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ABSTRACT: 

 

An examination of the traceability and dependability of the virtualisation properties is prompted by the widespread use of three-

dimensional models. The challenge of obtaining accuracy indicators directly from the photogrammetric method when a reference model 

is missing is widely acknowledged. In this study, a robust method based on a statistical analysis of the uncertainty associated with Tie 

Points (TPs) is presented to provide a strict framework for the informed processing of photogrammetric survey data. In the phases of 

Structure estimation, Structure optimisation, and Dense Cloud generation, the key steps and variables affecting data processing are 

described. The workflow is then applied to a specific bronze museum finding smaller than 20 cm in size. All tie points that overcome 

the filtering phase are included in the procedure and for their coordinates the covariance matrix is examined. The error ellipsoid is 

calculated and the distribution of the lengths of the major semi-axes is analysed to calculate an appropriate tolerance interval which 

can be used as an indicator of the accuracy of the entire photogrammetric process. Indeed, using the tolerance intervals tool allows for 

the derivation of a representative indicator that can be compared with the outcomes of other photogrammetric processes while 

overcoming the ambiguity of statistical indicators that are not representative in the case of a non-normal distribution. 

 

 

1. INTRODUCTION 

The demand for 3D reality-based models is growing in popularity 

and ambition due to the level of realism and detail expected 

today. Although hardware and software solutions are getting 

increasingly innovative and outstanding, somehow fulfilling the 

challenging task, a question arises regarding the traceability and 

reliability of virtualisation properties (Brusaporci, 2017). 

Particularly nowadays, the simplicity of generating 3D 

geometries due to the spread of completely automated image-

based technologies makes it incredibly more complex to trace the 

quality of outcomes. Thus, leading to the false belief that these 

3D models are accurate. This assumption is most likely a result 

of the common idea that the widespread use of image-based 

computer programmes automatically guarantees consistency and 

reproducibility (Remondino et al., 2012). It is therefore expected 

that modelling processes, and in particular algorithms for 

handling raw data, can improve significantly (Morena et al., 

2019). Hence, despite the extensive use of three-dimensional 

models, automation and innovation have otherwise made it more 

challenging to come up with effective approaches for 

determining the accuracy of a photogrammetric model in relation 

to its geometric features, resulting in the absence of a common 

criterion for formalising errors (Puerto et al., 2022).  

Moreover, a systematic method to describe the quality of 

virtualisation has not yet been well developed, despite the 

extensive research in the literature on evaluating the accuracy of 

photogrammetry in relation to the acquisition phase's best 

practices, with a specific focus on systematic errors due to: (i) 

camera factors (i.e., type, principal point, principal distance, and 

camera lens distortion coefficients); (ii) imaging settings (i.e., 

shooting distances, baselines, percentage of photo overlaps, 

number of overlapping photos, camera intersection angles, and 

angles of incidence) (Dai et al., 2014).  

The widespread way of dealing with the quality task is based 

on assessing the accuracy of geometric descriptions of an 

object by comparing homologous models produced through 

different techniques.  

The model considered most reliable can be adopted as a reference, 

calculating the deviations of other digital descriptions from it.  

The need for data integration and/or for producing multi-

resolution models results in the redundancy of data useful for 

such distance-based comparative analyses. However, several 

issues do not make the choice of reference entity trivial: (i) how 

to unambiguously define the accuracy and reliability of processes 

and tools that make the reference appropriate; (ii) how to register 

the models before comparison; (iii) which algorithm is most 

suitable for quantifying distances. The instrumental resolution, 

followed by the rigour of the acquisition campaign and the 

technology employed, are the factors that mainly contribute to 

making the reference model unambiguous. For the definition of 

a common reference system, two main types of approaches can 

be employed: the former based on the identification of specific 

points, such as targets distributed over the survey scene, and the 

latter involving the entire object, such as ICP-derived algorithms 

(Chetverikov et al., 2002). Regarding the choice of algorithm, it 

seems appropriate to adopt the cloud-to-model (C2M) distance in 

the case of a polygonal mesh reference model; while for other 

scenarios, the multiscale model-to-model cloud comparison 

(M3C2) technique is preferable because it employs parameters 

that allow for better control over the sources of uncertainty 

(Lague et al., 2013). When a reference model is not available, the 

evaluation of the accuracy of the final model is more challenging, 

as accuracy indicators need to be derived directly from the 

photogrammetric process. Even when Ground Control Points 

(GCPs) or Check Points (CPs) are evenly distributed in the scene, 

basing the entire analysis on a limited number of points is not a 

robust approach (Luhmann, 2010). Thus, the direct accuracy 

assessment of the photogrammetric model should be performed 

by studying the uncertainties related to the Tie Points (TPs). 

