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ABSTRACT:

Point cloud segmentation, is a widespread field of research and it is useful in several research topics and applications such as 3D
point cloud analysis, scene understanding, semantic segmentation etc. Architectural vector drawings constitute a valuable platform
source for scientists and craftsmen while the production of such drawings is time-consuming because many of the creation steps
are done manually. Detecting 3D edges in point clouds could provide useful information for the automation of the creation of 3D
architectural vector drawings. Hence, a 3D edge detection method is proposed and evaluated with a proof-of-concept experiment
and another one using a professional software. The scope of this effort is twofold, firstly the production of semantically enriched
3D dense point clouds exploiting four-channel images in order to detect 3D edges and secondly the comparison of the detected 3D
edges with their corresponding edges in a textured 3D model. Comparing 3D edges in the early step of the 3D dense point cloud
production and in the final step of 3D textured mesh, provides useful conclusions of the data used for the automatic creation of 3D
drawings. Both of the experiments i.e., the proof-of-concept and using the professional SfM-MVS software were conducted using
real world data of cultural heritage objects.

1. INTRODUCTION

The architectural vector drawings are the most commonly used
products in several fieldwork cases like construction, conserva-
tion, restoration and documentation as well as in many scientific
fields like archaeology, architecture and surveying. Although,
creating architectural vector drawings, especially in 3D space,
constitutes a labor-intensive process, the scientific community
has not provided an automated approach for the production of
such drawings yet. In fact, the automation of the creation of
drawings is a complex task which would encapsulate a plethora
of steps such as edge detection in multiple scales, edge vector-
ization, topology check of the vectorized edges, among others.

Nowadays, 2D-3D architectural drawings using photogrammetry
are created manually, especially in the cultural heritage domain
in which the objects of interest are commonly characterized by
complex surfaces. Useful photogrammetric products for the
production of architectural drawings are the orthophotograph-
ies usually produced by ortho projecting the textured 3D model
created using the conventional photogrammetric pipeline. Af-
terwards, the orthophotomap is manually vectorized using a
CAD environment to produce 2D vector drawings. The pro-
duction of 3D vector drawings is conducted manually by vec-
torizing the 3D model or the 3D dense point cloud. In fact,
the state-of-the-art process for both the creation of 2D and 3D
vector drawings exploiting photogrammetric products, is time-
consuming, laborious and it also requires specialists from sev-
eral scientific fields, e.g., surveyors and architects, during the
entire process.

In fact, orthophotos and orthophotomaps are raster data which
combine the image’s visual information with the ability to per-
form measurements on them. Additionally, many of the steps
required for the creation of orthophotos are performed auto-

matically. Thus, the architectural vector drawings in 2D space
can be easily replaced by orthophotos and orthophotomaps be-
cause they contain both the visual and measurement inform-
ation. However, most of the users of 2D architectural vector
drawings still prefer the traditional architectural vector draw-
ings than orthophotomaps and thus an automation of the pro-
cedure producing them, will be beneficial for the community.

In this effort, a 3D edge detection method is proposed, exploit-
ing manually generated 2D edge semantic information. The
main idea of this effort (Figure 1), which is the production of se-
mantically enriched dense point clouds using four-channel im-
ages, was evaluated by implementing a simple experiment as
proof-of-concept. More precisely, two scripts were developed
for the experiment, the first script checks the radiometry of
the created four-channel images, with respect to the original
RGB images and the original edge semantic information and
the second script uses the principles of epipolar geometry for
the production of a non-refined 3D semantically enriched point
cloud. Moreover, another experiment using professional SfM-
MVS software, in combination with four-channel images, was
conducted to create an improved semantically enriched dense
point cloud, to compensate for the weaknesses of the first ex-
periment. Finally, the 3D edge points were detected by classi-
fying the 3D points into edge and non-edge points with respect
to their label value. Apart from the 3D edge detection a 3D
edge comparison between the detected 3D edge points and the
corresponding 3D edges of a georeferenced textured 3D model
was made, with several conclusions regarding to the 3D posi-
tion and the length of each edge.

The rest of the paper is structured as follows: Section 2 presents
a brief review of the literature. Section 3 describes the proposed
approach and section 4 presents the conducted experiments.
Section 5 comments on the results of the method. Finally, sec-
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Figure 1. The general idea

tion 6 draws some conclusions for the proposed approach and
presents some ideas for future work.

2. RELATED WORK

2.1 2D Edge Detection

Edge detection is a fundamental computer vision problem es-
pecially in 2D space and various traditional edge detection op-
erators, such as Sobel (Sobel et al., 1968), Prewitt (Prewitt et
al., 1970), Scharr (Kroon, 2009), Kirsh (Kirsch, 1971), Marr-
Hildreth (Marr and Hildreth, 1980) and Canny (Canny, 1983,
1986), are proposed in the literature. Moreover, a few meth-
ods propose deep learning architectures to detect 2D edges with
better results than the results of traditional approaches (Xie and
Tu, 2015; Poma et al., 2020; Su et al., 2021). Segmentation
techniques aim to cluster the pixels or points into groups with
similar characteristics (geometric, spectral) without taking into
account semantic meaning (Xie et al., 2020). Image edge detec-
tion techniques inspire the development of edge-based 3D point
cloud segmentation approaches (Xie et al., 2020).

