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Abstract: 

Objects with non-collaborative or transparent surfaces pose challenges to image orientation procedures and are an open research task 

in photogrammetry and computer vision. In this paper, we analyse the critical issues that cause image orientation failures and propose 

two approaches that leverage the low-contrast textures present on object surfaces to accurately orient an image block. Both approaches 

privilege tie point detection on low-contrast textures, discarding specular reflections and static tie points. In the first approach local 

descriptors are extracted in those regions where roughness and micro-structures are better highlighted, applying the normalized cross-

correlation (NCC) on the gradient map of the images to fully exploit the geometrical content of the patches. The second approach 

builds on the first method modifying the classic RootSIFT pipeline and obtaining a faster and more reliable approach. Different 

transparent objects with different surface characteristics are tested to evaluate the efficiency and reliability of the proposed pipelines 

for image orientation and successive dense 3D reconstruction. 
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Figure 1: Example of transparent objects used in this investigation (upper row) and visual representations of recovered camera network and sparse 

3D reconstruction (lower row). 

1. INTRODUCTION 

Estimating the position and orientation of 3D objects is one of 

the fundamental problems in photogrammetry and computer 

vision and requires repeatable, reliable, and well distributed tie 

points (Remondino et al., 2021; Bellavia et al., 2022). Among the 

different fields of application, photogrammetry is widely used for 

industrial measurements and inspections, although several 

challenges exist when dealing with non-collaborative surfaces 

(Figure 1), such as textureless (Ahmadabadian et al., 2017, 2019), 

reflective (Karami et al., 2021, 2022b), and refractive objects 

(Wu et al., 2018; Liu et al., 2020; Karami et al., 2022a). 

In transparent objects, the ability to diffusely reflect light is very 

limited, and in addition, they are almost textureless. Due to 

refraction and mirror-like reflections, a part of the surface 

recorded textures of such objects is not invariant to the camera 

viewpoint being also dependent on the object's shape, 

surrounding environment, and illumination conditions. 

Therefore, standard procedures like those implemented in SfM 

applications become ineffective, leading to significant mistakes 
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and, most frequently, failures in the image matching and 

orientation process (Hosseininaveh et al., 2015; Wu et al., 2018; 

Karami et al., 2022c). 

To deal with 3D reconstruction of transparent objects, different 

approaches have been proposed. For instance, shape from 

distortion is a well-known approach for 3D shape reconstruction 

of transparent objects. This method analyzes the distortion of a 

known pattern positioned beneath or near the surface (Ben-Ezra 

and Nayar, 2003; Wetzstein et al., 2011; Tanaka et al., 2016; Kim 

et al., 2017). These techniques, however, are limited to the 

recovery of a single refractive surface or the reconstruction of 

objects with simple geometry, making them difficult  to use 

for  other complex objects (Wu et al., 2018; Lyu et al., 2020; 

Karami et al., 2022b). Shape from Silhouette (SFS) is a well-

known 3D reconstruction approach applied to various object 

categories, including opaque, translucent, and transparent 

objects, as long as the region of the object in each image can be 

separated from the background (Baumgart, 1974; Wu et al., 2018; 

Lyu et al., 2020). However, concavities on an object's surface is 

the main difficulty with SFS making it impossible to reconstruct 

the inside of a hole or concave region. Another technique for 

determining an object's 3D reconstruction is called Shape from 

Polarization (SFP) (Miyazaki et al., 2004; Huynh et al., 2010; Cui 

et al., 2017; Sun et al., 2020) which uses the polarization 

information of the reflected light. One of the major problems with 

this strategy is the uncertainty in polarization analysis (Durou et 

al., 2020; Karami et al., 2022b). 3D reconstruction based on the 

shape from heating disregard the object's refractive 

characteristics making it suitable for a wide range of objects 

(Eren et al., 2009; Brahm et al., 2016; Landmann et al., 2021). 

However, the application of this approach is limited due to the 

high-cost IR camera and low acquisition speed. Methods based 

on the direct ray measurement (Kutulakos et al., 2008; Tsai et al., 

2015; Qian et al., 2016; Kim et al., 2017; Lyu et al., 2020) have 

also been used for 3D reconstruction of transparent objects. 

However, these methods not only struggle with collinearity 

ambiguity but also require additional assumptions and 

constraints, making them inadequate for practical industrial 

applications with a wide range of situations (Ihrke et al., 2010; 

Karami et al., 2022b). 

