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ABSTRACT:

Estimation of an image exterior orientation is required in multiple tasks including 3D reconstruction, autonomous driving and
navigation, and single-photo 3D reconstruction. The problem can be easily solved if some reference points (keypoints) with known
coordinates in the reference frame are detected in the image. While multiple robust keypoint detectors were developed, estimation of
an image exterior orientation from a single image remains challenging in many cases. For example, repeating structures in the scene
or absence of textures can reduce the performance of keypoint detectors. In this paper, we propose an algorithm for estimation of an
image exterior orientation that leverages the latent space of Generative Adversarial Network (GAN). We propose a modification
of the StyleGAN2 model that we term ExteriorGAN. Unlike the StyleGAN2 that generates random images from a random noise
vector z, we aim training a mapping from a random vector z and a given image exterior orientation p G : (z, p)→ A. Our model
generates random images for a constant exterior orientation p and random z that have constant geometry but differs in the scene
appearance (e.g. different light direction or intensity). We perform embedding of the image A into the latent space w and reconstruct
the input noise vector z and exterior orientation parameters w using a stochastic gradient descent. We developed a dedicated dataset
with 50k images and corresponding orientation parameters to train and validate our ExteriorGAN model. The results of evaluation
demonstrate that our algorithm allows estimation of the exterior orientation of an image with respect to a known 3D scene. The
accuracy of the exterior orientation is comparable with modern state-of-the-art methods. The camera pose can be recovered with a
mean error of 50 mm for a working space of 5 by 5 meters.

1. INTRODUCTION

Estimation of camera orientation is one of the key problems
of photogrammetry usually it is required to estimate the cam-
era pose and rotation from a given image or a set of images.
Such task is commonly called estimation of the camera external
orientation parameters in contrast to estimation of camera lens
parameters that are commonly called interior orientation para-
meters. Also in computer vision estimation of camera exterior
orientation is sometimes referred as camera pose estimation.
The complexity orientation from a given image is related to the
number of keypoints visible in the image.

Multiple methods have been proposed in the literature focused
om estimation of the camera exterior orientation. These methods
can be broadly divided into two groups: keypoint-based and
scene-based Estimation of an image exterior orientation is the
process of recovering the spatial pose and rotation parameters
of a camera with respect to a given reference system Image
external orientation is required in multiple tasks including 3D
reconstruction, autonomous driving and navigation, and single-
photo 3D reconstruction. The problem can be easily solved if
some reference points (keypoints) with known coordinates in
the reference frame are detected in the image. Hence, most of
modern external orientation algorithms such as DLT (Abdel-
Aziz and Karara, 1971) and EPnP (Lepetit et al., 2009) require
n known 3D points to be detected in the image. This problem is
also sometimes referenced as Perspective-n-Point (PnP), where
n is the number of required points. While multiple robust key-
point detectors were developed, estimation of an image exterior
orientation from a single image remains challenging in many
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cases. For example, repeating structures in the scene or absence
of textures can reduce the performance of keypoint detectors.
Some exterior orientation methods leverage general assump-
tions regarding the perspective projection and do not require
any keypoints. Usually this methods are based on the vanishing
point detection (Verykokou and Ioannidis, 2016a). Recently a
number of neural networks (Kehl et al., 2017) have been pro-
posed for the task of the camera pose estimation that is similar to
estimation of exterior orientation. While such methods demon-
strate encouraging results for challenging scenarios, usually they
can estimate exterior orientation only with respect to a limited
number of objects that neural model have observed during the
training stage.

Figure 1. The ExteriorGAN neural network model.

In this paper, we propose an algorithm for estimation of an image
exterior orientation that leverages the latent space of Generat-
ive Neural Network (GAN). GANs (Goodfellow et al., 2014)
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Figure 2. Examples of color images from our ExteriorViews
dataset.

have been proposed recently for the task of synthesizing random
images from an input random noise vector z. All generated
images remain similar to the domain of real images that a GAN
model have observed during the training stage. Recently the
StyleGAN2 (Karras et al., 2019) generative model have been
proposed that produce a continuous latent space. If two images
are visually similar their corresponding latent vectors are close
to each other. This allowed to develop robust methods (Abdal et
al., 2019, Brooks and Efros, 2022) for embedding images into
the GAN latent space. During the process of embedding the
algorithm receives an input image A and estimates the corres-
ponding latent vector w in the model’s latent space.

We propose a modification of the StyleGAN2 model that we term
ExteriorGAN (Figure 1). Unlike the StyleGAN2 that generates
random images from a random noise vector z, we aim training
a mapping from a random vector z and a given image exterior
orientation p G : (z, p) → A. Our model generates random
images for a constant exterior orientation p and random z that
have constant geometry but differs in the scene appearance (e.g.
different light direction or intensity). Inspired by (Nie et al.,
2020), we propose a supervised training approach that allows
us to keep the mapping between exterior orientation parameters
and the generated image A. We estimate the exterior orientation
parameters vector p using a trained model. We perform embed-
ding of the image A into the latent space w and reconstruct the
input noise vector z and exterior orientation parameters w using
a stochastic gradient descent.

