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ABSTRACT: 
 
This study focuses on the metrological characterization of a 3D vision system consisting in the fusion of a CMOS camera sensor with 
a 2D laser scanner for contactless dimensional measurements. The purpose is to obtain an enhanced measurement information as a 
result of the combination of two different data sources. On one side, we can estimate the pose of the target measurand by solving the 
well-known Perspective-n-Point (PnP) problem from the calibrated camera. On the other side, the 2D laser scanner generates a discrete 
point cloud which describes the profile of the intercepted surface of the same target object. This solution allows to estimate the target’s 
geometrical parameters through the application of fit-to-purpose algorithms that see the data acquired by the overall system as their 
input. The measurement uncertainty is evaluated by applying the Monte Carlo Method (MCM) to estimate the uncertainty deriving 
from the Probability Distribution Functions (PDF) of the input variables. Through a Design of Experiments (DOE) model the effects 
of different influence factors were evaluated. 
 
 

1. INTRODUCTION 

There are different optical methods that can be used for non-
contact dimensional measurements, but only a few of them can 
be used in presence of high-temperature measurands (Marcotuli 
2022). The most widely used vision systems used by steel 
manufacturing industries are based on calibrated cameras, on 
stereoscopic vision and on 2D profilometers.  
Profilometers typically use blue or green lasers and triangulation 
in order to reconstruct a part of the section of the workpiece. 
These sensors allow obtaining uncertainties in the order of mm 
when measuring diameters or linear dimensions of approximately 
1 m. Standard cameras can be used to detect the diameter or the 
silhouette of the objects, with accuracies that are 1 order of 
magnitude larger than those of the profilometers; however, 
camera allows retrieving dense information about the specimen, 
allowing to reconstruct the entire geometry of the workpiece 
during its rotation(Chao et al. 2015; Ghiotti et al. 2015; Nye, 
Elbadan, and Bone 2001; Zhang et al. 2014). 
The main idea behind this work is to use data fusion in order to 
combine the density of information of the camera-based 
measurements with the accuracy of 2D profilometers. This 
requires the knowledge of the relative 3D transformation among 
the profilometer and the camera, that can be determined with the 
application of the  Perspective-n-Point (PnP) model (Fischler and 
Bolles 1981; Lu 2018). The problem is widely used in machine 
vision applications (Chunduru et al. 2021; Fabris et al. 2021; 
Ghosh and Mudur 1995; Luppino et al. 2022; Wu 2006) and 
consists in solving the rotational and translational vectors that 
minimize the reprojection error of points belonging to the 3D real 
world frame into the 2D image plane. In order to increase the 
reliability of the pose estimation, fiducial marker systems can be 
used (Fiala 2005; Rekimoto and Ayatsuka 2000) instead of the 
classic feature-based methods for the object tracking. These 
methods rely on the identification of ad-hoc designed marker, 
typically flat and square shaped, physically mounted on the 
object to be tracked.  

 
The measurement uncertainty of the deriving system can be 
evaluated by applying the Monte Carlo Method (MCM) as it is 
prescribed by the ISO GUM Supplement 1 (Joint Committee for 
Guides in Metrology (JCGM) 2008) and Supplement 2 (Joint 
Committee for Guides in Metrology (JCGM) 2011). This method 
exploits the MCM for estimating the uncertainty deriving from 
the Probability Distribution Functions (PDF) of the input 
variables and  has been applied in several works and studies (Cox 
and Siebert 2006; Fabris et al. 2022; Ghiani, Locci, and Muscas 
2004; Moschioni et al. 2013; Nuccio and Spataro 2008). 

Section 2 describes the method used for the projection of the laser 
point clouds to the image plane and for the estimation of its 
uncertainty starting from the most influencing input parameters. 
Related results are shown and discussed in Section 3. 

 

2. METHOD 

2.1 Projection of points from laser to image reference frame 

Figure 1 shows the logical scheme used for the projection of a 
generic point belonging to the laser points cloud (P) to the image 
plane (Q). The roto-translational projection matrix 𝑀 is defined 
by the formula reported in Equation 1. 
 

 𝑀 =  𝑀ூ ∙  𝑀ா ∙  𝑀 (1) 
 
Where: 

 𝑀 is the overall projection matrix from the Laser 
Reference System LRS (𝑥, 𝑦, 𝑧) to the Image Plane 
(𝑢, 𝑣).  

