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ABSTRACT:

As an extension to existing work on crack detection and subpixel accuracy crack width determination as a tool for civil engineering
material testing, the paper shows an algorithmic approach to handle widening cracks with relative rotations between related crack
borders. In the first time step under zero-load, a set of points to be tracked through consecutive frames of an image sequence
is defined. Then, subpixel-precise displacement fields are computed for the image data of the following time steps using an 8-
parameter least-squares matching approach. The points are triangulated into a mesh, and the changes of the inner geometry of the
triangles are considered with a mathematical model assuming a split of each triangle. With this model, subpixel-precise deformation
vectors are derived. Crack candidates are determined by a thresholding applied to the vectors’ lengths. After an estimation of the
crack normal, a decomposition of the deformation vectors is applied, allowing to compute crack widths and shear movements. As
a novel contribution to the technique, a model extension is proposed for the case of a relative rotation between the crack borders in
order to reduce systematic errors. The model includes two separate rigid transformations for each crack side.

1. INTRODUCTION

Crack detection and deformation analysis is an important field
in material testing. In opposite to classical instruments such as
inductive displacement transducers or strain gauges, image se-
quence based methods offer a contact-less measurement with
high spatial and temporal resolution and they are thus suited
for deformation measurement. In the past years, several pho-
togrammetric approaches to crack detection were published:
(Fraser and Riedel, 2000) measured displacements of cooling
steel beams using a three camera configuration. (Whiteman
et al., 2002) determined vertical deflections of artificial targets
on concrete beams using a stereo camera system. (Barazzetti
and Scaioni, 2009) used a monocular system and an orientation
frame to analyze cracks. (Benning et al., 2004, Görtz, 2004,
Lange et al., 2006, Lange and Benning, 2006) observed artifi-
cial targets on concrete specimens with a trinocular camera sys-
tem during load tests. They also computed crack widths in 4-
point elements (rectangles) without regarding rotations between
the states. (Hampel and Maas, 2009) computed dense displace-
ment fields using cross-correlation and least-squares matching
and determined crack widths by analyzing discontinuities in
profiles through the shift fields along the x and y direction in
the image coordinate system. (Barazzetti and Scaioni, 2010)
tracked signalized targets in monocular image sequences of
the observed concrete beams during load tests. In addition,
they applied a Wallis filter for image pre-processing to untar-
geted surfaces, followed by cross-correlation and least-squares
matching to determine displacement fields of interest points.
(Geers et al., 1996) presented an algorithm to obtain strain
fields from discrete 2D displacement fields. The inclusion of
strains matches to the requirements in determining ductile de-
formations. Moreover, it can also be used to detect cracks.
(Koschitzki et al., 2011, Liebold and Maas, 2016) analyzed

monocular image sequences. They worked with a triangulation
of the points of the displacement field and computed strains to
detect cracks. (Liebold and Maas, 2018, Liebold and Maas,
2020) proposed another deformation quantity that allows to de-
rive crack widths in triangular meshes for monocular image se-
quences with subpixel accuracy. This approach is more suitable
for brittle material and can also be used for crack propagation
measurements (Liebold et al., 2020a). (Liebold et al., 2019) ex-
tended the method to non-planar object surfaces observed with
stereo camera image sequences, and (Liebold et al., 2020b)
showed how to compute full 3D crack opening vectors from
3D displacement fields.

The paper at hand extends the model of (Liebold and Maas,
2020, Liebold et al., 2020b) in a way that a relative rota-
tion between crack sides is considered. The following section
briefly repeats the analysis of monocular image sequences for
crack detection and crack width measurement and shows the
extension for handling relative rotations of related crack faces.
The third section goes into the analysis of multiocular image
sequences. The publication closes with a conclusion as well an
outlook.

2. CRACK DETECTION BY MONOCULAR IMAGE
SEQUENCE ANALYSIS

The procedure starts with the image acquisition. For measure-
ments with monocular camera systems, the following require-
ments should be fulfilled to avoid systematic errors:

• The object surface to be observed should be planar with an
artificial or natural texture suited for image matching.

