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ABSTRACT: 

 

This research focuses on the characterization of the metrology of Optical 3D Coordinate Measurement Systems (O3DCMS). The focus 

is set on the identification and execution of the procedure indicated by the currently active technical standards related to industrial 

O3DCMS, for their metrological assessment, objective comparison, and performance tracking. This work leads to the implementation 

of an ad hoc software for the execution of the standard tests by the ISO 10360-13 standard. The implemented software application is 

employed in a real-case scenario for evaluating the performances of an industrial 3D scanner based on structured light. The specific 

hardware components to be assessed are two light sources of the active stereoscopic vision system, named Digital Light Projectors 

(DLP). The case study applies the procedures and metrics indicated by the active standards to objectively compare two alternative 

hardware design of the system under test. This results in the identification of the most performing hardware configuration, allowing 

the selection of the best system design, basing on objective metrological parameters. 

 

 

1. INTRODUCTION 

This work is motivated by the necessity for the identification of 

a unique procedure for the evaluation of O3DCMS. Moreover, 

the need for the implementation of a software for executing the 

Optical 3D Metrology (O3DM) characterization was expressed 

by Innovative Security Solutions s.r.l., a producer of industrial 

3D scanners for robotic bin-picking. A systematic literature 

review was conducted, obtaining an overview of the scientific 

production in the O3DM field (Beraldin et al., 2015; Carfagni et 

al., 2017; Giancola et al., 2018; Hodgson et al., 2017; Luhmann 

& Wendt, 2000; Servi et al., 2008, 2021). The focus was then also 

set on the identification of technical standards used to perform an 

objective metrological characterization of O3DCMS (ISO, 2021; 

VDI/VDE, 2012). Moreover, a list of the most commonly used 

artifacts was gathered (Acko et al., 2012; Eiríksson et al., 2016; 

Guidi, 2013; Hess et al., 2014; McCarthy et al., 2011; Mendricky 

& Sobotka, 2020), see Figure 1. 

 

 

 

Figure 1. Example of reconstruction evaluation and artifacts. 

 

Figure 2. The ball-bar artifact used for the characterization of 

the O3DCMS. Nominal dimensions are reported in millimetres, 

spheres feature 120 mm diameters. 

 

In general, O3DCMS can be classified in three categories 

(Beraldin et al., 2015; Faugeras, 1993; Giancola et al., 2018; 

Huang & Zhang, 2006; Luhmann, 2010) depending on their 

working distance, namely nano/micro, close, and mid-to-long 

ranges. In the field of industrial engineering, the majority of these 

devices operate in the close range, i.e., from 10 mm to 2 m. Past 

and currently active standards (ISO, 2021; ISO/IEC, 2012; 

VDI/VDE, 2008, 2012) specify the quantitative parameters to be 

measured for expressing the metrological performances of 

O3DCMS. The parameters must be evaluated with calibrated 

artifacts, such as the aluminium ball-bar in Figure 2. The 

characterization procedure may be performed also to identify the 

effect of influencing factors. Among others, the most significant 

ones are the scanning parameters, the target material, the surface 

finishing, and the scene illumination. 

The methodology for performing the metrological 

characterization of O3DCMS defined by the standards was 

implemented in a software and employed in an industrial case 

scenario. Specifically, the application of the standardized 

procedure allowed the comparison of two solutions, objectively 

analysing metrology and identifying the best performing design. 
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Figure 3. Setup used during the execution of the tests on the 

3DCPS Fast scanner. The device, the robot used for the 

calibration, and the ball-bar artifact are shown. 

The paper is structured as follows. Section 2 reports the method 

followed for the implementation and the execution of the testing 

procedure indicated by the ISO standards. Section 3 focuses on 

the obtained results, providing valuable insights. Section 4 is 

related to the discussions and conclusions. 

 

2. METHOD 

The System Under Test (SUT) is the 3D CPS Fast (Figure 3), a 

3D scanner engineered by Innovative Security Solutions s.r.l. for 

robotic bin-picking. The system is equipped with two industrial 

cameras and a DLP. Via structured light (Gu et al., 2014; S. 