We developed a dedicated dataset with 50k images and corres-
ponding orientation parameters to train and validate our model.
All images were generated using a 3D scene of an industrial
room and represent scenarios that a typical for navigation of a
mobile robot. We evaluated our algorithm using an independent
test split of the dataset. The results of evaluation demonstrate
that our algorithm allows estimation of the exterior orientation of
an image with respect to a known 3D scene. The accuracy of the
exterior orientation is comparable with modern state-of-the-art
methods. The camera pose can be recovered with a mean error
of 50 mm for a working space of 5 by 5 meters.

2. RELATED WORKS

2.1 Image Exterior Orientation

Image exterior orientation is one of the fundamental problems
in photogrammetry that is needed for an estimation of accurate
3D coordinates of imaged scene. Photogrammetric approach is

based on consideration of exterior orientation task in Cartesian
systems of coordinates, thus having a deal with non-linear prob-
lem. As a fundamental problem of photogrammetry, exterior
orientation task have been studying from the early years of pho-
togrammetry.

One of the first approaches was Direct Linear Transforma-
tion (Abdel-Aziz and Karara, 1971), proposed in 1971. It is
based on the assumption that relation between comparator co-
ordinates and object coordinates can be described by direct linear
transformation. For estimation of eleven unknown parameters
more than six control points are needed, these points not belong-
ing to the same plane.

Then, a number of methods for exterior orientation was proposed,
that used three fundamental conditions, namely collinearity, co-
planarity and coangularity conditions. Among these methods
are approximate methods, such as Church method (Slama et
al., 1980), based on coangularity condition; 3D conformal trans-
formation (Dewitt, 1996), providing the absolute orientation
of stereomodel; approximate solution for spatial transforma-
tion (Kraus, 1997); a number of methods that use line feature
or vanishing point (Van den Heuvel, 1998, Kniaz, 2016). These
methods allowed finding exterior orientation approximation by
linear processing of this non-linear problem.

To find accurate estimation of exterior orientation parameters
three fundamental photogrammetric conditions are used. They
establish relation between spatial coordinates of object control
points and their image coordinates. Then estimation of unknown
parameters is determined as root mean squares estimate, consid-
ering image coordinates of the control points as observations.
These approaches require knowing of coordinates control points
and some initial approximations for estimating parameters.

A number of studies addressed to find a closed-form solution
without initialization. A solution for exterior orientation de-
termination was proposed, that uses orthonormal matrices for
closed-formsolution (Horn et al., 1988). The drawback of this
algorithm is possibility of finding incorrect rotation matrix. For
the solution of this problem another closed-form method, based
on singular value decomposition technique was proposed (Arun
et al., 1987). This approach allows reliable determining of the
transformation parameters.

So, for automation of exterior orientation procedure various
methods were proposed, that aim at automatically detecting
of control points and determining initial approximation for un-
known parameters. The approach for finding approximate values
of exterior orientation parameters, based on Particle Swarm
Optimization (Li and Li, 2012), begins from a large domain
of possible values of external orientation parameters, and then
finds best estimates, giving the minimum of image coordinates
residual errors.

The technique for finding approximate exterior orientation para-
meters of multiple large-scale overlapping oblique aerial images
for case of unavailable information from GPS (Verykokou and
Ioannidis, 2016b) involves five-steps procedure. It includes: de-
termination of the overlapping image pairs; computation of the
transformation from image to the reference system of coordin-
ates; rough estimate of the interior orientation of the camera; true
horizon line and nadir point estimate for each image; estimation
of approximate exterior orientation for every image.

The technique for improving the transformation accuracy (Yan
et al., 2016) uses various sets of local similarities. The technique
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Figure 3. Random images produced by our ExteriorGAN model.

construct triangular irregular network from the available ground
control points, thus obtaining a set of triangles. Three vertices of
each triangle are used for determining the local similarities. The
new transformation combines these weighted local similarities,
that allow to reduce errors.

Last decades exterior orientation problem also received a lot at-
tention in computer vision, with the term camera pose estimation
usually being used for the task of finding camera location and
its angle orientation. Computer vision approach usually search
for direct solution of pose estimation problem, trying to find
a solution with a minimum amount information about the ob-
ject. The problem is usually solved in homogeneous coordinates
that provides linear solutions based on concepts of algebraic
projective geometry.