• The optical axis should be perpendicular to the object’s
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surface. Alternatively, an inclination should be corrected
by an image rectification.

• Out-of-plane movements should be avoided.

• A camera calibration should be done to reduce systematic
errors of lens distortion but is often neglected.

The first image of the sequence is recorded under zero-load to
be considered as reference image. In this image, a set of points
is defined, for instance a regular grid. Fig. 1a shows an image
used as reference from a concrete beam in a 4-point bending
test determined with a monocular camera system (one half of
the beam is shown).

(a)

(b)

(c)

Figure 1. (a) Reference image with the points to be matched; (b)
deformed state and displacement field (scale factor: 5, based on
(Liebold et al., 2020a)); (c) mesh of the matching points tracked

successfully. Based on (Liebold and Maas, 2018).

2.1 Displacement Vector Field Determination and Trian-
gulation

Then, between the reference and the images of the deformed
states, digital image correlation techniques such as cross-
correlation and least-squares matching are applied (Ackermann,
1984) for the determination of subpixel-precise shifts for the
defined points, see Fig. 1a. Fig. 1b shows an image of a de-
formed state with the displacement vector field. The points, for
which displacements were computed successfully, are triangu-
lated into a triangular mesh, see Fig. 1c. The triangulation is
repeated for each further (later) image, due to a different num-
ber of successful matchings.

2.2 Deformation Analysis

In the model of the parallel translation, an occuring crack
will split a triangle into two parts with one part being shifted
(Liebold and Maas, 2020). Thus, for the two vertices on the
one side of the crack, a rigid transformation (translation t⃗, ro-
tation matrix R) is applied and for the remaining vertex on the
other crack side, there is an additional relative shift t⃗rel. Fig. 2
illustrates the schematic split of a triangle with the reference
as well as the deformed state. Eq. 1 shows the mathematical
formulation with a distinction of cases. For 2D, the set M1

contains the indices of the base edge vertices b1 and b2 whereas
M2 contains the remaining index h. The triangle edge with the
smallest length difference is used as base edge (indices b1 and
b2, Eq. 2).

Figure 2. Scheme for the triangle split, reference state on the
left, deformed on the right. Based on (Liebold et al., 2019).

p⃗def,i =

{
t⃗+ R · p⃗ref,i ∀ i ∈ M1

t⃗+ R · p⃗ref,i + t⃗rel ∀ i ∈ M2

(1)

b1, b2 = argmin
i,j

||||s⃗def,ij || − ||s⃗ref,ij ||||

∀ (i, j) ∈ {(1, 2), (1, 3), (2, 3)}
(2)

where s⃗ref,ij = p⃗ref,j − p⃗ref,i
s⃗def,ij = p⃗def,j − p⃗def,i

To solve Eq. 1, first, t⃗ and R are computed with the indices of
the base edge vertices. The solution for t⃗rel is then computed
as follows:

t⃗rel = p⃗def,h − t⃗− R · p⃗ref,h (3)

t⃗rel is used as deformation vector and includes a normal as well
as a shear component, see Fig. 2 and Sec. 2.4. The vector’s
length ||⃗trel|| is used as a scalar deformation quantity for brittle
material. A thresholding is applied to detect deformed triangles
(crack candidates). The threshold δ depends on the quality of
the displacement field, which often has subpixel precision so
that values of 0.1-0.2 px are suitable for δ. The crack position
for these deformed triangles is estimated by the weighted aver-
age:

m⃗def = (p⃗def,b1 + p⃗def,b2 + 2 · p⃗def,h)/4 (4)

Fig. 3a depicts the deformation vector field for the deformed
triangles where ||⃗trel|| exceeds the threshold δ. Fig. 3b shows
a zoom in of the deformation vector field. In Fig. 3c, the color-
coded triangle mesh for the values of ||⃗trel|| is depicted.