Zhang, 2013; Y. Zhang & Yilmaz, 2016), the device can relate 

the deformation of projected light patterns to the 3D shape of the 

objects in the measurement volume. Experiments consisted in the 

comparison of the performances of the SUT while mounting two 

different DLPs, named DLP4500 and DLP4750. Prior to testing, 

each device underwent optical calibration (Li, 2008; Z. Zhang, 

2000) at a working distance of 1000 mm, with a depth of field 

from 900 to 1100 mm. The horizontal and vertical ranges of 

measurement of the devices are 600 mm and 400 mm. The 

repeatability of the optical calibration was ensured by harnessing 

a Stäubli TX-60 robot for the displacement of the calibration 

board, as shown in Figure 4. 

 

   

Figure 4. Robotic setup used for the calibration of the 

O3DCMS. The same 3D poses of the calibration board were 

used while calibrating both devices to grant repeatability. 

A ball-bar artifact composed by three rigidly connected spheres 

was used for conducting the experiments, its nominal dimensions 

are indicated in Figure 2. The primary measurement of the 

spheres’ diameters and distance were evaluated by means of a 

Coordinate Measurement Machine at a Hexagon Metrology 

Intelligence facility, they are reported in Table 1. In accordance 

with the ISO 10360-13 (ISO, 2021) standard, the spheres featured 

a diffusely reflecting surface. The only spheres considered for the 

qualification of the O3DCMS are the two on the left in Figure 2. 

The scene light intensity level was measured with a luxmeter, its 

value was constantly among 700 and 900 lux. 

 

 Primary Measurement 

Quantity Value Unit 

Diameter - Sphere 1 119.981 mm 

Diameter - Sphere 2 119.985 mm 

Distance - Sphere 1,2 239.980 mm 

Table 1. Primary measurements of the ball-bar artifact obtained 

by a CMM at Hexagon Metrology Intelligence. 

 

As per the ISO 10360-13 standard, the artifact was displaced in 

the working volume to reach the 3D poses reported in Figure 5. 

In each position, the artifact was scanned three times to assess the 

measurement repeatability and to grant generality. The acquired 

data were then processed by means of the developed software. 

The spherical objects were detected in the pointclouds through 

the min-squares formulation of the identification problem, as 

reported in the next equations. The analytical form of a sphere is: 

 

 (𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 + (𝑧 − 𝑧𝑐)
2 = 𝑟2 (1) 

 

For each 𝑖-th point of the 𝑁 belonging to a spherical pointcloud: 

 

 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 − 2 (𝑥𝑥𝑐 + 𝑦𝑦𝑐 + 𝑧𝑧𝑐) + 𝑥𝑐

2 + 

+𝑦𝑐
2 + 𝑧𝑐

2 = 𝑟2 
(2) 

 

Rewriting in matrix form, the following matrices are defined: 

 

 

[𝑨]𝑁𝑥4 = [

𝑥1 𝑦1

𝑥2 𝑦2

𝑧1 1
𝑧2 1

⋮ ⋮
𝑥𝑁 𝑦𝑁

⋮ ⋮
𝑧𝑁 1

]

𝑁𝑥4

 (3) 

 

 

[𝒃]𝑁𝑥1 =

[
 
 
 
𝑥1

2 + 𝑦1
2 + 𝑧1

2

𝑥2
2 + 𝑦2

2 + 𝑧2
2

⋮
𝑥𝑁

2 + 𝑦𝑁
2 + 𝑧𝑁

2 ]
 
 
 

𝑁𝑥1

 (4) 

 

 

[𝒙]4𝑥1 = [

2𝑥𝑐

2𝑦𝑐

2𝑧𝑐

𝑥𝑐
2 + 𝑦𝑐

2 + 𝑧𝑐
2 − 𝑟2

]

4𝑥1

 (5) 

 

The over-determined linear system of equations can then be 

rewritten as reported in Equation 6. It can be solved by 

minimizing the L2-norm of 𝒃 − 𝐴�̂�, obtaining the least-squares 

solution �̂�, from which the unknowns can be derived. 

 

 �̂�4𝑥1 = 𝐴−1𝒃    ←     min(‖𝒃 − 𝐴�̂�‖2) (6) 

 

where: 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are the 𝑖-th point coordinates, 

 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 are the centre of the sphere coordinates, 

 𝑟 is the radius of the sphere, 

 �̂� is the least-squares problem solution. 
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Figure 5. On the left the table with the poses to be reached by 

ball-bar artifact. On the right the first pose of the ball-bar. 