Nevertheless, it must also be taken into account that the quality 

of the orientation process and associated reconstruction outputs 

is inevitably affected by the feature extraction and matching 

techniques (Nocerino et al., 2013), for which not only the number 

of TP must be considered representative, but also their 

correctness (Barazzetti, 2017). 
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Figure 1. "La Sirena di Murgie", National Archaeological 

Museum of Crotone. 

 

Under these assumptions, a statistical analysis of the covariance 

matrix associated with the estimated TP coordinates is proposed 

in this study. The primary objective is to present a potential 

strategy for the conscious treatment of survey data. 

The experimentation is conducted on the close-range 

photogrammetric process (Luhmann et al., 2014) applied to a 

bronze ointment vase (Askòs) called "La Sirena di Murgie" 

(Figure 1). The finding, dated 5th century BC, is preserved at the 

National Archaeological Museum of Crotone, Calabria Region, 

and depicts a Mermaid: the hybrid mythological being that, 

according to Greek iconographic tradition, is a half-human and 

half-bird (Marino, 2010). The total height of the vessel is 15.3 

cm, while the length and width measure 18.7 cm and 8.4 cm. 

Although generating models of small objects in the field of 

Cultural Heritage is often only aimed at AR or Web visualisation 

applications, in this case, it seemed appropriate to test the validity 

of the acquisitions that were conducted in a difficult context, such 

as the museum environment, thus lacking controlled settings such 

as a well-equipped laboratory (Parrinello et al., 2019). The 

objective was to guarantee high accuracy with portable and 

affordable equipment, even in extreme conditions. 

 

2. MATERIALS AND METHODS 

The influence of factors governing the orientation process on the 

quality of a three-dimensional model obtained from 

photogrammetry is well-known. The essential steps and 

parameters governing data processing are outlined below. As 

explained in the following section, they were employed in a 

specific workflow, highlighting the necessity for a case-by-case 

approach to the procedures (section 3). 

 

2.1 Structure estimation 

During the orientation phase, within the piece of software used – 

Agisoft Metashape Professional v.1.8.3 (AM) – the pixels in the 

input photos that are stable under changes in lighting and 

viewpoint are identified. Then each is assigned a descriptor that 

places it on the basis of its immediate neighbours.  

Similar to the well-known scale-invariant feature transform 

(SIFT) algorithm, these entities will be later utilised to locate 

correspondences between the images (feature detection).  

After approximately identifying the camera locations (feature 

matching), the calculation is refined via Self-Calibration Bundle 

Block Adjustment (structure estimation), solving both the problem 

of internal and relative external orientation (Nex et al., 2014). The 

parameters involved in this process are presented below: 

 

▪ Accuracy, which adjusts the downsampling of the input data 

according to the original pixel size. 

▪ The key Points limit concerns the maximum number of 

feature points searched for in each image. The value 0 

corresponds to "no limit"; 40,000 is the recommended 

default value (more points would be obtained by setting 

higher values, but their reliability would gradually 

decrease). However, an upper limit still ensures reliable 

points if high-quality images are employed in the procedure. 

▪ The TPs limit concerns the maximum number of matching 

points found in each image. The value 0 corresponds "no 

limit"; 4,000 is a recommended default value. It would be 

preferable not to limit TPs if one intends to reduce them 

after alignment. 

 

The recently added option in the software, called Adaptive 

Camera Model Fitting, if selected, introduces unpredictable 

solutions in order to find the combination of camera model 

coefficients that best fits the minimum error model.  

Allowing AM control over the decision-making process may lead 

to lesser error, but it also causes overfitting of the data or the 

generation of a complex camera model that doesn't exactly reflect 

the equipment utilised. 

 

2.2 Structure optimisation 

The subsequent filtering phase is aimed at obtaining only high-

quality TPs and, although subjective in terms of the number of 

points to be eliminated, is governed by the following parameters: 

 

▪ Reconstruction Uncertainty, which reflects poor geometric 

relations between cameras. Reconstruction Uncertainty is 

calculated as follows:  

 

      (1) 

 

 Where λ1 is the largest eigenvalue of the tie-point covariance 

matrix, and λ3 is the smallest. Basically, it is the ratio 

between the largest and the smallest semi-axis of the error 

ellipsoid for 3D point coordinates (k = 1). The latter region 

corresponds to the uncertainty of the point triangulation 

alone, without considering the propagation of ambiguities 

arising from interior and exterior orientation parameters. 