2.3 Crack Normal Estimation and 2D Crack Opening Vec-
tor

For each crack candidate (deformed triangle), a crack normal
vector is estimated as follows: First, the deformed neighbor tri-
angles of the crack candidate are determined. Here, neighbors
have at least one common vertex and also second order neigh-
bors (neighbors and neighbors of neighbors) are used. This is
followed by a line fit (optionally weighted, see (Liebold and
Maas, 2018)) computed with the centers (see Eq. 4) of the crack
candidate and its neighbors. The orthogonal to the line is used
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(a)

(b)

(c)

Figure 3. (a) Deformation vector field for the crack candidates
(scale factor: 80); (b) zoom in for the deformation vector field
(scale factor: 80); (c) color-coded triangular mesh of the scalar

values of ||⃗trel||, based on (Liebold and Maas, 2020).

as an estimation for the crack normal n⃗′. This vector n⃗′ is then
normalized and it is oriented toward the deformation vector:

If t⃗ T
rel · n⃗′ < 0 : n⃗ = − n⃗′

||n⃗′|| otherwise n⃗ = n⃗′

||n⃗′|| . (5)

Fig. 4a illustrates the principle of the crack normal estimation.
Considering this procedure, large triangles may lead to less pre-
cise results, and at crack crossings as well at mesh borders, sys-
tematic errors may appear.

With the knowledge of the crack normal, t⃗rel is decomposed
into the normal and the perpendicular shear component, see
Eq. 6 as well as Fig. 4b.

t⃗rel,n = t⃗ T
rel · n⃗ · n⃗; t⃗rel,s = t⃗rel − t⃗def,n (6)

The scalar components of the 2D crack opening vectors are the
crack width r and the shear s, see Eq. 7. These values are very
interesting in material testing.

r = ||⃗trel,n|| = t⃗ T
rel · n⃗;

s = ||⃗trel,s|| =
√

||⃗trel||2 − r2
(7)

Fig. 4c depicts the corresponding normal components in red and
the shear components in green of the example above.

2.4 Model Extension for Relative Rotations

In case of relative rotations between related crack faces, system-
atic errors will occur when applying the model with the parallel

(a)

(b)

(c)

Figure 4. (a) Crack normal estimation, based on (Liebold and
Maas, 2018); (b) decomposition of the deformation vector; (c)

vector field of the normal (red) and the shear components
(green) of the deformation vector (scale factor: 80).

translation (Eq. 1). For such cases, the model can be exten-
ded. Fig. 5a illustrates a triangle split with relative shift and
rotation. The following computation steps can be performed
optionally after the calculations of section 2.2 and are applied
to the deformed triangles. The extended model for relative ro-
tations with two separate rigid transformations (translations t⃗1
and t⃗2, rotation matrices R1 and R2) is:

p⃗def,i =

{
t⃗1 + R1 · p⃗ref,i ∀ i ∈ M1

t⃗2 + R2 · p⃗ref,i ∀ i ∈ M2

(8)

Now, for M2, at least two points are required to solve the system
of Eq. 8. To extend the set M2, all undeformed neighbor tri-
angles with the vertex p⃗def,h are determined and the remaining
vertices are added to M2. This is visualized in Fig. 5b where the
red triangle is a crack candidate, the other soft red triangles are
neighboring deformed triangles and the undeformed triangles
with p⃗def,h are depicted in strong blue. The green vertices are
base line points and the yellow vertices belong to M2.

The deformation vector t⃗rel is ambiguous and varies along the
crack border. It is not included in Eq. 8 and is computed sep-
arately. Here, t⃗rel is defined by the difference of the two trans-
formations applied to the crack location (Eq. 10). From the di-
gital image correlation data, the crack position assigned to the
triangle (in the reference state) can be estimated as shown in
Eq. 9.

m⃗ref = (p⃗ref,b1 + p⃗ref,b2 + 2 · p⃗ref,h)/4 (9)

t⃗rel = t⃗2 − t⃗1 + (R2 − R1) · m⃗ref (10)

Fig. 5c depicts a deformed image of a tension test with relative
rotation. It is blended with the color-coded map with the ||⃗trel||
and the deformation vector field (scale factor: 15) is shown.
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(a) (b)

(c)

Figure 5. (a) Triangle split with relative shift and relative
rotation; (b) vertices of M1 in green and extended set of vertices
M2 in yellow; (c) color-coded mesh with values of ||⃗trel|| and

deformation vector field (scale factor: 15) of a tension test with a
relative rotation.

