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ABSTRACT:

The Earth’s landscapes are shaped by processes eroding, transporting and depositing material over various timespans and spatial
scales. To understand these surface activities and mitigate potential hazards they inflict (e.g., the landward movement of a shoreline),
knowledge is needed on the occurrences and impact of these activities. Near-continuous terrestrial laser scanning enables the
acquisition of large datasets of surface morphology, represented as three-dimensional point cloud time series. Exploiting the full
potential of this large amount of data, by extracting and characterizing different types of surface activities, is challenging. In this
research we use a time series of 2,942 point clouds obtained over a sandy beach in The Netherlands. We investigate automated
methods to extract individual surface activities present in this dataset and cluster them into groups to characterize different types
of surface activities. We show that, first extracting 2,021 spatiotemporal segments of surface activity using an object detection
algorithm, and second, clustering these segments with a Self-organizing Map (SOM) in combination with hierarchical clustering,
allows for the unsupervised identification and characterization of different types of surface activities present on a sandy beach. The
SOM enables us to find events displaying certain type of surface activity, while it also enables the identification of subtle differences
between different events belonging to one specific surface activity. Hierarchical clustering then allows us to find and characterize
broader groups of surface activity, even if the same type of activity occurs at different points in space or time.

1. INTRODUCTION

The current shape of the Earth’s surface is the result of com-
binations of erosion, transport, and deposition processes. These
are either naturally (e.g., wind, gravity) or anthropogenically
forced, and occur over various spatial and temporal scales. Ex-
amples of surface activities related to these processes in dif-
ferent geographic settings are rockfalls, avalanches, and sandy
beach erosion. Surface activities can therefore be defined as
events where the morphology of a local surface is changing over
a certain timespan. These surface activities cause severe nat-
ural hazards in many settings, such as shoreline retreat (Vous-
doukas et al., 2020). Knowledge of the impact and occurrence
of these activities is therefore essential to predict, mitigate and
adapt to the potential hazards they inflict. The large variety in
spatial and temporal scale, and the often spatiotemporally su-
perimposed and difficult to predict nature of surface processes
do impose challenges for the observation of surface activities
(Anders et al., 2021).

Near-continuous terrestrial laser scanning (TLS) enables mon-
itoring of surface changes over multiple time scales (Eitel et al.,
2016). In a near-continuous setup, a TLS device is placed at
a fixed location for months to years. 3D point clouds with up
to mm-scale accuracy and resolution can then be acquired at
(sub)hourly intervals. As such, a substantial amount of data is
collected that contains information on the changes in morpho-
logy of the scene’s surface. The vast amount of data (e.g., thou-
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sands of point clouds) collected through this setup brings chal-
lenges for the visual and manual extraction of interpretable and
useful information. To exploit the available point cloud time
series, methods are needed which identify, segment and char-
acterize occurrences of surface activity from these large four-
dimensional (3D + time) datasets.

Previous research on morphological change extraction from
such four-dimensional (4D) datasets, was focused on full time
series clustering, and as such, identifying areas of homogen-
eous surface change over the full time series (Kuschnerus et al.,
2021; Winiwarter et al., 2022). A drawback of these methods
is that individual occurrences of surface activity are not separ-
ated. Furthermore, it is impossible to cluster two similar surface
activities together if they do not occur around the same time.

The purpose of this research is to develop a method that en-
ables the identification of characteristic clusters of spatiotem-
poral segments in the point cloud time series dataset of a sandy
beach, that represent specific surface activities (e.g., sandbar
formation, aeolian storm erosion on a beach) in an unsuper-
vised manner. This large dataset is first reduced into individual
surface activities using a spatiotemporal segmentation method
presented by Anders et al. (2021). Next, the surface activities
are grouped into characteristic types using unsupervised classi-
fication methods. We identify different levels of clusters present
in the point cloud time series dataset, i.e., low-level clusters that
define specific types of erosion and deposition (e.g., sandbar
deposition vs. aeolian dune formation) and high-level clusters
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(e.g., erosion vs. deposition). This is needed as different ap-
plications require different levels of characterization of surface
activity. One might for example be interested in the relative in-
fluence of storm erosion on the total magnitude of beach erosion
(e.g., Callaghan et al., 2009).