Methods for camera localization and pose estimation usually
exploit feature detectors such as Local Binary Patterns(LBP)
and its modifications (Ojala et al., 1996, Knyaz et al., 2016),
Speeded Up Robust Features (SURF) (Bay et al., 2006) or Scale-
Invariant Feature Transform (SIFT) (Lowe, 1999) for detecting
control points, with further solving so-called Perspective-n-Point
(PnP) problem of estimating the pose of a camera given a set of
n 3D control object points and their corresponding 2D image
points (Wu et al., 2018).

With impressive progress in deep learning these techniques were
successfully applied for solving the camera pose estimation
problem. The PoseNet (Kendall et al., 2015) was one of the first
convolutional neural networks for estimating absolute pose of
a camera from an image. It was modified truncated GoogLe-
Net (Szegedy et al., 2015) architecture with softmax classifica-
tion layer replaced by a sequence of fully connected layers.

Bayesian PoseNet (Kendall and Cipolla, 2016), that improves
the performance of PoseNet, leverages the notion of Bayesian
CNNs with Bernoulli distributions. For input image the pre-
trained PoseNet model generates samples by dropping out ac-
tivation units of convolutional layers with a given probability.
Then the pose is calculated as average of the individual samples’
predictions.

Further development of deep absolute pose estimation tech-
niques can be divided into two groups: end-to-end learning
of pose estimation (Walch et al., 2017, Moreau et al., 2022) and
hybrid pose learning, such as image retrieval with relative pose
regression, structure-based with local learning and hierarchical
pose estimation (Shavit and Ferens, 2019).

2.2 Generative Modeling

Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) have been proposed recently. GANs aim learning a given
domain of samples (e.g., images) at the training stage. During
the inference unconditional GANs generate new samples that
are indistinguishable from the original samples from the training
dataset. GANs can be broadly divided into two large groups:
unconditional GANs and conditional GANs.

3. METHOD

3.1 Framework overview

Our method aims estimating camera external orientation p ∈ R6

using an input image A. We make a strong assumption that the
geometry of the scene observed in the image A is known during
the training stage. We consider two domains: the image domain
A ∈ RW×H×C and the external orientation parameters domain
P ∈ R6. A parameter vector p ∈ P defines the camera pose
p = [x, y, z, α, ω, κ]T with respect to the scene reference frame.

3.2 ExteriorGAN method

Our ExteriorGAN model is inspired by StyleGAN2 model (Kar-
ras et al., 2019). The original StyleGAN2 model leverages
a multilayer perceptron (MLP) to project the input random
vector z ∼ N (µ, σ2) to the latent space w, M : z → w.
We made two main contributions to the original StyleGAN2
model. Firstly, we concatenate an input exterior orientation
parameter vector p to the random vector z during the training
stage. Secondly, we train an additional MLP that learns a inverse
mapping M−1 : w → (z, p). During the inference stage, we
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obtain the latent vector w using embedding in the latent space.
After that, we use an inverse MLP to project latent vector w back
to the exterior orientation parameters p.

3.3 Dataset Generation

We use our environment simulator to generate our ExteriorViews
dataset. The dataset includes 18k samples consisting of pairs of
images and the corresponding exterior orientation parameters.
The images present the virtual scene with objects of six classes:
wall, floor, window, furniture, door, sculpture. The resolution
of color images is 512 by 512 pixels. The dataset is split into
a training set with 16k samples and a test set with 2k samples.
We use various augmentation techniques to increase the dataset
diversity (Kniaz et al., 2021). Example images from the dataset
are presented in Figure 2.

4. EVALUATION

We evaluate our ExteriorGAN model and baselines using two
datasets: our ExteriorViews dataset and the LINEMOD data-
set (Hinterstoisser et al., 2012). The LINEMOD dataset includes
over 18000 real images with 15 different objects and ground
truth exterior orientation parameters. For both datasets, we use
the training split with 15k images, we perform evaluation using
the remaining test split.

We consider four baseline methods and neural models:
DLT (Abdel-Aziz and Karara, 1971), EPnP (Lepetit et al., 2009),
DPOD (Zakharov et al., 2019), RCVPose (Wu et al., 2022).

4.1 Qualitative Evaluation

We evaluate our ExteriorGAN model and baselines in terms
of image reconstruction accuracy and comparison between the
ground truth trajectory and the reconstructed trajectory. Random
images generated by our ExteriorGAN model for the LINEMOD
dataset are presented in Figure 3. Qualitative comparison with
original images from the LINEMOD dataset proves that our
model successfully reproduces the foreground scene. Still ob-
jects in the background, e.g. humans, computer monitors remain
blurry.

Ground truth and reconstructed trajectory are presented in Fig-
ure 4 and Figure 5. The reconstructed trajectory is smooth and
generally follows the original motion of the camera.