Various learning-based works (Stets et al., 2019; Sajjan et al., 

2020; Zhu et al., 2021; Eppel et al., 2022) have been recently 

proposed. Stets et al. (2019), for example, introduced a deep 

convolutional neural network (CNN) technique using only a 

single image taken under an arbitrary environment map to 

generate depth of a transparent object. More similarly, Eppel et 

al. (2022) proposed an advanced learning-based method to 

predict 3D points of transparent objects from an image captured 

using an unknown camera. Instead, Sajjan et al. (2020) and Zhu 

et al. (2021) proposed different learning-based techniques for 

filling in missing depth (where transparent objects are) from a 

scene. Li et al. (2020) proposed an advanced physically-based 

network for constructing the 3D geometry of transparent objects 

using various multi-view images. Learning-based approaches, in 

contrast to previous methods, learn from actual or synthetic 

training data and do not require assumptions or constraints such 

as controlled data collection (Karami et al., 2022b). However, 

these methods are still significantly less precise than 

conventional methods and need large datasets annotation of 

specific object types, making them unsuitable for industrial 

applications requiring 3D measurement accuracy, dependability, 

and traceability (Karami et al., 2022b). 

One of the practical surface treatments that is used for 3D 

inspection of manufactured parts is to coat the surface of such 

objects by spraying a thin layer of white or colored powder. 

 
1 https://www.agisoft.com/ 

Although, this treatment makes the surface opaque and diffusely 

reflective (Palousek et al., 2015; Pereira et al., 2019; Karami et 

al., 2021), it is still difficult, resource-intensive, and impractical 

for real-time 3D inspection of industrial materials (Pereira et al., 

2019; Karami et al., 2022b). Moreover, this surface treatment is 

well suited only for active systems such as laser scanners and 

fringe projection because of the textureless appearance. 

 

  
 

Figure 2: Partial and incorrect image orientation in Metashape1 and 

COLMAP2. 

 

   

Figure 3: Silhouette regions (left) and specular reflections (centre) 

appear almost constant in different images. Low contrast textures 

areas (right). 

Contrary to the previous approaches, we present two methods 

that only utilise the low contrast textures present on transparent 

objects to estimate the external orientation of the cameras. During 

our investigations, we analysed the results of COLMAP 

(Schonberger and Frahm, 2016) and Agisoft Metashape1, which 

failed at the image matching stage, thus no camera parameters 

could be recovered (Figure 2). The reason is that SIFT-like 

descriptors prioritize image patches with high contrast, e.g. 

textures along the silhouette of the transparent object (Figure 3a), 

or reflections coming from surrounding objects and light sources 

(Figure 3b), and discard all the low-contrast textures. 

If the camera position and the surroundings remain constant and 

only the object rotates, the reflected textures remain quite steady 

from one image to the next if the object is a solid of revolution 

(or the surface of the surveyed object changes slowly). In this 

situation, the descriptor finds matches in the same position across 

all images, assuming that the object stayed consistent. 

Conversely, if the object is not a solid of revolution, a patch that 

is first located on the silhouette in a successive image will be 

located inside the object with a completely different appearance. 

In both cases the matching step of SfM generally fails. In 

addition, regular descriptors that prioritize high contrast textures 

ignore low contrast textures on extremely high resolution images 

that exhibit surface flaws, dust, or other particles (Figure 3c), 

even if they can be utilized for image matching. 

 

2 https://colmap.github.io/ 
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1.1 Paper aim and contribution 

In this paper, we leverage the low contrast textures present on the 

surface of transparent objects for image matching and image 

orientation using the classical structure-from-motion (SfM) 

pipeline with high resolution RGB images as input. The working 

pipeline proposed and afterwards described, starts from the 

previous analysis and relies on the following observations: 

1. A dark background helps to reduce the reflections from 

surrounding objects and absorb the refracted light that passes 

through the object. 

2. Many transparent surfaces when imaged at high resolution 

reveal some feature points and textures that are generally 

rejected from common descriptors and can be used for image 

matching. 

3. Reflections and shadow must be eliminated since they do not 

rigidly rotate from one image to the other. 

4. The radiometric appearance of low-contrast textures can 

vary dramatically from one image to the next, hence the 

employed descriptor must be robust to radiometric variations. 

5. A simple but effective approach to describe and match 

patches is the normalized cross-correlation (NCC), which can 

be used for both image orientation and dense reconstruction. 