2. DATA

2.1 Study area and data acquisition

This research is focused on characterizing surface activity us-
ing a time series of TLS point clouds of a sandy beach on the
North Sea located in Kijkduin, The Netherlands (52°04’14” N,
4°13’10” E). On such sandy beaches, a combination of hydro-
logical processes (swash, tides), aeolian processes and anthro-
pogenic processes interact to erode, transport and deposit sand.
The tide causes part of the beach to be exposed periodically
in the intertidal zone (Figure 1). On the supratidal part of the
beach (backshore and dunes, see Figure 1), aeolian and anthro-
pogenic processes dominate, but with severe weather, hydro-
logical processes also influence the morphology of the beach.
The resulting surface activities on a sandy beach show temporal
scales ranging from seconds to years and even longer, while the
spatial extents range from millimeter to more than dozens of
kilometers. Our research focuses on processes that occur in the
range of days to weeks, over spatial scales of several meters to
hundreds of meters.

This particular beach is monitored using a near-continuous TLS
setup with a Riegl VZ-2000 scanner fixed on a hotel building
overlooking the beach. The setup is part of the CoastScan pro-
ject (Vos et al., 2017). We use a subset of the dataset acquired
from January to May 2017 (Vos et al., 2022). The scans cover
the dunes, backshore and intertidal zone. The point clouds at
the beach itself (ranging from 100 m to 600 m from the sensor)
have point densities between 2 and 20 points/m2.

Intertidal zone

Backshore

Dunes

Figure 1. Study area (star in B). The point clouds sample the
area visualized in A. The blue box represents the subset of the

study area as shown in Figure 2. Data: Aerial imagery ©pdok.nl
2017, borders ©Natural Earth 2022

2.2 Surface activities extracted as 4D objects-by-change

From the point cloud time series, spatiotemporal segments rep-
resenting individual surface activities need to be extracted auto-
matically, as a first step to reduce the large amount of data.
These segments represent the temporal and spatial extent of a
distinct surface activity, e.g. the build-up and consecutive de-
struction of an intertidal sandbar. In this paper we use spa-
tiotemporal segments, named as 4D objects-by-change (4D-
OBCs), extracted with the method presented by Anders et al.
(2021). The 4D-OBCs are obtained through first interpolat-
ing each point cloud to a regular grid with a spacing of 0.5 m

and computing for each grid point the distance to the first point
cloud, using the M3C2 method (Lague et al., 2013). Hereafter,
points of significant change are identified using a sliding tem-
poral window. From these starting points, temporal segments
are extended until the change with respect to the starting point
becomes zero again. These temporal segments serve as seed
candidates for a spatial surface activity segment. A region is
grown spatially by computing the similarity between the time
series of the seed point and the time series of the spatially neigh-
boring points, on the basis of the dynamic time warping (DTW)
distance (Berndt and Clifford, 1994). If the similarity is larger
than an adaptive threshold, the neighboring point is added to
the segment. The full details of the method can be found in
Anders et al. (2021). For this use case, the resulting 4D-OBCs
have been shown to represent 95 % of manually identified sur-
face activities (Anders et al., 2021). We use the derived dataset
containing 2,021 4D-OBCs, extracted from the 4D point cloud
dataset of Kijkduin, as input for our method. An example of
a 4D-OBC is shown in Figure 2. This 4D-OBC represents an
erosion form due to tidal activity in the intertidal area.
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Figure 2. Temporal evolution and extracted spatial segment of
an intertidal sandbar erosion surface activity.

3. METHODS

The methods used to characterize and visualize surface activit-
ies from the 4D-OBCs are summarized in five steps (Figure 3):
(1) split the 4D-OBC dataset into erosion and deposition surface
activities, (2) extract spatial and temporal features from the 4D-
OBCs to be used in the unsupervised classification methods,
(3) for both the erosion and deposition dataset create a train-
ing subset of the 4D-OBCs that show a maximum dissimilarity
with regards to the derived features, (4) with each subset train
a Self-organizing Map (SOM) and match all the 4D-OBCs to
this SOM, to explore the full dataset and organize it into char-
acteristic feature vectors. Lastly (5), use hierarchical clustering
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to group these characteristic feature vectors and obtain different
levels of grouping.