▪ Projection Accuracy, which identifies low match accuracy 

internally assigned by the software, is defined as the average 

image scale at which picture coordinates of the TP are 

measured, computed as: 

 

      (2) 

 

 Where si is the image scale at which corresponding 

projections are identified on the ith image, and n is the 

number of photos where the TP is detected. This criterion 

enables the removal of points whose larger size causes their 

projections to be relatively poorly localised. Projection 

Accuracy is essentially a representation of the fidelity in the 

identification of the TP location, given the size of the key 

points that intersect to create it. 

▪ Reprojection Error, which highlights false correspondences 

and is defined as the distance between the point on the image 

where a 3D point can be projected and the original 

projection of that 3D point detected on the photo and used 

as a basis for the 3D point reconstruction procedure. The 

filter evaluates the maximum Reprojection Error in 

normalised units across all pictures where TP is identified: 
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      (3) 

 

 Where xi' is the point projection according to adjusted 

orientation parameters on the ith image in pixels, xi 

represents the measured point projection coordinates on the 

ith image in pixels, and si is the image scale at which 

corresponding projection is evaluated on the ith image. 

 

Iterative selection and removal procedures are used in the 

application, as specifically described in the next paragraph. The 

aim is to improve the estimated internal and external orientation 

parameters by removing poor TPs. However, each time TPs are 

deleted, the accuracy of the remaining TPs changes, requiring 

re-optimisation of the project before going on. 

Alongside these considerations on the robustness of TPs, 

there are those relating to marker accuracy (regarding the 

image space) and measured control data accuracy (regarding 

the object space). Precisely, the proportion between these two 

parameters – the quality of the coordinates identified in the 

image and the quality of the coordinates measured in the scene 

– allocates the weight assigned to the markers and TPs 

throughout the process. In this regard, in AM, the Reference 

Settings panel allows the inputs of Images Coordinates 

Accuracy and Measurement Accuracy to be correctly 

balanced. This setting prevents misleading statistics, as their 

incorrect estimation generates unrepresentative error models 

since lens coefficients are very sensitive to these parameters 

(Over et al., 2021).  

The section Measurement Accuracy, which refers to external 

real world (m), deals with capturing geotags and calculating 

the accuracy of targets used as CGPs and the overall 

surveying methods. 

Focusing on the Image Coordinates Accuracy (pixel) section, 

the two parameters to be refined are: 

 

▪ TPs Accuracy, which corresponds to the normalised 

accuracy of TPs projections detected at the scale equal to 

1, considering a pyramid built applying Gaussian blur. TPs 

identified on other scales will have accuracy proportional 

to their ranks. 

▪ Marker Accuracy, which depends to a large extent on how 

they are positioned in the frames when pinning a marker 

on a feature, typically on a target, with an indirect 

correlation with the capture resolution. 

 

In both cases, establishing a priori the proper values is difficult. 

Therefore, the default values (1 pixel for the TPs Accuracy and 

0.5 pixels for the Marker Accuracy) can be used for the first 

optimisation step and then gradually adjusted during the 

optimisation iterations. It is worth mentioning that an indicator 

of the goodness of the realistic estimation related to these 

metrics is the discrepancy between the error (m) and accuracy 

(m) values for GCPs and CPs. In the case of a correct estimate, 

they will converge. For monitoring the refinement of the 

camera model, several strategies can be implemented: 

 

▪ Checking the generated reports in the Console Panel 

during the optimisation process. The number of iterations 

required to calculate the lens coefficients will be displayed 

via a sequence of "x". If the string is long and does not get 

shorter during the procedure, the solution might be 

divergent or the modelled coefficients may not be 

sufficient to reach the internal trigger that would otherwise 

put an end to the optimisation process. In these scenarios, 

starting from the post-alignment phase is preferable to 

overfitting the solutions. The reports also show the values 

of Sigma0, the AM equivalent of the photogrammetric 

adjustment quality indicator sigma naught (σ0), which is 

the Standard Error of Unit Weight (SEUW). The farther 

the SEUW is from 1, the poorer the estimated TP accuracy. 