 𝑀 is the transportation matrix from the LRS to the 
World Reference System WRS (𝑥ௐ, 𝑦ௐ, 𝑧ௐ). The 
WRS is considered as the structure supporting the 
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laser, whose position is identified by a marker attached 
to the structure itself. 

 𝑀ா is the Extrinsic Matrix obtained solving the 
Perspective-n-Points problem identifying the relative 
pose of the marker on the laser structure with respect 
to Camera Reference System CRS (𝑥 , 𝑦, 𝑧). using 
the “Infinitesimal Plane-Based Pose Estimation” 
(IPPE) algorithm proposed by (Collins and Bartoli 
2014) and implemented in OpenCV.  

 𝑀ூ is the Intrinsic Matrix obtained from the camera 
calibration procedure performed using a chessboard 
(Zhang and Member 2000). It is completely defined by 
the focal distances 𝑓௫ and 𝑓௬ and the coordinates of the 

image principal point 𝑢 and 𝑣. 

The complete Equation used to project the points from the LRS 
to the image plane is reported in Equation 2. 
 

 
Where 𝑀ூ is a three-rows and three-columns matrix. 
𝑀ா and 𝑀 are both four-rows and four-columns matrices as 
shown in Equations 3. 
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(3) 

 

𝑧  is the coordinate of the point P on the z axis of the CRS, i.e. 
the distance of the point from the optical centre of the camera. 
 
The mounting position of the marker on the back of the laser 
scanner support is known, thus the nominal roto-translation 
matrix 𝑀

  can be computed. 
 
2.2 Estimation of Uncertainty 

At this stage, we concentrate on the study of 𝑀 matrix, that is 
the one that, in principle, should be responsible of the larger 
contribution in the overall uncertainty. Its uncertainty depends on 
three factors: 

i. Uncertainty about the real position of the origin optical 
point of the LRS 

ii. Uncertainty about the real orientation of the LRS 
iii. Lack of precision in the marker mounting on the 

structure supporting the laser 

The roto-translation matrix 𝑀 described in Equation 3 contains 
a three-rows and three-columns rotational matrix (𝑅), a three 
rows translation vector (𝑡) and a last row with a three-columns 
zeroes vector and a 1. 
Elements of the matrix 𝑀, i.e. elements of the translation vector 
𝑡 and of the rotation matrix 𝑅  are associated to their 
measurement uncertainties. Uncertainty on the positioning along 
the three axes directly affect the value in the translation vector, 
while the perturbation on the rotation matrix is computed starting 
from the uncertainty among the three axes in the rotation vector 
𝑟 (Equation 4). 
 

 
𝑟 = 

𝑟௫
𝑟௬
𝑟௭

൩ (4) 

 
Equation 5 reports the passages to compute the rotation matrix 
(𝑅), that is necessary to compute the matrix 𝑀,  given the 
rotation vector 𝑟. 
 

 𝜃 = 𝑛𝑜𝑟𝑚(𝑟) 

𝑟 =  
𝑟

𝜃
 

𝑅 = 𝑐𝑜𝑠(𝜃)𝐼 + ൫1 − 𝑐𝑜𝑠(𝜃)൯𝑟𝑟
் + 𝑠𝑖𝑛(𝜃)*R 

(5) 
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Figure 1. Schematic of the developed 3D vision system: LRS is the Laser Reference System, WRS is the World Reference 

System, CRS is the Camera Reference System, P is a generic 3D point expressed in LRS, Q is the projection of point P in the 
image plane. 
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2.3 Simulations 

The setup used to perform the experiment is composed by a UI-
3060CP Rev. 2 camera from IDS GmbH, with a 1216x1936 pixel 
monochromatic sensor equipped with a 12mm lens and a O2DS 
laser scanner from DSE. The distance from the laser and the 
acquired profile is 2m while the camera is positioned 3m behind 
the laser. The field of view of the camera at the distance of the 
acquired profile is 4.7m wide and 3m high. 
The relative importance of the different factors on the overall 
measurement uncertainty can be obtained with the simultaneous 
use of factorial Design of Experiments and Monte Carlo 
simulations. With this approach, it is possible to estimate the 
contribution of each influencing factor (IF) on the overall 
uncertainty.  
The quantities affected by uncertainty are the three elements of 
the translation vector 𝑡 and the three elements of the rotation 
vector 𝑟, so a total of six IFs are considered. The vector 
containing the nominal value of the quantity is defined as in 
Equation 6. 
 