Figure 3. Workflow with the five main steps to obtain grouped
4D-OBCs based on their features.

3.1 Feature extraction

We characterize the 4D-OBCs at first by deriving five features.
The nature of the 4D-OBCs allows for the incorporation of both
spatial (2) and temporal (3) features, as each 4D-OBC contains
time series of height change (one for each point incorporated
in the segment) and locations of all the points belonging to the
4D-OBC.

3.1.1 Spatial features We derive the size of the segment (as
the number of grid points in the final spatial outline of the 4D-
OBC) and the position of the seed of the segment relative to the
cross-shore axis. We only incorporate the cross-shore position
as this can distinguish processes occurring in the intertidal zone
from processes in the supratidal zone, while the along-shore po-
sition is not considered important to any separation in physical
processes.

3.1.2 Temporal features The three temporal features are
based on the temporal evolution of height of the seed of a 4D-
OBC. The shape and magnitude of the seed time series shows
strong variability among 4D-OBCs and is therefore expected to
be of value for the characterization of surface activities. We
resample the seed time series to a fixed number of epochs us-
ing linear interpolation, as the algorithms we use require a fixed
amount of features as input. The seed time series show a wide
variety in length as a result of variations in the nature of a sur-
face activity, ranging from 24 h to 1,344 h with a mean of
around 500 h. We therefore choose a resampling size of 500
epochs.

To incorporate information that is removed when resampling
the seed time series, we also extract features based on the ori-
ginal time series of the seeds. The features obtained from the
original time series are the area under the curve of the seed time
series and the duration of the seed time series.

Next, we extract the sign of each seed time series and use this
to split the dataset into erosion and deposition subsets. Here,
4D-OBCs with a negative sign are regarded as erosion and 4D-
OBCs with a positive sign are regarded as deposition. This res-
ults in a dataset of 1,205 deposition 4D-OBCs and 816 erosion
4D-OBCs. The sign feature itself is not used as input for the
algorithms.

3.1.3 Feature scaling The features are scaled before ana-
lysis as to mitigate any effect of variations in the units of fea-
tures. The scaling is done by normalizing each feature indi-
vidually to the range of 0 to 1 using min-max normalization,
i.e., on the basis of the minimum and maximum value present
in the dataset, for each feature. When scaling the resampled
time series, we set the minimum and maximum feature value
as the minimum and maximum occurring height change of all
4D-OBCs in the dataset, with respect to all epochs. As such,
the resampled time series retains its shape after scaling.

After scaling, all feature values, apart from the resampled time
series, are multiplied by 500 (the resample size of the time
series). Through this, we give equal weight to the separate fea-
tures as to the time series when computing distances between
feature vectors.

3.2 Self-organizing Map (SOM)

SOMs have proven to be suitable for data exploration and char-
acterization in various fields of research (see e.g.,Skupin et al.,
2013; Clark et al., 2020). The advantage of using a SOM over
other unsupervised classification methods, like k-means or prin-
cipal component analysis, is that a SOM can, to a certain de-
gree, preserve topological order of higher dimensional space
into lower dimensions. As such, a SOM shows not only the
characteristic feature vectors of the data, but also which of these
characteristic vectors are neighboring in the feature space. It
can consequently show gradual patterns of variation in the data.
The SOM thus inhibits good potential for the characterization
and visualization of the 4D-OBCs dataset, as the surface activ-
ities we characterize contain gradual variations, and boundaries
between their spatiotemporal properties are not necessarily dis-
tinct.

The SOM is a neural network which is used to map and cluster
high-dimensional data onto an n-dimensional grid or lattice
(Kohonen, 1990). All grid points contain a node (i.e., weight
vector, vj with j = 1, ...M , M = No. grid points) with a
length equal to the number of features of the input samples.
During each of the training cycles t = 1, ...T , all samples xi

(with i = 1, ...n, n = No. samples) in the dataset are iterat-
ively and in fixed order mapped to the closest node (our order
is based on a maximum dissimilarity ranking, see section 3.3)
and the weight of the node is updated. As a result, the final
variance between the weight vector and the mapped samples is
minimized.