NCC is the starting point of our analysis, but other descriptors 

could also be considered, therefore we present also a second 

approach based on RootSIFT (Arandjelović and Zisserman, 

2012). 

6. To take full advantage of the geometrical content of the 

patches, NCC must be run on the gradient map of the 

grayscale image since applying NCC on grayscale images of 

transparent objects is not robust enough. 

2. METHODOLOGY 

The steps of the two proposed pipeline including the detection of 

candidate key points, the matching with NCC and RootSIFT, and 

the image orientation in COLMAP with self-calibration are 

afterwards presented. The detection and description parts of the 

Cross-Correlation pipeline rely on the python-opencv (Bradski, 

2000) and PIL (Clark, 2015) libraries. 

2.1 Cross-Correlation pipeline 

The detection is strongly related to the description which relies 

on the similarity of patches extracted on the gradient map. 

Therefore, the best candidate tie points should be those 

surrounded by discriminative regions, where there is enough 

gradient. Furthermore, we need to eliminate reflection regions 

since they usually do not move solidly with the object rotating on 

the turn table. Based on these assumptions, Figure 4 depicts the 

essential steps of the proposed detection pipeline with an 

example. 

1.  A sequence of images are used as input (Figure 1).  High 

resolution images must be preferred to highlight surface 

roughness and details on the transparent surfaces. 

2-3. Backgrounds are removed with Removal.AI 

(https://removal.ai/), a deep-learning tool for background 

removal, and converted to masks. 

4.   Masks are applied to process only image areas containing 

the transparent object, and especially discarding the coded 

targets for metric evaluations. The purpose of the paper is in 

fact to orient the images with only the texture of the object. 

5-6. The gradient of the image is estimated to highlight and 

emphasise the geometrical content of the textures, then a 

gaussian kernel with a large standard deviation is applied to 

mask specular reflections and keep only those parts where 

roughness and microstructures are highlighted better. 

7-8-9. A density map on cells of 33x33 pixels (the same size 

we use for NCC) is estimated and then keypoints are 

extracted and ranked by their density. This step can be also 

substituted with a Harris detector. In the first qualitative tests 

of Figure 1 both the "density" method and the Harris detector 

were successfully used. In the quantitative tests (Table1-2, 

and Figure 7) only the Harris detector was used, in the future, 

we will also test the "density" method. 

10. Finally, non-maxima suppression is applied to a 

neighbourhood of thirty-three pixels. 

The description and matching step leverage the knowledge of the 

approximate epipolar lines (almost horizontal because of the 

acquisition network) to search for the best match of a candidate 

33x33 pixel patch cropped around each keypoint. Each patch is 

converted in its gradient map (Figure 5a) and compared with 

NCC within a rectangular searching window extracted along the 

a-priori known epipolar lines (Figure 5b and c). For NCC we used 

the formula from Zhao et al. (2006) without the window 

normalization (Equation 1), since our datasets do not present 

scale changes. 

𝑆𝑚1,𝑚2 =  ∑ ∑ [[𝐴𝑢𝑣 − 𝐴] ⋅ [𝐵𝑢𝑣 − 𝐵]]  / (𝜎(𝐴) 𝜎(𝐵))

𝑤

𝑣=−𝑤

𝑤

𝑢=−𝑤 

 (1) 

 

Where 𝑆 is the score, 𝑚1 the reference patch cropped around the 

keypoint and 𝑚2 is one of all the possible patches inside the 

rectangular searching window. The patch size is (2𝑤 + 1) ⋅
(2𝑤 + 1), 𝑢 and 𝑣 are the local coordinate system with (0, 0) 

located in the center of the patch, 𝐴𝑢𝑣 and 𝐵𝑢𝑣 are the gradient 

intensity in position (𝑢, 𝑣). 𝐴 and 𝐵 are the average intensity 

value of each patch, 𝜎(𝐴) and 𝜎(𝐵) are the standard deviations. 

The output is a score map (Figure 5d) and the best match is 

extracted in the maximum. For computational constraints the 

matches of each image were calculated for only two images 

forward and two backward for the qualitative datasets (Figure 1), 

and one forward and one backword for the quantitative datasets 

(Figure 7). The patches are limited to a 33x33 pixel size. The 

method has several hyper-parameters that have been chosen to 

balance computation times and final accuracy. 