2.4.1 Error Assessment To evaluate the benefit of the
model extension, the error vectors are computed with and
without model extension. Assuming that there are two differ-
ent rigid transformations on each crack side, the target value
is:

t⃗rel,target = t⃗2 − t⃗1 + (R2 − R1) · p⃗ref,crack (11)

The position p⃗ref,crack is the exact crack position that is not
known. Without model extension, the calculated value from
Eq. 3 is expressed as follows:

t⃗rel,PT = p⃗def,h − t⃗1 − R1 · p⃗ref,h
= t⃗2 − t⃗1 + (R2 − R1) · p⃗ref,h

(12)

Then, the error without model extension (PT: parallel transla-
tion) is:

ϵ⃗PT = t⃗rel,PT − t⃗rel,target
= (R2 − R1) · (p⃗ref,h − p⃗ref,crack)

(13)

There is still a remaining error in case of the model extension
(ME), computed by the difference of Eq. 10 and Eq. 11:

ϵ⃗ME = t⃗rel,ME − t⃗rel,target
= (R2 − R1) · (m⃗ref − p⃗ref,crack)

(14)

The relative errors are:

ϵPT,rel =
||⃗ϵPT ||

||⃗trel,target||
; ϵME,rel =

||⃗ϵME ||
||⃗trel,target||

(15)

The error vectors depend on the difference of the rotation
matrices and on the difference vector of between the exact crack
position and the vertex p⃗h,ref (model of PT) or the weighted
center (Eq. 9, with ME): the smaller the difference vector, the
smaller the error.

The errors are also analyzed in a simulation shown in Fig. 6. A
grid of points is defined with a horizontal distance of ten units

Table 1. Median absolute and relative errors with and without
model extension.

Relative rotation 1° 2° 5° 10° 20°
median(||⃗ϵPT ||) 0.088 0.18 0.44 0.88 1.75
median(||⃗ϵME ||) 0.021 0.042 0.11 0.21 0.42
median(ϵPT,rel) 0.035 0.037 0.038 0.039 0.039
median(ϵME,rel) 0.0074 0.0077 0.0079 0.0079 0.0079

that is triangulated into a mesh (Fig. 6a). In addition, a line (red)
is defined that separates the set of points into two parts where
different rigid transformations are applied. The perpendicular
foot points (green points) of the triangle center points are used
as the target crack positions. The deformed state is visualized
in Fig. 6b and c where the error vectors (Eq. 13 for Fig. 6b and
Eq. 14 for Fig. 6c) are shown as vector fields (scale factor 10),
too. The errors have a preferred direction along the crack and
they are reduced if the model extension is used (shorter arrows).

(a)

(b)

(c)

Figure 6. (a) Triangular mesh (reference state) with the red
separation line, blue triangle center points and blue connections
to the perpendicular foots (green points) on the line; (b) mesh

(deformed state) and error vector field for the model of PT (scale
factor: 10) for 10° relative rotation; (c) mesh (deformed state)

and error vector field for ME (scale factor: 10).

The errors with the ME depend directly on the distances in
Fig. 6a (blue connections) and are smaller than without model
extension in the most cases. The corresponding boxplots are
shown in Fig. 7a; over all relative rotation angles, the error me-
dians are reduced by about 74 % if the ME is used. Fig. 7b
depicts the boxplots of the relative errors where the medians
stay at a constant level and are reduced by almost 80 % when
using the ME, see also Table. 1 (without units).

2.4.2 Practical Test A practical test is done with two prin-
ted patterns (Fig. 8, size DIN-A4) that are created using a vec-
tor graphics editor. The pattern is separated in two parts by a
horizontal line and the upper part is rotated and shifted in the
deformed state (Fig. 8b) whereas Fig. 8a shows the reference
state. The relative rotation is set to 5°. In the corners of the pat-
terns, there are circular targets for a projective transformation.