4.2 Quantitative Evaluation

We evaluate our model qualitatively in terms of Root Mean
Squared Error (RMSE) at the ground truth points of the scene.
The results of root mean squared error estimate for the proposed
method and baselines are given in Table 1.

Also three metrics adopted from the Benchmark for 6D Ob-
ject Pose Estimation (Hodaň et al., 2020, Hodaň et al., 2018)
were used for the proposed method evaluation: Visible Surface
Discrepancy (VSD) (Hodaň et al., 2018), Maximum Symmetry-
Aware Surface Distance (MSSD), and Maximum Symmetry-
Aware Projection Distance (MSPD). These metrics are defined
as:

Figure 4. Qualitative comparison of ground-truth camera
trajectory and trajectory estimated by our method for the first 20

points.

Figure 5. Error bars along X and Y axes for the first 30 points.

4.2.1 Visible Surface Discrepancy treats poses that are in-
distinguishable in shape (color is not considered) as equivalent
by measuring the misalignment of only the visible part of the
object surface following:

eV SD(D̂, D̄, V̂ , V̄ , τ) =

avgp∈V̂ ∪V̄

{
0 if p ∈ V̂ ∩ V̄ ∧ |D̂(p)− D̄(p)|

1 otherwise

The symbols D̂ and D̄ denote distance maps obtained by ren-
dering the object model M in the estimated pose P̂ and the
ground-truth pose P̄ respectively These distance maps are com-
pared with the distance map DI of the test image I to obtain the
visibility masks V̂ and V̄ , i.e. sets of pixels where the model
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Method RMSE
mm

ExteriorViews LINEMOD

DLT 64 101
EPnP 44 45
DPOD 39 48
RCVPose 31 40
ExteriorGAN 43 52

Table 1. Quantitative evaluation in terms of RMS error between
estimated and ground truth exterior orientation parameters.

M is visible in the image I . The parameter τ is a misalignment
tolerance.

4.2.2 Maximum Symmetry-Aware Surface Distance.
The maximum distance between the model vertices is relevant
for robotic manipulation, where the maximum surface deviation
strongly indicates the chance of a successful grasp.

eMSSD(P̂ , P̄ , SM , VM ) =

minS∈SMmaxx∈VM ||P̂ − P̄ Sx||2

The set SM contains global symmetry transformations of the
object model M , identified as described in (Hodaň et al., 2020),
and VM is a set of the model vertices.

4.2.3 Maximum Symmetry-Aware Projection Distance
considers global object symmetries and replaces the average
by the maximum distance to increase robustness against the
geometry and sampling of the object model.

eMSPD(P̂ , P̄ , SM , VM ) =

minS∈SMmaxx∈VM ||proj(P̂ )− proj(P̄ Sx)||2

The function proj(·) is the 2D projection (the result is in pixels).
The other symbols have the same meaning as in definition of
Maximum Symmetry-Aware Surface Distance.

Table 2 shows the results of camera orientation estimates for
the proposed method and baselines obtained on two considered
datasets.

Method ExteriorViews LINEMOD

VSD MSSD MSPD VSD MSSD MSPD

DLT 0.397 0.522 0.029 0.441 0.701 0.014
EPnP 0.481 0.501 0.020 0.455 0.701 0.034
DPOD 0.521 0.611 0.031 0.450 0.622 0.024
RCVPose 0.789 0.292 0.855 0.740 0.286 0.832

ExteriorGAN 0.492 0.512 0.029 0.481 0.519 0.017

Table 2. Quantitative evaluation in terms of Visible Surface
Discrepancy (VSD), Maximum Symmetry-Aware Surface

Distance (MSSD), and Maximum Symmetry-Aware Projection
Distance (MSPD).

Tables 1 and 2 shows the ExteriorGAN model can estimate ex-
terior orientation parameters of the camera with a mean error
about 50 mm for a working space of 5× 5 meters and can per-
form at the level of the state-of-the-art methods, expressed in
6DOF metrics VSD, MSSD, MSPD.

5. CONCLUSION

We demonstrated that the latent space of a trained generative
model can be used to encode the camera exterior orientation
parameters with respect to a given scene. Furthermore, a mutual
correspondence between a latent vector w and the camera pose
p can be estimated. This allowed us to develop a method for
estimating the camera exterior orientation parameters from a
given image by embedding this image into the latent space.
Specifically, we embed the input image A into the latent space
to obtain the latent vector w. After that, we back-project the
latent w into the camera exterior orientation parameters p using
an inverse multilayer perceptron.

Our model estimates the exterior orientation parameters of the
camera with a mean error of 50 mm for a working space of 5
by 5 meters. Evaluation proves that it is comparable with the
modern methods. The main limitation of our model is that it
can operate only in a constant environment. In further work, we
are planning to estimate the camera pose with respect to a given
object class. That will allow to estimate exterior orientation with
respect to given objects in an arbitrary environment.
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