The SOM algorithm consist of the following steps:

1. Initialize weight vectors, vj with j = 1, ...M
2. Select for sample xi the closest weight vector vj as best

matching unit (BMU)
3. Update the weight vector and the surrounding weight vec-

tors:
vj = vj + αthi,j(t)(xi − vj) (1)

here hi,j is a Gaussian kernel function defining the mag-
nitude of influence of the sample xi on the weight vectors
in the grid:

hi,j(t) = e

−d2
i,j

2σ2
t (2)

where di,j is the grid distance between vj and BMU, in
grid units; σt is the standard deviation of the Gaussian
kernel at cycle t, indicating the radius of influence of the
sample; and αt is the learning rate at cycle t.
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4. Repeat step 2 and 3 for every sample in the dataset
5. Repeat step 4 for a given amount of cycles T

The initial values of the learning rate and radius are predefined,
and decrease with the number of cycles as a means to achieve
convergence, and both global and local ordering of the data.
The values at cycle t are computed using an asymptotic decay
function:

(αt, σt) = (αt−1, σt−1)
1

1 + 2t
T

(3)

SOMs can be generated with an arbitrary amount of dimensions
and shapes. As to obtain a visually interpretable representa-
tion of the data, we use a two-dimensional rectangular grid of
8 by 8 nodes. This is deemed to be large enough to describe
the distribution in the feature space of the 4D-OBCs, while still
allowing visual interpretability. The other parameters required
for the SOM generation were either empirically determined or
based on literature (Kohonen, 1990; Clark et al., 2020). All the
parameter settings can be found in Table 1. We implement the
SOM algorithm using the Python MiniSOM v2.3.0 implement-
ation (Vettigli, 2018). We train the algorithm using the subset
described in section 3.3 and afterwards assign all the 4D-OBCs
to a node by matching them to their closest weight vector.

No. nodes: 64
Shape: 8x8

Learning rate at epoch t0 (α0): 1.0
Std. dev. of kernel at t0 (σ0): 2.0

Distance metric: Manhattan
Weight initialization method: PCA

Order of input: Based on MDA ranking
No. training cycles (T ): 20,000

Table 1. Parameters for the Self-organizing Map

3.3 Subset selection for training

We select a subset of the 4D-OBCs dataset to be used in the
training phase of the SOM algorithm, using a maximum dissim-
ilarity sampling algorithm (MDA; Kennard and Stone, 1969).
Areas in the feature space with a larger data density represent
a larger area of the SOM (Clark et al., 2020). Selecting a max-
imum dissimilar subset prevents that the SOM is dominated by
surface activities that occur more often and enables a better rep-
resentation and identification of rare surface activities (Bakker
et al., 2022).

The selection of the most dissimilar samples is executed as fol-
lows: (1) compute the distance matrix between all samples in
the dataset based on the Manhattan distance, (2) select the two
most distant samples as initial subset, (3) select the next sample
as the sample that maximizes the smallest distance to any of the
samples already in the subset, and (4) repeat step three until the
desired size of the subset is reached. A ranked subset based on
dissimilarity is then obtained. We choose the final subset sizes
such that the samples in the subsets show an approximately uni-
form distribution along the first two principal components of the
full datasets.

3.4 Hierarchical clustering

The SOM nodes serve as the input for a hierarchical cluster-
ing algorithm, through which we can identify different levels
of separation present in the datasets (Scott et al., 2020). We
compute the full hierarchical tree using the mean feature vec-
tors of the 4D-OBCs assigned to each SOM node. We therefore

start with all mean feature vectors in separate clusters and it-
eratively merge these together on the basis of the intracluster
distances. In this way, we obtain a specific clustering level of
the dataset per distance threshold. We use an average linkage
criterion based on the Manhattan distance to determine if two
clusters are merged. The Python sklearn v1.0.2 agglomerative
clustering implementation is used for clustering.