It corresponds to the degree of deviation from an assumed 

quality or how closely the RMS Reprojection Errors match 

the predefined error values. However, since the weighting 

it is based on is not fully documented, using it as the main 

indication for process monitoring is impractical. Instead, 

its convergence towards unity becomes valuable in the 

advanced optimisation stages. 

  

▪ Observing the number of projections for each image, 

defined as the number of valid TPs found on a given 

capture. A specific image will not be used to generate the 

final outputs if the number of projections for that image is 

less than 100. To achieve a robust orientation, it would be 

better to adopt a cautious limit of projections.  

▪ Monitoring the Root Mean Square (RMS) Reprojection 

Errors in the chunk point cloud property. To increase the 

robustness of the process, especially when there are blurry 

photographs or photos with few distinguishing features or 

textures, the TPs are placed at several map scales. Then, 

the map scale information is used to weigh the TPs 

Reprojection Errors by the software. Unfortunately, since 

the scaling parameters and weighting procedures are not 

disclosed in AM, the meaning of the mentioned metric 

becomes convoluted: of the two reported RMS 

Reprojection Errors related to orientation, the weighted 

value is the first one in the units of key point scale, and the 

unweighted one, written in pixels, is the second one.  

The optimal unweighted value is generally less than 0.3 

pixels. If too many TPs are deleted during the subsequent 

filtering steps, the camera model may deviate from a 

particular solution, increasing the unweighted RMS 

Reprojection Error. 

 

Estimating the TPs covariance matrix, which is related to the 

execution of the Bundle Block Adjustment, is a way to visualise 

the uncertainty in the camera models after each optimisation 

cycle. The evaluation outcomes can be examined by switching 

the TPs cloud display mode to a specific one (Figure 2).  

The vector associated with each TP indicates the direction and 

magnitude of the error for the TP estimated position (its three 

components correspond to the semi-axes of the error ellipsoid 

with k = 1 determined by the covariance matrix).  

 

 

Figure 2. TPs covariance view mode, after Gradual Selection 

filtering, in Agisoft Metashape SfM software. 
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2.3 Dense Cloud generation 

Dense Clouds are reconstructed from depth maps computed 

through pairs of overlapping images, identified by their internal 

and relative external orientation parameters, which are estimated 

using Bundle Block Adjustment. Multiple pairwise depth maps 

generated for each camera are merged into a combined depth 

map, employing excessive information in the overlapping 

regions to discard wrong depth measurements. The products are 

transformed into partial dense point clouds, which are 

subsequently merged into a final model, thanks to an additional 

noise filtering step applied in the overlapping regions. The 

normals in the partial dense point clouds are calculated using 

plane fitting to the pixel neighbourhood in the combined depth 

maps, and the colours are sampled from the images. The number 

of contributing maps is recorded and stored as a confidence value 

for every point in the final dense point cloud. This number will 

be used later to perform additional filtering. A list of parameters 

governing the procedure is explored below: 

 

▪ Quality, which affects the detail and accuracy of the 

reconstructed geometries as well as the processing time, 

depending on the number of depth maps calculated.  

▪ Depth filtering, which removes outliers from the cloud due 

to aspects such as noisy or badly focused images by 

checking them within the raw depth maps. This step is 

performed using a connected component filter that operates 

on segmented depth maps based on the pixel values. 

▪ Whether and how the process associates the RGB 

information to the individual points. 

▪ Point confidence calculation, which enumerates how many 

depth maps are generated for each point so that further 

filtering can be performed. 

 

Once the Dense Cloud has been reconstructed, noise removal can 

be performed. In addition to the interactive intervention, which is 

useful for deleting badly located elements, a filter can be applied 

according to the number of depth maps per point. The results of 

this operation depend primarily on the pattern chosen to capture 

the frames. The algorithm is based on a non-linear selection scale 

ranging from 0 to 255, where lower values indicate fewer depth 

maps involved in the reconstruction of the 3D position of the 

point (Figure 3).  

This last operation ends the photogrammetric process. 

 

2.4 Uncertainty assessment 

To provide a rigorous framework for the informed handling of 

photogrammetric survey data in the absence of a reference model, 

a statistical analysis of the uncertainty associated with Tie Points 

(TPs) in object space can be performed. Sources of uncertainty 

related to instrumentation, techniques, their integration, and the 

statistical description of their distributions can be identified. In 

this way, their propagation law and a dispersion indicator or an 

interval that effectively summarises the accuracy of the survey 

can be obtained. However, finding sources of uncertainty and 

combining them is not easy. There is no single unambiguous 

solution, which depends heavily on the detection methods and the 

transformation of the raw data into a reality-based model. Given 

that it is impossible to list and describe every possible 

combination, an inductive approach is preferable, starting from a 

practical case and highlighting the distinctive aspects that affect 

the decisions. Nonetheless, evaluating the sources of uncertainty 

in photogrammetric operations cannot rely just on the coordinates 

of the codified targets. 