 𝑋  =  [�̂�௫
, �̂�௬

, �̂�௭
, �̂�௫

, �̂�௬
, �̂�௭

] (6) 

 
Each of the IF can assume two discrete levels of uncertainty (Low 
or High). Every configuration is perturbed adding to the nominal 
values a deviation sampled from six Gaussian distributions with 
zero mean and standard deviation given by the combination of 
uncertainty levels. A total of 2 = 64 configurations of 
uncertainty were tested.  
The selected numerical values are: 0.5 mm for the Low 
uncertainty and 5 mm for the High uncertainty of the three 
displacements, 0.1° for the Low uncertainty and 1° for the High 
uncertainty of the three orientations.  
For each input uncertainty configuration, we applied the Monte 
Carlo method with a vector (∆) of 10000 samples defining the 
probability density function with the specific uncertainties 
combinations. For each configuration, 10000 perturbed 𝑋∗ 
vectors are computed as in Equation 7. 
 

 𝑋∗ = 𝑋 + ∆ 
∆ = [𝛿௧௫

, 𝛿௧௬
, 𝛿௧௭

, 𝛿௫
, 𝛿௬

, 𝛿௭
] (7) 

 
Where 𝛿

 is the value of noise related to the quantity i sampled 
from a Gaussian distribution, the six values of noise make up the 
noise vector (∆). 
Starting from 𝑋∗, the perturbed translation vector 𝑡

∗ and 
perturbed rotation matrix 𝑅

∗ are built and the perturbed roto-
translation matrix 𝑀

∗ is used in Equation 2 to project the Laser 
points into the Image plane. 
 
2.4 Evaluation Metrics 

In each simulation 200 points are reprojected from LRS to Image 
and the RMSE is computed according to the following equation 
(Equation 8) 
 

 

𝑅𝑀𝑆𝐸 = ඩ
1

200
(𝑄∗ − 𝑄)ଶ

ଶ

ୀଵ

 (8) 

 

Where: 
 𝑄∗ is the position of the projected point using the 

perturbated roto-translation matrix 

 𝑄  are the coordinates of the projected point using the 
nominal roto-translation matrix 

3. RESULTS 

Figure 2 illustrates an example of a scene seen from the camera 
with the points acquired by the laser scanner projected in the 
image with green crosses. One the lower left part of the picture 
the laser case with the marker attached on the back is visible. The 
black area near the image border is due to the distortion removal 
procedure. 
On the Upper left corner of the picture is reported an enlargement 
of the top points of the profile. 
 

 
Figure 2. Image of the scene taken from the camera; the green 
points represent the points acquired by the laser reprojected on 
the image plane. On the upper left side an enlargement of the 

top points of the profile is reported 
 

 
 

Figure 3. shows the comparison of the RMSE distribution on 
each axis when the translational component or the rotational 

component is affected by High uncertainty, while all the other 
are affected by a Low uncertainty 
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The developed Factorial Regression Model is characterized by an 
adjusted correlation coefficient (𝑅ଶ) equal to 98.4% and a 
standard deviation of 0.84mm. In figure 4 is reported the Main 
Effects Plot for the RMSE for each of the six IFs. The average 
RMSE value is 17.3mm. 
Figure 5 shows an application example, where a profile different 
from a line is projected on the image. 

 
 

4. DISCUSSION AND CONCLUSION 

Results of Monte Carlo simulations allowed estimating the 
measurement uncertainty of the position of the 2D point cloud 
measured by the profilometer in the image plane of a camera 
observing the profilometer and the measurand.  
The value of uncertainty is compatible with hardware 
components of the setup, their resolution and the camera field of 
view (FoV), considering that at the distance of the profile from 
the camera the pixel dimension is 2.4mm. The average RMSE 
value correspond to the 0.36% of the FoV width, moreover this 
order of magnitude on the positioning RMSE can be considered 
negligeable if compared to the total FoV.  
Uncertainty is governed by the rotation components as can be 
seen in Figure 4 and further studies are required to determine the 
pose of the marker minimizing the error on the orientation. 
Further studies will also focus on the implementation of a 
calibration procedure aimed at the minimization of the RMSE to 
adjust the roto-translation matrix 𝑀 between the laser and the 
world reference system to compensate possible error given by the 
manual computation of those parameters. 
 

 
Figure 5. Application example where a profile different from a 

line is acquired 
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