3.5 Evaluation

We evaluate the performance of the SOMs in terms of their abil-
ity to characterize and visualize the dataset, through visual in-
spection of the mean feature vectors of the 4D-OBCs in each
of the SOM nodes and their variance. The example 4D-OBC
shown in Figure 2 is used to assess if the 4D-OBCs assigned
to neighboring nodes in the SOM are indeed related to com-
parable surface activities, and what distinguishes them. This is
done through inspection of the feature vectors of the 4D-OBCs
in the node where the example is assigned to, and its surround-
ing nodes.

The performance of the hierarchical clustering algorithm at
each distance threshold is evaluated using the mean silhouette
score ssil over all samples (Rousseeuw, 1987). Each sample
here represents the mean feature vector of a SOM node. For
each of these, ssil is computed as follows:

ssil(x) =
b(x)− b(a)

max(b(x), a(x))
(4)

where x is a sample, a(x) is the mean distance between the
sample and all other samples in the cluster it is assigned to,
and b(x) is the mean distance between the sample and all the
samples belonging to the closest cluster it is not assigned to. We
then take the mean of all the silhouette scores to obtain one rep-
resentative value. The silhouette score has a value close to 1 if
the separation between clusters is large, while the intra-cluster
variability is low. The score has a value close to 0 if many
clusters overlap. If the score is smaller than 0, many samples
are assigned to the wrong cluster.

Using the mean silhouette scores we can therefore estimate at
which distance thresholds clusters appear that represent groups
of surface activities. If at a certain distance a local optimum in
silhouette score exists (i.e., with increasing distance threshold
the silhouette score drops again), this indicates that the clusters
at this threshold show a larger separation and smaller intra-
cluster distance than after merging. These clusters might there-
fore hold a physical value and show clusters of high level sur-
face activities. If from one distance threshold to the other the
silhouette score jumps and stabilizes with increasing distance
threshold, the clustering at that threshold is also of interest, as
there is a large distance between all the clusters at this threshold.

4. RESULTS

4.1 Self-organizing Maps

The training subsets of the two datasets are found to be appro-
priate at a size of around a quarter of the full dataset. For the
erosion and deposition dataset this results in a subset of 200 and
300 4D-OBCs, respectively. With each subset, we train a SOM
algorithm, using the settings provided in Table 1. After training,
we match all the 4D-OBCs in the datasets to the closest weight
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Figure 4. A) Visualization of the erosion Self-organizing Map (SOM E). Each plot represents a SOM node. The x-axis of each plot
represents the mean duration of the 4D objects-by-change (4D-OBCs) in the node. The y-axis of each plot represents the mean height
change of the 4D-OBCs in the node. The limits of both vary between each graph. The black curves show the mean time series of the
4D-OBCs in each node, and the grey area the standard deviation. The background colors represent the mean segment size per node
(on a logarithmic scale). Nodes where no graph is visible represent nodes where no sample is matched after training. B) shows the
convex hulls of the 4D-OBCs found in the nodes inside the blue polygon in A. The example shown in Figure 2 is visualized with a

blue dotted line. C) shows the seed time series and timing of the 4D-OBCs as in B.
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vector. In Figure 4A and Figure 5A we visualize the SOMs for
the erosion and deposition dataset, respectively.