 

Figure 3. Point Confidence view mode, before Dense Cloud 

filtering, in Agisoft Metashape SfM software. 

 

In fact, as a hypothetical solution, the uncertainty related to the 

Check Points (CPs), expressed by the difference between input 

and output data, and the uncertainty connected to the support 

survey may be combined. However, the two sources of 

uncertainty have a correlation, which would need further 

elaboration to be adequately described. Albeit the points are 

evenly distributed around the picture, basing the entire analysis 

on a small number of points is unquestionably not a robust 

strategy. The same reasoning may be extended to GCPs, with 

the aggravating factor that their coordinates, utilised to resolve 

the structure optimisation phase, generate a reduction in the 

error associated with them, making them inappropriate for this 

kind of evaluation.  

The previous paragraphs clarified how crucial it is for a 

rigorous photogrammetric procedure to trace the accuracy of all 

input data (related to both the object space and the picture 

space). After the orientation optimisation phase, the covariance 

matrix connected to the predicted coordinates for the TPs in the 

object space is exported using an ad-hoc Python script we 

developed. From the matrix, the standard error ellipsoid and the 

configuration corresponding to a probability of containing the 

theoretical mean value of the coordinates of 97.75% (k =3) are 

derived. Of this last ellipsoid, the major semi-axis is 

considered, and an appropriate tolerance interval is calculated 

by studying its distribution for all the Tie Points. This tool 

allows estimating, from a sample, the extremes that contain a 

certain percentage of a population associated with a specific 

level of confidence. The approach is therefore considered 

reasonable, noting that the TPs will constitute only a part of the 

final photogrammetric cloud. To be fair, the dense image-

matching phase and its algorithms should also be involved, but 

this would become too complicated according to the current 

state-of-the-art. We will then merely employ the results of the 

Structure from Motion step here. Section 3.2 elaborates on the 

procedure for determining these ranges. 

 

3. APPLICATIVE WORKFLOW AND RESULTS 

3.1 The SfM process 

The workflow is applied to data from Nikon D800E SRL camera, 

equipped with the AF-S Micro NIKKOR 60mm f/2.8G ED, 

mounted on a tripod in landscape orientation and operated by 

remote control.  

The frames captured have a size of 7360 × 4912 pixels. 

Considering the focused distance from the object to be 0.6 m, in 

order to frame the object entirely in a single shot and limit the 

time and number of acquisitions, a GSD of about 0.04 mm/px 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W2-2022 
Optical 3D Metrology (O3DM), 15–16 December 2022, Würzburg, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-31-2022 | © Author(s) 2022. CC BY 4.0 License.

 
34



 

 

was determined. In addition, a Depth Of Field of 12 cm was 

achieved with an f/32 aperture, using a Circle Of Confusion of 

0.015 mm (about half the conventional values for such 

equipment, to be on the safe side). The ISO sensitivity values 

were kept low (100) to avoid digital noise. The shutter speed was 

estimated to obtain the correct exposure, requiring a remote 

trigger to avoid vibration. Manual focusing was employed since 

the main distance would not change during the acquisition 

campaign, as the focus would only be adjusted just once before 

starting to capture the photos. The object, placed on a turntable, 

was rotated in front of the camera approximately every 15 

degrees at three different camera angles. The complete dataset 

consists of about 73 images, ready to be oriented. Files imported 

into AM for processing were converted from the proprietary 

.NEF format to lossy JPG sRGB 24-bit type, which is a good 

compromise between file size and quality. An initial estimate of 

the quality of such data was based on sharpness. The method 

consists of comparing the contrast gradients in the most peculiar 

regions of the source images, taking into account both the 

originals and the images with the Gaussian blur filter applied. All 

frames with a rate below 0.5 were excluded from the process. 

Then, the calibration table was examined. The software produces 

a single calibration group since the loaded photos for each project 

are identical in terms of size, focal length, and other factors 

derived from the exchangeable image file (EXIF). Therefore, the 

camera type (frame), pixel size, and focal length were checked. 

No pre-calibration data were available for the camera. No 

position data were known, and therefore a local system was set 

for the cameras. 