 

The probing form dispersion error (PF, Figure 6), the probing size 

error (PS, Figure 7), and the distortion error (DCC) indicated by 

the ISO 10360-13 were then computed. The PF is the width of the 

spherical shell that encompasses a designated percentile (i.e., 

95%) of all measured points on the spherical surfaces. The PS  is 

the difference between the measured diameters of the test spheres 

and their calibrated values. The DCC is the difference between the 

measured and calibrated values of the spheres’ centre-to-centre 

distances. Each parameter is averaged over the poses indicated 

by the standard. Respectively, the PF and the PS relate to the 

accuracy and the precision of the spheres’ diameters 

measurement, while the DCC highlights the accuracy in the 

spheres’ centre-to-centre distance measurement. 

 

Figure 6. Graphical representation of the probing form 

dispersion error (PF). The two dashed lines represent the 95% 

confidence interval used for the computation of the parameter. 

 

Figure 7. Graphical representation of the probing size error 

(PS). The green circle identifies the primary value of the sphere 

diameter, the red circle identifies the fitted sphere diameter. 

 

 

 

Figure 8. Graphical representation of the Distortion Error 

(DCC). The parameter is defined as the absolute value of the 

difference between the measured and reference diameters. 

 

An ad hoc software was developed to implement the procedure 

reported by the ISO 10360-13 standard. Coupling MVTec 

HALCON and Python, the software first allows to sub-sample 

the raw 3D data. Then the scattered noise is filtered with a 

density-based filter. The resulting scan is processed to identify 

and cluster the spheres within the scene. The least-squares fitting 

is applied to each spherical object. Eventually the required 

parameters are computed. The entire workflow of the application 

is shown in Figure 9. The resulting software was employed for 

assessing the two alternative hardware configurations of the 3D 

CPS Fast scanner. 

 

 

Figure 9. Schematic representation of the workflow of the 

developed software for the execution of the ISO10360-13 

standard. The raw scan is sub-sampled, and noise is removed by 

a density-based filter. The spherical objects are clustered, and 

the least squares fitting is operated, eventually the ISO 10360-

13 parameters are computed. 

 

3. RESULTS 

Table 2 and Figure 10 report the results of the comparison of the 

two alternative designs of the 3D CPS Fast. Parameters are 

reported in the worst of the three repetitions for each position, 

both in absolute and relative terms, with respect to the 

corresponding primary measurement. DLP4750 features higher 

accuracy and precision in the reconstruction of spherical 

surfaces, as testified by PF and PS. The DCC parameter testifies a 

higher accuracy of DLP4750 in centre-to-centre distance 

measurement. 

 

 ISO Parameters 

Quantity DLP4500 DLP4750 Unit 

Probing Form Error (PF) 1.89 1.57 mm 

Probing Size Error (PS) 0.62 (0.5%) 0.51 (0.4%) mm 

Distortion Error (DCC) 0.76 (0.3%) 0.69 (0.3%) mm 

Table 2. Resulting parameters from the ISO 10360-13 Tests. 

First column refers to DLP4500, second column to DLP4750. 
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Figure 10. Box plot representing the obtained results in terms 

of Probing Form Error PF parameters for the DLP4500 (red) and 

the DLP4500 (green). 

 

4. DISCUSSION AND CONCLUSIONS 

The methodology for performing the metrological 

characterization of O3DCMS by the ISO 10360-13 standards was 

investigated, implemented, and evaluated in a real case scenario. 

The tested device was the 3D CPS Fast, an industrial 3D scanner 

engineered by Innovative Security Solutions s.r.l., in two of its 

alternative hardware designs. The application of the standardized 

procedure allowed the objective comparison of the two solutions, 

highlighting their performances in terms of O3DM. 

As evidenced by Table 2 and Figure 10, the introduction of the 

DLP4750 leads to an enhancement of the metrological 

performances of the device. The amelioration is testified by every 

parameter specified by the ISO 10360-13 standard. Namely, the 

Probing Form Error is reduced by 17%, the Probing Size Error is 

reduced by 15%, the Distortion Error is reduced by 9%. The 

DLP4750 results thus being the most performing DLP. 

Future works involve the evaluation of the influence of the 

material, surface finishing and scene illumination on the 

parameters defined by the ISO 10360-13 technical standard. 
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