In both SOMs there is a clear sorting on the duration of the sur-
face activities. For the deposition SOM (Figure 5A, referred to
as SOM D for Deposition) from columns a to h and rows h to a
the mean duration in the nodes increases, with a few exceptions
(e.g., node D(h,g)). There is also noticeable sorting on segment
size, though the pattern is less explicit than for duration. There
is a clear pattern where on the bottom right the nodes show
sharp increases in height (instant deposition) followed by fairly
steep erosion, with a low number of 4D-OBCs being matched
to these nodes. From here, following the columns and rows
towards a, the mean time series of height change in the nodes
becomes more gradual. Several groups of similar nodes can
also be identified. One clear group of nodes, where few 4D-
OBCs are matched, are the previously mentioned instantaneous
change nodes with high magnitude and small size. This group
roughly encompasses the bottom right quarter of SOM D (al-
though D(h,a) and D(h,b) could also be included, despite their
larger size). Another group of nodes, where few 4D-OBCs
are matched, is characterized by 4D-OBCs with a long dura-
tion (∼400 h - 1200 h), large size (∼100m2 - 10000m2) and
small magnitude (up to ∼0.5 m). This group is visible in the
top row D(a,a-h). From column a-d downwards, this group
gradually transforms into nodes with shorter durations. The
latter SOM region also possesses the nodes where the largest
amount of 4D-OBCs are matched (e.g., D(c,c), D(c,d), D(h,d)
and D(h,e)). These nodes show 4D-OBCs with a duration
between ∼100 h and 400 h, with a size of around 100m2 and
magnitude of maximum ∼0.5 m. The variance of the seed time
series of the 4D-OBCs is fairly high in these nodes and a dis-
tinct shape is thus less pronounced. Several outlying nodes (i.e.,
a low amount of matched 4D-OBCs) are D(a,h), D(a,g), D(d,c),
D(e,b) and D(f,d). The 4D-OBCs in most of these outlying
nodes are large (∼1000m2 - 10000m2) and of relatively low
magnitude, but show a variety of durations.

For the erosion SOM (Figure 4A, referred to as SOM E for
Erosion) the mean segment size in the nodes approximately in-
creases from the top left rows a-h and columns a-h, with some
exceptions (e.g., E(c,f)). Most of the nodes are more gradual,
and nodes that show a sharper decrease in height tend to have
a lower magnitude than the instant deposition surface activities
in SOM D (e.g., E(d,a) and E(g,a)). Groups of nodes are less
easily distinguished than in SOM D, as there are more gradual
variations from node to node. Some groups of nodes are nev-
ertheless noticeable. One group is comprised by the highly
populated node E(e,a) and its neighbors (E(a-b,e-g); group I).
These nodes show 4D-OBCs with a low magnitude (minimum
of ∼0.1 m), relatively gradual erosion, and relatively long dur-
ation (∼400 h - 1200 h). To the right, this duration decreases,
and the amount of 4D-OBCs matched there also decreases. A
second group is a highly populated area of node E(a,c) and its
neighbors (group II). Here, the low magnitude 4D-OBCs are
also present, but the height changes over time are more in-
stant. Furthermore, the duration is shorter, and at the end of
the time series, the height increase is substantial and instantan-
eous. This indicates that a deposition activity commonly oc-
curs directly after such an erosion activity. A third interest-
ing group is visible on the right side of SOM E (E(d-h,g-h),
group III), here 4D-OBCs are matched that show a large size
(up to ∼10000m2), with mean magnitudes slightly larger than
most nodes in group I and II, and a more gradual erosion and
recovery phases. In this group, the mean durations vary over

the full range of durations present in the dataset. There are a
few outlying nodes (E(h,c), E(h,d), and E(a,h)) that represent
fairly instantaneous or step-like 4D-OBCs with a large mag-
nitude (down to -1.5 m). The 4D-OBCs represented by E(a,h)
are distinguishable from the others by their shorter duration.

4.1.1 Example of the identification of intertidal erosion
The intertidal erosion activity shown in Figure 2 is assigned to
node E(f,h). Figure 4B and C show the spatial and temporal out-
line of the 4D-OBCs assigned to this node and the surrounding
nodes. Figure 4B shows that all the 4D-OBCs grouped in these
nodes occur in the intertidal zone. The 4D-OBCs assigned to
E(f,h) are generally slightly larger and stretch out towards the
backshore. The nodes E(e,h) and E(g,h) contain fairly elong-
ated segments, whereas the segments of the 4D-OBCs in E(e,g)
and E(f,g) are shorter. E(g,g) shows both elongated and short
segments.

Figure 4C shows the time series and timing of the same 4D-
OBCs. There is variation in duration of the 4D-OBCs contained
in node E(f,h). Some of the durations are similar to the dura-
tion of the 4D-OBCs in the other nodes. What distinguishes the
4D-OBCs in node E(f,h) is the magnitude of the change. The
minimum height change (for three of the four 4D-OBCs visual-
ized) is closer to zero, than for the 4D-OBCs in the other nodes.
Moreover, the 4D-OBCs captured in node E(f,h) shows more
gradual recovery than most of the 4D-OBCs captured by the
other nodes, with the exception of the example 4D-OBC shown
in Figure 2.

