigned according to 

the ROS master node clock.  

During the procedure, the cameras form a 'camera chain', i.e. 

images acquired with different sensors within a time tolerance 

limit are linked in a chain of stereo pairs. In those pairs, tile 

corners of the checkerboard are extracted, and their 

homographies are used within a Levenberg-Marquardt bundle 

adjustment. Contrary to the method originally implemented in 

Kalibr, which tries to optimize the internal and external camera 

parameters simultaneously, we fix the values of camera intrinsic 

parameters (computed as Section 4.2) to reduce the number of 

unknown variables in the optimization problem, thus increasing 

the relatability and stability of the solution.  

 

4.4 LiDAR-camera alignment   

 

The pose of the LiDAR sensors in the main sensor reference 

frame is determined using the method proposed in Yuan et al. 

(2021). The method is targetless and uses linear features present 

in the surveyed scene, which can be identified both in an RGB/IR 

image and in the LiDAR point cloud. For point cloud processing, 

we extract edges not from geometric discontinuities of the 

captured points but by finding plane intersections. This helps to 

limit the measurement noise caused by laser beam divergence, 

characteristic of point cloud edges (i.e., the so-called bleeding 

points). Those points are then iteratively matched to edges 

extracted in the images with the Canny algorithm (Canny, 1986) 

by projective transformations. Since the convergence of this 

method relies heavily on the initial guess for the camera-LiDAR 

alignment, a rough calibration can be performed beforehand. This 

part comprises a grid search over a broader range of possible 

rotation and translation values and maximization of the number 

of found edge point correspondences. The results also include the 

estimated uncertainty of the final rotation and translation values 

of the camera-LiDAR relative transformation. 

 

4.5 LiDAR-LiDAR alignment  

 

The relative poses between the two scanning sensors serve to 

align the two reference frames. Thanks to the rotating module of 

Velodyne mounted on the robot, it is possible to acquire a dense 

point cloud (i.e., without empty areas between scan lines) with a 

robot staying in place. Consequently, Velodyne and Livox 

scanners can independently reconstruct a given scene. Using two 

clouds of the same scene, an iterative closest point algorithm 

(ICP; Segal et al., 2009) is used to find the LiDARs' extrinsic: the 

point cloud acquired with Livox is matched to the cloud acquired 

with a rotating Velodyne sensor, which acted as a reference 

dataset. Then, distances between Livox point cloud and local 

surface models of the reference data are computed and visualized. 

4.5 Thermal camera 

 

The thermal FLIR camera calibration was performed with the 

same method described in Sections 4.2. However, the calibration 

setup needed to be modified due to the different features in 

thermal images. A special, heated version of the checkerboard 

pattern is utilized to calibrate the thermal camera (Figure 5). A 

3D printer was used to provide constant heating to the partly 

insulated checkerboard so that the corners were not getting blurry 

on the thermal images.  

 

  

Figure 5: View of a heated chessboard for IR camera calibration: 

coloured (left) and original (right) images with detected tie 

points. 

Nevertheless, due to the heated pattern size limitation, it was 

impossible to perform a multi-camera bundle adjustment with the 

thermal camera. Because of that, a relative pose of the thermal 

camera in the robot's main reference frame was estimated 

utilizing the Livox LiDAR sensor. 

The relative pose estimation between LiDAR and thermal camera 

is carried out using data acquired in an outdoor scene on a sunny 

fall day. Due to the weather conditions, the thermal images 

clearly showed multiple sharp edges of manufactured structures 

(building walls, lamp posts, benches). A multitude of objects at 

varying distances from the robot allowed a reliable estimation of 

the FLIR camera pose. 

 

 

5. RESULTS 

Approximately 50 frames with a checkerboard clearly visible and 

successfully identified by the automated corner extraction 

procedure were acquired and used for the intrinsic calibration of 

each camera. Only images containing the full checkerboard 

pattern were processed. Coverage of the field of view and 

reprojection error distribution were analysed after each 

calibration run (Figure 6).  

 

Figure 6: Detected checkboard tie points (left) and their 

reprojection errors (right) for internal parameter calibration: 

example of a left Basler stereo camera. 

 

Each calibration run also reported standard deviation values for 

all camera and distortion model parameters estimated in the 
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bundle adjustment. The resulting values are summarized in 

Tables 2 and 3. Standard deviation values do not indicate the 

presence of any outliers. Notable differences can be found in 

tangential distortion parameter calibration results, where 

standard deviations for RealSense RGB and both Basler Stereo 

cameras were significantly lower than for the other sensors. 