Each of the two printed patterns is recorded using a calibrated
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(a)

(b)

Figure 7. (a) Boxplots of absolute errors (without dimension);
(b) boxplots of relative errors for different relative rotation

angles.

(a) (b)

Figure 8. (a) Reference pattern generated with vector graphics;
(b) deformed state with a known rotation of 5° of the upper part.

industrial camera (AVT Mako G503B) combined with a lens
of 16 mm focal length. The algorithm of section 2.2 is ap-
plied to compute the deformation vectors t⃗rel,PT (model of par-
allel translation PT) as well as the vectors t⃗rel,ME using the
model extension (ME, section 2.4). The subpixel-accurate el-
lipse measurement of the corner targets and a projective trans-
formation into the coordinate system of the pattern generation is
done that allows to compare the results with target values from
the pattern generation and also solves the scale problem. In or-
der to obtain the target values, the perpendicular foot points of
the triangle centers m⃗ref (Eq. 9) of the detected deformed tri-
angles are computed and used as target crack positions. After
this, Eq. 11 is applied to calculate the t⃗rel,target vectors.

Similar to section 2.4.1, the absolute errors (||⃗ϵPT || from Eq. 13
and ||⃗ϵME || from Eq. 14) as well as the relative errors (ϵPT,rel

and ϵME,rel from Eq. 15) are computed. The corresponding
boxplots are shown in Fig. 9. For the relative rotation of 5°,
the median of the absolute errors is reduced by 53 % and the
median of the relative errors is reduced by 62 % when using the
model extension.

(a) (b)

Figure 9. (a) Boxplots of absolute errors; (b) boxplots of relative
errors for a relative rotation angle of 5°.

3. CRACK DETECTION BY STEREO IMAGE
SEQUENCE ANALYSIS

Compared to crack detection in monocular image sequences,
there are less restrictions for the analysis of multiocular image
sequences, and it allows to measure non-planar surfaces and
out-of-plane displacements. In case of stereo image sequences,
a preparation step, the calibration of the stereo camera system,
is required to determine the inner and the relative orientation.

3.1 Displacement Vector Field Determination and Trian-
gulation

The first step of data acquisition is recording a first image pair
without any deformations of the probe to be observed. In one
of the two images, a set of points to be tracked is defined. The
corresponding image points in the second image are determined
using digital image correlation techniques. For the next record-
ings of the deformed states, the corresponding points in both
images are computed. The scheme in Fig. 10 shows the prin-
ciple of the determination of the displacement field of the 3D
surface points and the triangulation into a mesh.

Figure 10. Principle of the displacement field determination and
triangulation, based on (Liebold et al., 2019).

3.2 Deformation Analysis

First, deformed triangles are detected by the analysis of the in-
ner geometry done by a congruent mapping to 2D coordinates
(Liebold et al., 2020b). In order to do that, the edge vectors
of the triangle s⃗ref,ij and s⃗def,ij are computed as well as the
indices of the base edge b1 and b2 using Eq. 2. The remaining
vertex has the index h.

The congruent mapping is done for the reference as well as the
deformed state and is combined with the rigid transformation.
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The relevant transformed 2D coordinates of the reference tri-
angle q⃗ref,h,t and the deformed triangle q⃗def,h are:

q⃗ref,h,t =
(
xref,b1,t + dxref,b1,h dyref,b1,h

)T
;

q⃗def,h =
(
dxdef,b1,h dydef,b1,h

)T (16)

where xref,b1,t = 1
2
· (||s⃗def,b1,b2|| − ||s⃗ref,b1,b2||)

dxref,b1,h =
s⃗ T
ref,b1,b2·s⃗ref,b1,h

||s⃗ref,b1,b2||

dyref,b1,h =
√

||s⃗ref,b1,h||2 − dx2
ref,b1,h

dxdef,b1,h =
s⃗ T
def,b1,b2·s⃗def,b1,h

||s⃗def,b1,b2||

dydef,b1,h =
√

||s⃗def,b1,h||2 − dx2
def,b1,h

From these coordinates, the 2D deformation vector is derived:

t⃗rel,2D = q⃗def,h − q⃗ref,h,t (17)

The norm of the vector ||⃗trel,2D|| is used as the deformation
quantity in order to detect deformed triangles by thresholding
(deformed if ||⃗trel,2D|| > δ). Fig. 11a visualizes the principle
of the thresholding.