4.2 Hierarchical clustering

We hierarchically cluster the mean feature vectors of the 4D-
OBCs in the nodes of SOM E and SOM D separately. It is found
that the silhouette score generally increases with an increasing
distance threshold, there are nonetheless several plateaus where
the silhouette stabilizes. What is more, the silhouette score
related to the clustering of SOM D exhibits a local optimum
around a distance of 200. We investigate what characterizes the
clusters found at this threshold and identify if this indeed res-
ults in a physically relevant grouping of surface activities. At
this distance threshold the SOM nodes of the deposition dataset
are clustered into 16 clusters. The nodes incorporated in each
of the clusters are visualized in Figure 5B.

We further inspect cluster 0, cluster 1 and cluster 12, as these
contain nodes with visually comparable mean feature vectors.
The bottom right cluster is also investigated which contains not-
ably different mean feature vectors (cluster 5). Figure 5C-F
shows density plots of the cross-shore location with respect to
the edge of the data array (Figure 5C), duration (Figure 5D),
and starting epoch of the 4D-OBCs allocated to the respect-
ive cluster (Figure 5F). We also show the density plots of the
maximum height change derived from the seed time series (Fig-
ure 5E).

The three apparently similar clusters (0, 1 and 12) show not-
ably different characteristics. Cluster 0 and 12 both con-
tain 4D-OBCs mostly found in the intertidal zone (between -
150 m and - 300 m). The durations of the 4D-OBCs do how-
ever differ. Cluster 12 is defined by shorter durations, with
a density peak around 170 h, whereas cluster 0 shows a peak
around 610 h, while also containing activities of longer dur-
ations. It is suggested that these define two types of inter-
tidal deposition where the underlying process displays differ-
ent periods of forcing. This is also indicated by the fact that
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Figure 5. A) Visualization of the deposition Self-organizing Map (i.e., SOM D). For detailed explanation refer to the caption of
Figure 4. B) The clusters found with a distance threshold of 230. Each grid point refers to a node in A, each color and number

represents one cluster of nodes. C-F) Density plots of four features of the 4D objects-by-change grouped in cluster 0, 1, 5 and 12.

cluster 0 shows two distinct peaks of initiation in the density
plot (see Figure 5F), whereas the peaks of cluster 12 are less
distinct, indicating that the initiation occurs more frequently.
Moreover, the difference in characteristics between cluster 1
and the previously mentioned clusters is considerable, as the
4D-OBCs in cluster 1 predominantly occur closer to the back-
shore area (between -100 m and -150 m), suggesting that these
surface activities are more influenced by aeolian drivers. The
4D-OBCs in this cluster on average also show a longer duration,
and a larger peak at low maximum change than the aforemen-
tioned clusters. These last two characteristics also distinguish
the cluster from cluster 5. 4D-OBCs in cluster 5 predominantly
occur in the backshore area, but slightly land inward. They are
characterized by a large maximum height change and shorter
duration. These aspects indicate that cluster 5 shows anthropo-
genic deposition by bulldozers, as it has already been identified
that such activities occur in this part of the beach (Kuschnerus
et al., 2021).

5. DISCUSSION

From the analysis of our dataset, we can see that types of sur-
face activities similar to one type of surface activity of interest
can be found by inspecting the 4D-OBCs in the SOM region
surrounding the node where the 4D-OBC, describing the sur-
face activity of interest, is found. All 4D-OBCs shown in Fig-
ure 4B and C are related to the same type of surface activity,
namely intertidal sandbar erosion, but with variations in loca-
tion, extent, duration, magnitude and time series shape. The
4D-OBC shown in Figure 2 is a slightly outlying surface activ-
ity, as it shows a similar magnitude, location and size as the sur-

face activities captured in the same node, but with a shorter dur-
ation and faster recovery to initial state. The SOM thus allows
to investigate the variety of characteristics that a certain surface
activity can exhibit, while also allowing to find similar activ-
ities occurring at different points in time, by investigating the
nodes surrounding a sample of interest. It should be noted that
this was investigated only for one example of intertidal sandbar
erosion in the scope of this paper.