The raw matches are imported to be geometrical verified in 

COLMAP with RANSAC. All matches, both inliers and outliers 

are extracted along approximate epipolar lines, therefore the 

RANSAC maximum error threshold was set to 1 pixel to be very 

restrictive and be able to extract more correct matches. Because 

of the simple, non-redundant acquisition network, a weak 

initialization might lead the solution to converge to a local 

minimum rather than the global maxima. 

2.2 First experiments and RootSIFT-based pipeline 

The first experiments aimed to understand why Metashape and 

COLMAP generally fail (Figure 2) to orient transparent objects 

with low contrast textures, leading to the consideration of section 

1.1 and to the proposal of the Cross-Correlation pipeline that is 

mainly based on the elimination of "static" tie points between 

image pairs related to reflection effects, and the extraction of tie 

points on low-contrast textures that are normally discarded by 

traditional local features. With the proposed pipeline we oriented 

the image blocks of the objects shown in Figure 1, where the 

acquisition network and the sparse reconstruction are 

qualitatively correct. 

From these first results, it was possible to adapt the standard 

COLMAP pipeline based on the RootSIFT descriptor for these 

types of datasets. The second approach is based on the following  
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1. Input image 
2. Background removed 

with AI 
3. Mask 

4. Mask without ground 

truth 
5. Gradient map 

     

6. Removing high 

reflections 

7. Density calculation on 

cells 33 pixel 

8. Keeping the most 

responsive parts (white) 

9. Keypoint extraction on 

densier parts in red 

10. Non-maxima 

suppression in blue 

Figure 4: Proposed detection pipeline for the cross-correlation pipeline. Steps 7-8-9 can be substituted with the Harris detector. 

 

 

  

 

 

(a) (b) (c) (d) (e) 

Figure 5: Description and matching with NCC: (a) patches extracted around each candidate keypoint, (b) searching window on the previous or 

following two images, (c) gradient of the searching window, (d) score map after NCC, (e) visualisation of the patch around the maximum score. 

changes to the standard COLMAP pipeline and will later be 

referred to as RootSIFT-based pipeline: 

1. The extraction of 8000 interest points with RootSIFT 

upright, using the COLMAP implementation, decreasing the 

contrast peak threshold from 0.066 to 0.026 to detect local 

features also in the low contrast areas. In addition, using a not 

rotation invariant descriptor (the “upright” version) increases 

the number of absolute correct matches and the inlier ratio. 

2. The usage of the near neighbour strategy (NN) instead 

of the near neighbourhood ratio (NNR) to increase the number 

of matches. 

3. The usage of sequential matching instead of the brute-

force approach. In fact, the brute-force matching without NNR 
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can lead to consider as good matching images that do not have 

overlap, causing a partial failure in the orientation. Sequential 

matching works in our case study with only a strip of circularly 

acquired images, but with other cases a rough knowledge of 

the camera motion is enough to avoid failures. 

4. The elimination of static tie points checking that for 

each consecutive image pair the apparent flux, like the one of 

Figure 6, which refers to manually taken tie points, is larger 

than a certain threshold, e.g., 50 px. 

5. Finally the usage of RANSAC as global geometric 

constraint to filter outlier matches. 

The RootSIFT-based pipeline contains several hyper-

parameters: the optimal value for the contrast threshold in the 

detection step, the threshold error for RANSAC, RootSIFT 

upright vs rotation invariant RootSIFT, the near 

neighbourhood ratio (NNR) vs the near neighbourhood (NN) 

approach, intersection vs union strategy for brute-force 

matching (Jin et al., 2021), RGB images vs the gradient map 

as input for the descriptor. To set these hyper-parameters, we 

selected a pair of images from the Plastic Bottle dataset and 

we determined the parameters combination that generates the 

higher number of correct matches with a high inlier ratio. To 

estimate the number of correct matches we employed a 

reference fundamental matrix calculated from a set of 

manually selected tie points. 

To further filter out the incorrect matches that lie along the 

epipolar lines, we also calculated the approximate flux from 

the manually taken tie points (yellow lines in Figure 6), and 

we interpolated the data to estimate the apparent flux for all 

the area covered by the bottle. This approximate ground-truth 

flux has been used to filter out the outliers along the epipolar 

lines, not filtered by the fundamental matrix. 

 

 
Figure 6: ground-truth flux calculated from manually taken tie 

points. 