The orientation phase was governed by the parameters shown in 

Table 1, so as to use a higher limit for Key Points due to the high 

image quality and not limiting the number of TPs as they will be 

reduced after alignment (section 2.1). 

 

Parameter Setting 

Accuracy Highest 

Generic preselection Yes 

Reference preselection Sequential 

Key point limit 100.000 

TP limit 0 

Exclude stationary TPs No 

Guided image matching No 

Adaptive camera model fitting No 

Matching time 6 minutes 12 seconds 

Alignment time 55 seconds 

Table 1. Orientation parameters. 

 

The import of external references is the subsequent operation to 

optimise the configuration and address the issue of absolute 

external orientation. A metric reference – that employs a non-

repetitive pattern and 56 targets whose coordinates are known by 

design – was placed on the rotary table and used as an external 

reference. The targets were visible in the photos, so AM could 

locate them automatically by simply choosing the type of 

artificial object placed in the scene (16-bit circular encoded 

targets). After the recognition, a visual check was performed, 

followed by an eventual optimisation. Not all markers were used 

as GCPs to solve the absolute external orientation; some would 

indeed be discarded from this process, to be later employed as 

CPs to validate the optimisation results, ensuring a homogeneous 

distribution of the two groups in the detected scene. The 

optimisation phase started here (section 2.2).  

At this stage, activating every coefficient might reduce error. 

Still, it also could cause overfitting of the data or the generation 

of an overly complex camera model that does not accurately 

reflect the equipment used, leading to underestimating or 

increasing actual error. Therefore, the affinity and 

nonorthogonality, also known as skew coefficients (B1 and B2), 

should be initially suppressed and only included in case of an 

inflated RMS Reprojection Error value indicating the possible 

presence of distortion related to these phenomena. The same 

applies to the radial distortion coefficient K4.  

After duplicating the chunk containing the data processed so far 

to store a backup copy and checking the correctness of the input 

reference data, the first optimisation cycle was performed by 

selecting the appropriate coefficients and estimating the 

covariance of the TPs. Along the procedure, the number of 

projections per frame and the unweighted RMS Reprojection 

Error were monitored. For calibrating the accuracy of the image 

coordinate, the latter is helpful mainly when associated with 

RMS Reprojection Error on markers and mean Key Point size. 

The error reduction procedure first consists in removing points 

resulting from poor camera geometry through the 

Reconstruction Uncertainty filter. High Reconstruction 

Uncertainty is typical for points identified through nearby 

photos with a small baseline. They can noticeably deviate from 

the object's surface, causing noise in the cloud. While removing 

such elements should not affect the optimisation accuracy, it 

may be useful to delete them to improve the visual appearance 

of the reality-based model. A Reconstruction Uncertainty of 10 

is roughly equivalent to a good base-to-height (or base-to-

distance) ratio of 1:2.3 (parallax angle of about 23°), whereas 

15 is almost equal to a marginally acceptable ratio of 1:5.5 

(about 10°) (Gujski et al., 2022). Our workflow reiterated the 

filtering of TPs with this parameter twice, taking care not to 

remove more than 50 per cent of the TPs. The optimisation 

process used the same lens coefficients as the preliminary stage. 

After removing the TPs, a single iteration is sufficient if a 

Reconstruction Uncertainty of 10 is achieved in the first attempt 

and less than 50% of the TPs are selected. Repeated filtrations 

have diminishing returns and may overfit the camera model 

before more poor-quality TPs can be removed. Once again, we 

monitored the status indicators used during the first cycle. 

The second part of the error reduction procedure aims to remove 

points based on Projection Accuracy. AM saves an internal 

accuracy and scale value for each TP as part of the correlation 

process. The highest reliability points are assigned to level 1 and 

are weighted based on the relative size of the pixels. A TP 

allocated to level 2 has twice as much inaccuracy as level 1. Not 

all projects can tolerate removing points at a level of 2 to 3, 

particularly if the images have been compressed or their quality 

is compromised due to noise or blur. A gradual selection level of 

5 or 6 may be the best that can be obtained. The threshold limit 

can be defined by remembering that this filtering phase should 

not eliminate more than 50 per cent of the TPs inherited from the 

previous one, targeting two cycles. Lens coefficients used in the 

process are the same as in the second step. Repeated applications 

show reduced returns and may overfit the camera model. If the 

project can support an initial filtering of level 3 without selecting 

more than 50 per cent of the TPs, a single optimisation after 

deleting the points is sufficient.  