For all of the calibrated cameras, mean reprojection errors were 

equal to zero. However, their standard deviations, shown in Table 

4, indicate better calibration results for RealSense RGB and both 

Basler Stereo cameras. Nevertheless, a maximum standard 

deviation of reprojection errors of 0.36 pixels, obtained for one 

of the RealSense infrared cameras, is still acceptable in the 

context of robotics mobile mapping applications. Higher values 

of RealSense infrared cameras may be caused by their extended 

range of spectral response and, thus, slightly lower clarity of the 

checkerboard corners in the images. 

 

Camera Camera parameter estimates’ σ 

  𝑓𝑥 𝑓𝑦 𝑐𝑥 𝑐𝑦 

RealSense RGB 3.09 3.01 2.05 2.78 

RealSense IR (left) 3.79 3.64 2.28 3.04 

RealSense IR (right) 3.14 3.07 2.48 3.06 

Basler Stereo (left) 5.45 5.52 3.85 3.20 

Basler Stereo (right) 5.42 5.36 3.50 3.20 

RGB 4.43 4.32 3.14 3.60 

Table 2: Standard deviations of pinhole camera model parameters 

 

Camera Distortion parameter estimates’ σ 

  𝑘1 𝑘2 𝑃1 𝑃2 

RealSense RGB 0.0050 0.0061 0.0014 0.0014 

RealSense IR (left) 0.0056 0.0049 0.00158 0.00164 

RealSense IR (right) 0.0055 0.0047 0.00167 0.00170 

Basler Stereo (left) 0.0055 0.0078 0.00048 0.00058 

Basler Stereo (right) 0.0046 0.0074 0.00050 0.00049 

RGB 0.0045 0.0041 0.00104 0.00072 

Table 3: Standard deviations of radial and tangential distortion 

model parameters. 

 

Camera Reprojection error σ [px] 

  x y 

RealSense RGB 0.07 0.08 

RealSense IR (left) 0.36 0.34 

RealSense IR (right) 0.33 0.31 

Basler Stereo (left) 0.07 0.06 

Basler Stereo (right) 0.07 0.06 

RGB 0.29 0.24 

Table 4. Reprojection error standard deviations for the tie points 

used for intrinsic camera calibration. 

 

A separate data acquisition of the checkerboard pattern was 

carried out to obtain the optical sensors' relative poses using 

multi-camera bundle adjustment. Images from 6 cameras were 

captured simultaneously. In the dataset, in up to 245 frames, 

captured at a lower framerate of 5 Hz, the full pattern was 

correctly identified. However, due to not-fully overlapping fields 

of view of the cameras, the number of frames per camera pair 

used in the bundle adjustment was varied. The actual number of 

observations per camera pair is shown in the graph in Figure 7, 

where the sensors are denoted accordingly to their order in all 

other tables (cam0 – RealSense RGB, cam1 – RealSense IR left, 

and so on).  

 

Figure 7: Graph of observations used in calculating the relative 

camera poses. Nodes – cameras (IDs follow the ordering in the 

tables), weights – number of common tie points for each sensor 

pair   

 

Although the uncertainties of the bundle adjustment results were 

lower than 1 mm, due to the chained nature of the algorithm 

implemented in Kalibr, the Authors decided to perform another 

calibration run on the same dataset, changing the order of 

camera-pair chain formation. RealSense RGB camera was again 

chosen as the main sensor (cam0), but the ordering of the other 

sensors was shuffled. The resulting differences between those 

two runs of multi-camera calibration are shown in Tables 5-7. 

The obtained translational and angular errors indicate millimetre-

level compliance with the calibration results. 

 

Camera Translation Δ [mm] 

  X Y Z 

RealSense RGB - - - 

RealSense IR (left) -0.7 0.4 -1.1 

RealSense IR (right) -0.7 0.4 -0.5 

Basler Stereo (left) -0.7 0.3 -0.5 

Basler Stereo (right) -0.7 -0.5 -1.1 

RGB -0.7 -0.6 -1.1 

Table 5: Translation differences of sensor pose comparison 

between two multi-camera calibration runs. 

 

Camera Rotation Δ [°] 

  Roll Pitch Yaw 

RealSense RGB - - - 

RealSense IR (left) -0.024 0.055 0.004 

RealSense IR (right) 0.003 0.040 -0.010 

Basler Stereo (left) 0.003 0.040 -0.010 

Basler Stereo (right) -0.003 0.020 0.013 

RGB -0.003 0.020 0.014 

Table 6: Rotation differences of sensor pose comparison between 

two multi-camera calibration runs. 
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Camera Distance Δ [mm] 

  RealSense 

RGB 

RealSense IR 

(left) 

RealSense IR 

(right) 

Basler Stereo 

(left) 

Basler Stereo 

(right) 

RGB 

RealSense RGB - -0.7 0.7 -0.4 0.9 1.1 

RealSense IR (left) -0.7 - -0.1 -0.1 0.8 0.7 

RealSense IR (right) 0.7 -0.1 - 0.0 1.0 1.1 

Basler Stereo (left) -0.4 -0.1 0.0 - 0.0 -0.8 

Basler Stereo (right) 0.9 0.8 1.0 0.0 - 0.0 

RGB 1.1 0.7 1.1 -0.8 0.0 - 

Table 7: Matrix of distances between sensor poses estimated in two multi-camera calibration runs. 