 

Table 1 reported the results for different sets of hyper-

parameters in terms of absolute correct matches and inlier-

ratio. The parameters to be evaluated are reported in bold, 

while the best parameters are highlighted in grey, which are: 

0.0026 for the contrast (peak) threshold, NN and not NNR with 

the intersection strategy for the brute-force matching, 

RootSIFT upright as descriptor, and RGB images used as input 

for the descriptor. 

 

3. EXPERIMENTS AND EVALUATION 

 

3.1 Image orientation evaluation 

To evaluate the accuracy of the two proposed pipelines, we 

tested the plastic bottle, the glass bottle and the tea cup shown 

in Figure 1. For each object, a set of images was captured from 

36 different stations under constant lighting, directed to 

enhance the appearance of the low-contrast texture, and a set 

of photogrammetric coded targets were printed and mounted 

on a rotating table with known relative distances. These targets 

were then employed to provide a metric assessment using 

different criteria such as mean reprojection error (MRE), and 

the mean error and standard deviation. The results are reported 

in Table 2. 

 

For the tea cup dataset (object d), both pipelines achieve an 

MRE of about 0.4 pixels. RootSIFT obtains an Std of 0.052 

mm with Mean Absolute Error (MAE) of 0.048 mm, while the 

cross-correlation pipeline obtains an Std of 0.079 mm with 

MAE of 0.083 mm, twice larger than RootSIFT. For the plastic 

bottle dataset with GSD of 0.05 mm/px, the RootSIFT-based 

pipeline has a Std of 0.012 mm, MAE of 0.011 mm and MRE 

of 0.581 px. The cross-correlation pipeline achieves a similar 

MRE of 0.532 px, while a significantly worse Std and MAE of 

0.068 mm and 0.106, respectively. This is because it did not 

orient four images so that in this case we do not have a loop-

closure with a decrease in the accuracy. Failure to close the 

network may also be due to the lower number of local features 

used in the cross-correlation method compared to RootSIFT, 

which has been kept small for computational reasons. For the 

glass bottle dataset (object b) the cross-correlation approach 

reaches a better result for all criteria compared to RootSIFT 

approach.  

 

The visual representation of the generated sparse 3D 

reconstruction and an example image for each of the three 

transparent objects are presented in Figure 7. 

 

 

   

HYPER-PARAMETERS MATCHES RESULTS 

input RootSIFT NNR 
NNR 

strategy 

gradient 

peak 

RANSAC 

error 

matches 

after NN 

static 

filtering 

after 

RANSAC 

correct 

matches 

inlier 

ratio 

RGB upright 1.00 intersection 0.0026 4 px 5469 228 165 124 0.75 

RGB upright 1.00 intersection 0.0026 2 px 5469 228 155 122 0.79 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 1.00 intersection 0.0036 1 px 4565 205 117 97 0.83 
RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 1.00 intersection 0.0016 1 px 6764 249 143 118 0.83 

RGB upright 1.00 intersection 0.0066 1 px 2673 118 66 50 0.76 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 0.90 intersection 0.0026 1 px 1563 109 89 76 0.85 
RGB upright 0.80 intersection 0.0026 1 px 768 56 51 43 0.84 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB upright 1.00 union 0.0026 1 px 25430 698 217 157 0.72 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

RGB no rotation 1.00 intersection 0.0026 1 px 5673 158 97 79 0.81 

RGB upright 1.00 intersection 0.0026 1 px 5469 228 132 112 0.85 

gradient upright 1.00 intersection 0.0026 1 px 4087 201 86 65 0.76 
 

Table 1: Fine-tuning of the hyper-parameters of the RootSIFT-based pipeline. 
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   ROOTSIFT-BASED APPROACH CROSS CORRELATION 

DATASET 

Camera 
Focal length 

Pixel size 

Average distance 

GSD 

[mm/px] 

Mean 

Absolute 

Error  

[mm] 
 

Std 

[mm] 

Mean 
Reprojection 

Error 

[px] 

Mean 

Absolute 

Error  

[mm] 
 

Std 

[mm] 

Mean 
Reprojection 

Error 

[px] 

PLASTIC 
BOTTLE 

(object a) 

NIKON D750 

28 mm 

5.98 µm 

240 mm 

0.05 0.011 0.012 0.581 0.106 0.068 0.532 

GLASS 

BOTTLE 
(object b) 

NIKON D750 

28 mm 

5.98 µm 

240 mm 

0.05 0.054 0.044 0.648 0.016  0.011 0.291 

TEA CUP 

(object d) 

NIKON D3X 
60 mm 

5.98 µm 

300 mm 

0.03 0.048 0.052 0.436 0.083 0.079 0.423 

Average  0.043 0.037 0.036 0.555 0.068 0.052 0.41 
 

Table 2: Accuracy evaluation for two proposed pipelines using different criteria of Mean Reprojection Error (MRE) in pixel and the residuals in mm 
(mean absolute error and standard deviation). 