(a)
(b)

(c)
(d)

Figure 11. (a) Thresholding applied to ||⃗trel,2D|| to detect
deformed triangles in red whereas undeformed triangles are

blue; (b) block before cracking in the reference state; (c) broken
block with relative shift of the right half such that the red crack
triangle is deformed, the neighboring base triangle is shown in

blue; (d) crack direction g⃗ determination by line fit through
neighboring deformed triangles (red) and coordinate system of
the crack opening vector derived from g⃗. Based on (Liebold et

al., 2020b).

After this, the model of parallel translation and the mathemat-
ical formulation of Eq. 1 is reused for the 3D case and applied
to the deformed triangles. To solve Eq. 1 in 3D, M1 has to con-
tain at least three points so that the three vertices of the triangle
are not enough. Further information is needed, at least one addi-
tional point around the base edge. The set M1 is extended by the
additional vertex b3 of the undeformed neighbor triangle having
the same edge with the vertices b1 and b2: M1 = {b1, b2, b3}
and M2 = {h}. Fig. 11b shows the reference state whereas
Fig. 11c illustrates the deformed state of a broken block. The
surface points are separated into two sets (magenta and cyan).
The deformed triangle is red and the undeformed neighbor with

the common base line is blue that delivers a third vertex (index
b3) for M1.

In Fig. 12, an analysis of one epoch from a torsion test is
shown. Fig. 12a depicts the color-coded mesh with the values
of ||⃗trel,2D||. Fig. 12b visualizes the 3D deformation vectors
computed with the model of parallel translation.

Figure 12. (a) Color-coded mesh of ||⃗trel,2D|| (deformed state);
(b) deformation vectors with the model of parallel translation;
(c) decomposition of the deformation vectors to crack normal

(red), shear (green), vertical component (blue); (d) deformation
vectors with the model extension for relative rotation (scale

factor: 5 for (b),(c),(d)).

3.3 3D Crack Opening Vector

Similar to the 2D case, the direction of the crack g⃗ is estimated
first by applying a line fit through the center points of neighbor-
ing deformed triangles, as illustrated in Fig. 11d. After comput-
ing the vertical direction v⃗, the vector g⃗ is used to compute the
crack normal n⃗ as well as the shear direction s⃗, see Eq. 18.

v⃗ = (p⃗b2−p⃗b1)×(p⃗b3−p⃗b1)
||(p⃗b2−p⃗b1)×(p⃗b3−p⃗b1)||

;

n⃗ = v⃗×g⃗
||v⃗×g⃗|| ; s⃗ = v⃗ × n⃗

(18)

The normal (⃗trel,n), the shear (⃗trel,s) as well as the vertical
(⃗trel,v) component of the deformation vector are computed by
projections:

t⃗rel,n = t⃗ T
rel · n⃗ · n⃗;

t⃗rel,s = t⃗ T
rel · s⃗ · s⃗;

t⃗rel,v = t⃗ T
rel · v⃗ · v⃗

(19)

Fig. 12c depicts the components of the deformation vectors of
the torsion test example (red: crack normal components, green:
shear components, blue: vertical components, scale factor: 5).
An experimental validation is shown in (Liebold et al., 2020b):
They determined a relative accuracy of 0.0002 for t⃗rel and
0.0003 for the crack opening vector.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W2-2022 
Optical 3D Metrology (O3DM), 15–16 December 2022, Würzburg, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-61-2022 | © Author(s) 2022. CC BY 4.0 License.

 
66



Table 2. Median absolute and relative errors for 3D case.