 

For LiDAR-to-LiDAR calibration, two point clouds were 

simultaneously captured in an indoor university corridor by the 

Livox and Velodyne scanners. The standard deviation of the ICP-

based matching was 13.6 mm, which is lower than 1σ of both 

sensors' ranging accuracy. The Livox point cloud was limited to 

the common field of view of both LiDARs and coloured by the 

cloud to local surface model distances. The median of the 

distances was 3.4 mm, and 95% of the distances were smaller 

than 16 mm. Outlying values were obtained mostly for points 

close to the edges and on the more reflective surfaces. The 

visualization of the results is presented in Figure 8.  

 

 

Figure 8: Cloud-to-cloud distances for the Livox and Velodyne 

LiDAR after the 6D relative pose estimation. 

 

The determination of the relative transformation between Livox 

and camera reference frames was performed on the basis of 

processing two outdoor data acquisitions. Due to the different 

linear and planar features being distinct in RGB and thermal 

imagery, it was not possible to perform them on the same scene 

due to the loss of accuracy. 

The dataset used for co-registering the LiDAR to the RealSense 

RGB camera was captured at the building entrance, where walls, 

window recesses and the pavement form clearly identifiable 

planes and edges. The extracted and matched features are shown 

in Figure 9 whereas the result of point cloud colourization after 

the co-registration procedure is shown in Figure 10. The 

uncertainty of computed extrinsic parameters after the co-

registration procedure was 0.023° for the rotation matrix and 3.14 

mm for the translation matrix.  

Another outdoor scene was used to calibrate the thermal camera, 

which included more contrasting features in the thermal images 

and contained more depth variability. Similarly, to the former 

LiDAR-camera calibration, the features identified in the thermal 

image and the point cloud are shown together with their 

correspondences in Figure 11. 

The point cloud was coloured using a thermal image, and the 

resulting relative sensor transformation is presented in Figure 12. 

The uncertainties of the calibration were even lower than in the 

RGB camera calibration: 0.014° for the rotation matrix and 1.17 

mm for the translation matrix. 

 

 

Figure 9: RGB camera-LiDAR relative pose calibration: detected 

lines in the RGB image from a RealSense camera (blue), in the 

point cloud (red) and correspondences between point sampled 

from them (green). 

 

Figure 10: LiDAR point cloud coloured with the RGB camera 

after the estimation of the relative orientation between the 

sensors. 

 

6. CONCLUSIONS 

In this article, a mobile mapping robot developed in the scope of 

EIT Raw Materials AMICOS has been presented. Its possible 

fields of application for the underground mining industry have 

been outlined. Presented related works regarding mobile 

mapping solutions, especially in harsh industrial environments, 

show the high potential of practical deployment of such a system 

for automated 3D mapping and integration with AI data 

processing and analyzing for inspection and monitoring 

purposes. However, the implication of this is the need to develop 

hybrid sensor systems, able to acquire and fuse diverse types of 

data simultaneously. 
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Figure 11: Thermal camera-LiDAR relative pose calibration: 

detected lines in the thermal image (blue), in the point cloud (red) 

and correspondences between points sampled from them (green). 

 

 

Figure 12: LiDAR point cloud coloured with the thermal camera 

data after the calibration process. 

 

 

An approach to calibrate the robotics system with multiple 

mapping sensors has been showcased. Due to the multitude of 

devices able to acquire data representing spatially distributed 

information, a multi-step, hybrid calibration workflow has been 

developed based on open-sourced tools and algorithms. As our 

application shows, various calibration setups, targets and scenes 

needed to be utilized because of diverse types of features, which 

could be easily and unambiguously identified in the data acquired 

with different sensors. 

Development of algorithms able to simultaneously calibrate 

hybrid sensor suites, like the one presented in this paper, while 

still maintaining the accessibility of equipment needed (e.g., 

checkerboard target) would be desired by the growing robotic 

community. Such a solution would also tackle another important 

problem of the presented multi-step procedure: the accuracy 

assessment of the calibration results. In our case, multiple 

optimization problems are solved independently, which may 

produce incoherent uncertainty estimates of the calibration’s 

parameters. In future works, the Authors plan to seek a solution 

to this issue. 
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