We find that some 4D-OBCs that are not grouped together ac-
tually show a lot of similarities. The two 4D-OBCs with a cen-
ter epoch around 2017-04-01 (cyan and pink in Figure 4C) are
matched in different nodes, even though their visualized spa-
tial and temporal features are similar. Furthermore, there is one
4D-OBC in node E(g,g), that shows the same elongated outline
as the 4D-OBCs in node E(e,h) and E(g,h), with a similar time
series. These 4D-OBCs thus show very similar surface activit-
ies while not being grouped together. It has to be explored in
further work what is the exact reason of this behavior.

A more extensive parameter tuning of the SOM algorithm
might enhance the performance of the SOM. So far, most of
the settings were determined on the basis of visual inspection
or literature. The use of the full seed time series, or even all
the time series of grid points in a 4D-OBC, instead of only
the resampled seed time series, in combination with a DTW
distance metric instead of Manhattan distance, might also
improve the performance. In future work, these settings will be
tested and performance will be assessed using e.g., a labelled
test dataset and quantification of the intra-node distances.
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The use of a hierarchical clustering algorithm for the automated
identification of higher level groups of surface activity is shown
to be very effective and valuable for our dataset. As an ex-
ample we inspected four of the clusters found with this method,
which showed characteristic types of surface activity with con-
siderable separation in the feature space. In contrast to previous
methods of point cloud time series analysis, in which full time
series clustering was used to group similar change patterns, we
are able to cluster groups of spatiotemporal segments that are
not initiated around the same time, but do represent the same
type of surface activity. It may be explored if using a hierarch-
ical clustering algorithm directly on the 4D-OBCs instead of
first organizing it in a SOM achieves better or comparable res-
ults.

6. CONCLUSION

The aim of this research is to develop a method that enables the
identification and characterization of types of surface activity
present in large near-continuous point cloud time series.

A Self-organizing Map (SOM) in combination with a maximum
dissimilarity sampling algorithm (MDA) can sort 4D-objects-
by-change (4D-OBCs) that represent single surface activities.
The SOM enables to identify gradual patterns existing in the
4D feature space, as well as groups of surface activities repres-
ented in the dataset. The combination with the MDA allows for
the identification of both rarely and frequently occurring sur-
face activities. Furthermore, one can identify and characterize
comparable occurrences of a certain type of surface activity of
interest, by means of investigating the respective SOM node
and its surroundings.

Hierarchically clustering these SOM nodes is shown to be
a promising method of identifying distinct groups of surface
activity. It further allows for the identification of broader but
distinct groups of surface activity present in the dataset.

The presented methods allow exploration of the different prop-
erties of the 4D-OBCs and group them together. For example,
in the case of bulldozer works and erosion in the intertidal zone,
we could group similarly behaving time series and show what
distinguishes these groups from one another. Even for 4D-
OBCs that appear in the same location, e.g., in the intertidal
zone, or around the same time, our methods allow to group them
separately and identify why these 4D-OBCs represent different
surface activities. A next step is investigating what the driving
mechanisms behind the found groups of 4D-OBCs are.

References

Anders, K., Winiwarter, L., Mara, H., Lindenbergh, R., Vos,
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B., Aarninkhof, S., de Vries, S., 2022. A high-resolution 4D
terrestrial laser scan dataset of the Kijkduin beach-dune sys-
tem, The Netherlands. Scientific Data, 9(1). 10.1038/s41597-
022-01291-9.

Vos, S., Lindenbergh, R., De Vries, S., Aagaard, T., Deigaard,
R., Fuhrman, D., 2017. Coastscan: Continuous monitoring of
coastal change using terrestrial laser scanning. Proceedings
of Coastal Dynamics, 2017(233), 115.

Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis,
T. A., Athanasiou, P., Luijendijk, A., Feyen, L., 2020. Sandy
coastlines under threat of erosion. Nature Climate Change,
10(3), 260–263.

Winiwarter, L., Anders, K., Schröder, D., Höfle, B., 2022.
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