Relative rotation 1° 2° 5° 10° 20°
median(||⃗ϵPT ||) 0.087 0.17 0.43 0.86 1.72
median(||⃗ϵME ||) 0.027 0.055 0.14 0.27 0.54
median(ϵPT,rel) 0.036 0.039 0.041 0.041 0.041
median(ϵME,rel) 0.012 0.014 0.015 0.016 0.017

3.4 Model Extension for Relative Rotations

The procedure is similar to section 2.4. It is an optional step
after applying the model with parallel translation and is only
computed for deformed triangles. The mathematical model in
Eq. 8 is reused with 3D coordinates and 3D rotations. To solve
this system, for both sets M1 and M2, at least three points are
required. M1 already has a cardinality of three in the model of
PT but M2 needs to be extended. This is done in the same way
as in 2D. All undeformed neighbor triangles of the vertex p⃗def,h
are determined, and the vertices of these triangles are added to
M2, as illustrated in Fig. 13 (red bordered cyan circles). After
computing the parameters t⃗1, R1, t⃗2 and R2, the deformation
vector t⃗rel is calculated using Eq. 9 and Eq. 10.

Figure 13. Relative rotation of the right half, neighboring
undeformed triangles to p⃗def,h in blue with cyan red bordered

vertices.

Fig. 12d shows the vector field of the deformation vectors com-
puted with the extended model. Compared to Fig. 12b, the vec-
tors have a less scattering.

3.4.1 Error Assessment The consideration of the 2D case
in section 2.4 can be transferred to 3D so that Eq. 11, 13 and 14
are reused here. The errors are also analyzed in a simulation,
where a grid of 3D points on a cylinder surface and a separa-
tion plane are defined, see Fig. 14a (triangle edge lengths: 15.7,
12.7, 12.7 without units). Target values for the deformation
vectors are obtained by projecting the centers of intersected tri-
angles onto the plane and applying Eq. 11. Fig. 14b and c show
the deformed state with the error vectors exaggerated with scale
factor of 20 for a relative rotation of 10°. In Fig. 15a and b, the
boxplots of the absolute and relative error vector lengths are
depicted for different relative rotation angles. Tab. 2 shows the
medians. The behavior is similar to the 2D case. Also here,
the median errors (absolute) are reduced by about 70 % and the
medians of relative error decrease by more than 60 %.

3.4.2 Practical Test A practical test is performed with the
same pattern as used for the 2D algorithm of Sec. 2.4.2 (Fig. 8).
A stereo system of two UI-3280CP Rev.2 cameras with lenses
of focal lengths of 25 mm is used to record the patterns. The
calibration (inner and relative orientation) of the system is
done with the commercial software GOM ARAMIS (Carl Zeiss
GOM Metrology GmbH). Ellipse measurements of the circular
corner points allow a rigid transformation into the target value
system. The target values are calculated in the same way as

(a)

(b)

(c)

Figure 14. (a) Triangular mesh (reference state) with separation
plane (blue), left side with green points and right side with red
points; (b) mesh (deformed state) and error vector field for the

model of PT (scale factor: 20) for 10° relative rotation; (c) mesh
(deformed state) and error vector field for ME (scale factor: 20).

(a)

(b)

Figure 15. (a) Boxplots of absolute errors; (b) boxplots of
relative errors for different relative rotation angles.
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in Sec. 2.4.2. Fig. 16 depicts the boxplots of the absolute and
relative errors. In the 3D case, the usage of the model exten-
sion reduces the median absolute error by 32 % and the median
relative error by 26 %.

(a) (b)

Figure 16. (a) Boxplots of absolute errors; (b) boxplots of
relative errors for a relative rotation angle of 5° for 3D case.

4. CONCLUSION AND OUTLOOK

The paper at hand presents a method for subpixel-precise crack
analysis based on triangulated displacement fields. The al-
gorithm is suitable for deformation measurements with mon-
ocular and multiocular image sequences of load tests with
brittle material. For relative rotations between the crack bor-
ders, a model extension is proposed that reduces the median
error by 60 to 80 % in a simulation. A practical test also shows
an error reduction of 26 to 62 %.

Future work could focus on a more precise crack position de-
termination by a combination with other techniques.
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