 

 

Plastic Bottle Glass Bottle Tea Cup 

  
 

 

  

RootSIFT Cross Correlation RootSIFT Cross Correlation RootSIFT Cross Correlation 

               

Figure 7: Sparse reconstruction and image detail for the three objects used in the accuracy evaluation. 

 

 

3.2 Dense cloud evaluation 

After orienting the images, the dense cloud was generated 

using different pipelines, including OpenMVS (Moulon et al., 

2013), COLMAP (Schonberger and Frahm, 2016), and Shape 

from Silhouette (SFS) to propose different possible solutions 

for 3D dense reconstruction. To generate reference data for 

each object, their surface was covered with a thin layer of 

random colored powder to i) make it diffusely reflecting and 

remove refraction and ii) provide texture on the surface. After 

surface treatment, an additional photogrammetric 3D 

reconstruction was employed to generate a dense 3D 

reconstruction (considered as reference data). 

To evaluate the accuracy potential of the suggested method in 

low-frequency domain, the 3D results achieved with each 

pipeline were geometrically compared against reference data 

(photogrammetry). To this end, the obtained 3D point clouds 

were registered to the reference data using an Iterative Closest 

Point (ICP) algorithm. The RMS of the shortest distance 

between the homologous points on the reconstructed and 

reference models was then calculated and compared. The 

results of the point-to-point comparison for both objects (a and 

b) are presented in Figure 8. 

 

The quantitative analysis shown in Figure 8 demonstrate that 

the SFS can recover the 3D shape of an object regardless of 

whether it is textureless or transparent, as long as the region of 

the object in each image is distinguishable from the 

background. However, SFS failed to reconstruct  concavities 

or holes on an object's surface making it difficult for 

geometrically complex objects. It is quite possible that the 

silhouette of an object would be trimmed or expanded, 

resulting in a 3D model that is smaller or bigger than the actual 

size of the object. 

 

On the other hand, the 3D results using OpenMVS and 

COLMAP (Figure 8) directly depend on the high-resolution 

texture of the object surface, hence it completely failed or 

generate noisy point cloud in the area where microstructure 

and roughness are not highlighted well (see red boxes). 
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 Reference data SFS OpenMVS COLMAP 
O

b
je

ct
 (

a)
 

    
 RMSE: 0.68 mm RMSE: 0.75 mm RMSE: 1.4 mm 

O
b

je
ct

 (
b

) 

    
 RMSE: 0.71 mm RMSE: 0.79 mm RMSE: 1.6 mm 

Figure 8. Results of the point-to-point comparison for objects a and b using three different dense reconstruction pipelines. 

4. CONCLUSIONS AND FUTURE WORK  

 

In this paper, two approaches were proposed based on 

leveraging low-contrast textures present on the surface to 

precisely orient the images. The first method extracted local 

descriptors in areas where roughness and microstructures were 

more prominent, the normalized cross-correlation (NCC) was 

then applied to the gradient map of the images to advantage of 

the geometrical information of the patches. 

The second approach, however, modifies the classic RootSIFT 

pipeline to achieve faster and more reliable results. To assess 

the accuracy of the suggested pipelines for image orientation 

and dense reconstruction, three transparent objects with 

varying surface properties were investigated. Different criteria 

including mean reprojection error (MRE), the mean point-to-

point error and standard deviation were used to evaluate the 

performance of both cross-correlation and RootSIFT 

descriptors. From the estimated errors, it can be concluded that 

RootSIFT descriptor performed slightly better than cross-

correlation. After image orientation, the dense cloud was 

generated using various pipelines, including OpenMVS 

COLMAP and Shape from Silhouette (SFS), to present many 

viable options for 3D dense reconstruction. 

As future work, we will investigate on deep-learning 

descriptors instead of cross-correlation and RootSIFT. 

Applying on more complex datasets with more then one strip 

or multi-camera acquisitions. Furthermore, taking our 

estimated poses as input, it would be intriguing to apply 

NERF-based techniques to generate 3D reconstructions of 

transparent objects. 
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