In our applications, the threshold value was 2. Once again, we 

monitored the process quality indicators before going any further. 

The third step of the error reduction procedure concerns the 

Reprojection Error, which, unlike the previous ones, is directly 

related to the parameters governing internal and external 

orientation. It is, therefore, necessary to correctly define the 

accuracies for the measurements and image coordinates before 

proceeding. As far as measurements are concerned, these are 

known by design, so their accuracy is only related to the printing 

process for their physical realisation. Printer accuracy, linked to 

critical dot size, shape and position accuracy, is not evaluated 
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here. However, for inkjet printers, the error is 10 µm on average 

(Creagh et al., 2003), then this value can be taken as a lower limit 

for the marker accuracy parameter (m) in the measurement 

accuracy section.  

Concerning the image coordinates parameters, the marker 

accuracy can assume values below 0.5 pixels if the identification 

procedure is rigorous, as in our case, and supported by automatic 

extraction algorithms. Considering the high resolution and the 

quality of the captures, we assumed the marker accuracy value 

equal to 0.05 pixels, verifying that the discrepancy between the 

error (m) and the accuracy (m) associated with the GCPs and CPs 

does not grow uncontrollably during the next optimisation phase. 

As for the accuracy of TPs we gradually reduced it by checking 

the convergence of Sigma0 to 1. As a rule, we always give 

markers more weight than tie points. After the calibration of these 

parameters, we performed a new optimisation cycle and tested if 

the value of Sigma0 tended towards 1. If this did not happen, it 

was necessary to pay attention and, eventually, repeat the 

previous phases. Finally, we achieved a value of 0.1 pixels for 

the accuracy of TPs. 

High reprojection error usually indicates poor localisation 

accuracy of the corresponding projections at the point matching 

step. It is also typical of false correlations. The threshold set for 

filtering in our applications is 0.3 pixels, not reached directly but 

by operating in successive cycles and selecting only 10 per cent 

of the tie points at a time. After the first cycle of this phase, we 

checked that the error of the markers (m) did not exceed the 

accuracy (m). In this case, it is convenient to stop the process, 

revaluate, and correct the a priori reliability of the image 

coordinates in light of new data, such as the RMS reprojection 

error. We then checked whether Sigma0 converged to 1. The 

selected lens coefficients were again those chosen for the previous 

steps. If confluence does not occur, it is possible to consider 

involving other coefficients and use additional corrections.  

At the end of all the cycles of the task, we check the number of 

projections for each frame, the effective reduction of the 

iterations within the succession of the cycles, the survival of at 

least 15-20% of the original tie points and the possible overfitting 

of the camera model. If no inconsistencies or anomalies emerge, 

the orientation process (so-called Structure from Motion – SfM) 

can be considered concluded (Table 2). 

 

Parameter Setting 

Reconstruction Uncertainty filter 10 

Projection Accuracy filter 6 

Marker Accuracy (m) 0.0005 

Marker Accuracy (px) 0.05 

Tie Points Accuracy (px) 0.1 

Reprojection Error filter 0.3 

Control Points error (m) 0.0003 

Check Points error (m) 0.0004 

Sigma0 0.97 

Table 2. Error reduction and reference system parameters 

consistent with input data. 

 

In order to be thorough, the relationship between the calibration 

coefficients of the camera was examined (Remondino et al., 

2006; Tang, 2016). This is an effective approach to check for 

overfitting and may show that some of these parameters are really 

not relevant to represent the equipment.  

The set used for the application is an 8-term set derived from the 

one originally formulated by Brown (1971), including internal 

orientation parameters of main distance and principal point 

offset, as well as the three coefficients of radial and two of 

tangential distortion. 

 

Figure 4. Correlation analysis between camera calibration 

coefficients. 

 

The correlation between the radial coefficients (Figure 4) is 

physiological and depends on the structure of the model itself; for 

this reason, we can neglect it. The decentring distortion is also 

strongly projectively coupled with the principal point offset, and, 

in general, this relationship increases with focal length or when a 

poor convergence of the image axes occurs. These reasons 

confirm that the correlation is negligible. 

Based on the exterior and interior orientation parameters, the 

dense image matching phase (section 2.3) was then performed.  

A list of the parameters governing the procedure is summarised 

in Table 3. 

 

Parameter Setting 

Quality High 

Depth filtering Moderate 

RGB data Yes 

Points Confidence Yes 

Table 3. Error reduction and reference system parameters 

consistent with input data. 

 

The high-quality setting used in our applications implies 

preliminary image size downscaling by a factor of 4 (2 by each 

side), a good compromise between model density and 

computational load. The moderate depth filter was selected to 

preserve the small, discernible details in the scene to be 

reconstructed. 

The noise remotion was carried out after the generation of the 

Dense Cloud. Unfortunately, the confidence-based filter working 

process is blinded, therefore we rely on the indications provided 

by the developers, according to which the relevant part of the 

noise belongs to the range 1-5. After filtering, the SfM process 

can be considered terminated. 

 

3.2 Towards tolerance limit formation 

After deriving the error ellipsoid with k = 3 from the covariance 

matrix and selecting the major semi-axis, its distribution was 

studied to build an appropriate tolerance interval. This tool 

allowed us to estimate, from a sample, the extremes that contain 

a certain percentage of a population (p) with a specific level of 

confidence (α). The appropriate construction of tolerance 

intervals takes into account the type of distribution, making it 

possible to compare different statistical models, involving 

several steps: (i) test for normality, which, if satisfied, leads to 

the calculation of normal tolerance limits; (ii) searching for 

normalising transformation, to be implemented when the 

distribution is not normal. If it deviates only slightly, an 
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acceptable transformation is found, and normal tolerance limits 

can be calculated from transformed data; (iii) alternative 

distributions to be performed when the transformation approach 

fails by searching for a good fit so that tolerance limits from that 

distribution can be calculated; (iv) non-parametric tolerance 

limits when the others approach fails. 

In any case, it must be ensured that the sample size is adequate 

for the statistical treatment. All intervals are computed for a 

population percentage of p = 95% and a confidence value of α = 

95%. It should be borne in mind that, in the case of non-

parametric tolerance limit calculations, only one of these two 

features can be defined, the other being estimated downstream of 

the procedure. In that case, preventive treatment of the 

distributions may be necessary to eliminate possible outliers, e.g., 

by constructing a box-plot diagram. Precisely the latter approach 

was applied to the case study fixing α = 95%, and Figure 5 shows 

the actual distribution of the major semi-axes of the ellipsoids 

with k = 3. The approach, therefore, seems reasonable, 

considering that the tie points will constitute only a part of the 

final photogrammetric cloud. To be fair, the dense image-

matching phase and its algorithms should also be involved, but 

this would become too complicated. Thus we chose to employ 

the Structure from Motion classic workflow for the subsequent 

steps. Since the semi-axis length is a positive definite quantity, 

we outlined a one-sided interval, obtaining an upper tolerance 

limit of 1.35 mm, which can be used as an indicator of the 

accuracy of the entire photogrammetric process. 

 

 

Figure 5. Distribution of lengths of major semi-axes with k = 3 

and upper tolerance limit. 

 

4. CONCLUSIONS 

The question of photogrammetric survey data traceability is 

becoming more relevant than ever. There is still ambiguity about 

how to define the error, given the numerous parameters that 

control the processing workflow and the countless factors that 

can affect it. In the absence of more reliable analyses, the error 

on GCPs and CPs is not representative and does not justify any 

defects in the modelling, leaving the reasons for deficiencies 

hidden and not allowing for process improvement.  

This study aimed to address this demand by attempting to 

achieve accuracy traceability while also providing maximum 

adaptability and flexibility to the requirements of the potential 

case studies and proposing possible solutions. In fact, to define 

the project requirements and assess the accuracy of geometric 

features, a procedure has been proposed. This is based on the 

reliability of the data processing that was observed to create 

source-based virtualisation. 

One advantage of the suggested methodology is that it ensures a 

level of accuracy in the modelling phase can be easily traced. 

Thus, making the framework repeatable and compatible with data 

from various sensors. 

In detail, the procedure is robust, as it involves all tie points that 

survive the filtering phase. For them, it examines the covariance 

matrix, deriving the error ellipsoid and analysing the distribution 

of the lengths of the major semi-axes. This study was conducted 

in a rigorous manner. The distribution hardly ever follows the 

normal curve; therefore, position and dispersion indicators, such 

as mean and standard deviation, do not always describe the 

phenomenon effectively. In contrast, statistical tolerance 

intervals make it possible to overcome this ambiguity and derive 

a representative indicator that can be compared with the results 

of other photogrammetric processes. 

Future developments will concentrate on a more detailed 

description of the survey-related uncertainty components and the 

opportunity to specify accuracy levels during a preliminary 

design phase in accordance with the client's desired tolerances. 
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