Several edge-based segmentation methods are presented in
the literature (Wani and Arabnia, 2003; Senthilkumaran and
Rajesh, 2009; Xie et al., 2020). Although there is a plethora of
available automatic image edge detection methods, in this effort
the edge semantic information is created manually for accuracy
purposes analyzed in Sections 3 and 5. Besides, the scope of
this effort is to develop a 3D edge detection method exploiting
the 2D edge semantic information and not to identify the best
automatic 2D edge detection method.

2.2 3D Edge Detection

Methods presented in the literature detect 3D edges using sev-
eral techniques e.g., model fitting, normal vectors, analytical
geometry etc. To be more specific, Nguatem et al. (2014) use
predefined templates of windows and doors in order to detect
their 3D boundaries exploiting plane intersection. Mitropoulou
and Georgopoulos (2019) firstly segment 3D point clouds into
planes and then detect the 3D edge points applying plane in-
tersection. Moreover, Bazazian et al. (2015) firstly find the k-
nearest neighbors of 3D points. For each group of 3D points the
covariance matrix is calculated. Finally the eigenvalues and ei-
genvectors of each matrix are examined to detect the sharp 3D
edges by deciding whether the point lays on a plane or on an
edge. The proposed approach was evaluated on both synthetic
and real-world data. Lu et al. (2019) are also exploit the eigen-
values and eigenvectors of the calculated covariance matrix of
the points’ neighborhood, but the neighborhood is defined using
a region growing and region merging iterative approach in con-
trast to kNN algorithm. To be more specific, the 3D point cloud

is segmented into planes, using the region growing and merging
method. Afterwards, the 3D points of each fitted plane, are pro-
jected onto it, to create images. Finally, a 2D contour detection
algorithm is applied and the detected 2D contours are projected
back into 3D space. Additionally, Dolapsaki and Georgopoulos
(2021), proposed a 3D edge detection method which exploits
the relationships of analytical geometry and the properties of
planes in combination with digital images. More concretely,
the desired edge is firstly detected in a digital image of known
exterior orientation, then the plane on which both the 2D edge
and the perspective center of the image lay, is defined. Finally,
the desired 3D edge points inevitably lie on the same plane and
thus are detected.

Detecting edges in 3D space can be performed using 2.5D data
e.g., range images, depth images. Bao et al. (2015) proposed an
approach which firstly creates range images from a given point
cloud, then applies canny operator on them and finally projects
the 2D edges into 3D space. Alshawabkeh (2020) was cre-
ated structured depth images from LiDAR point cloud and was
combined them with RGB images to construct RGBD images.
The goal of the proposed approach was to detect 3D cracks on
the Treasury Monument of ancient Petra in Jordan. This, was
achieved by detecting 2D linear features on RGBD images and
projecting them in 3D space.

3. METHODOLOGY

Digital images are commonly used for the documentation of
monuments and in general the documentation of cultural herit-
age objects. The state-of-the-art photogrammetric pipeline in-
cludes, image alignment, depth maps generation, dense point
cloud production, 3D model generation and texturing. Addi-
tionally, several steps which clear the point clouds from noise
and correct the surface of the 3D model are implemented during
a post process procedure. The final product, which is a textured
3D model is useful in many applications such as digital mu-
seums, 3D documentation etc.

In this effort, the available RGB images are enriched with an
additional to the RGB, channel in which edge semantic inform-
ation is presented. The edge semantic information is produced
manually by annotating the given images in a drawing envir-
onment. The four-channel images are passed into a 3D point
cloud production algorithms to create a semantically enriched
point cloud. Finally the 3D edges are detected by identifying
the points with a specific label value. The previously described
steps are displayed in Figure 2. The scope of this effort is to
contribute to the automation of the production of 2D-3D ar-
chitectural vector drawings and not to simply detect 3D edges.
Thus, a 3D edge comparison between edges in point clouds and
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3D meshes is conducted. Besides, the creation of architectural
vector drawings automatically is still an open issue. Each step
of the proposed approach, is thoroughly reviewed into the fol-
lowing sub sections.

Figure 2. The proposed method

3.1 Labels Creation and Image Enrichment

First and foremost, the edge semantic information must be gen-
erated to enrich the source data i.e., the digital images, with an
extra channel. In this paper, the edges are defined manually by
annotating them on the digital images using red color. Figure
3a depicts six out of the seventy six images used during this in-
vestigation. The labels must be one channel images to enrich
the RGB images. Thus, the RGB manually annotated images
were transformed to binary edge maps, by identifying the red
pixels on them. A part of the created edge maps are displayed in
Figure 3b. Afterwards, each RGB image was enriched with the
corresponding binary edge map using the Python version of the
OpenCV (OpenCV, 2022) library and specifically the ”merge”
method and it finally stored as pseudo ”.tiff” images.

3.2 3D Point Cloud Creation

Creating semantically enriched point clouds is useful for many
applications, such as to improve the SfM-MVS procedure
(Stathopoulou et al., 2021). In this paper the semantically en-
riched point cloud is produced exploiting the four-channel im-
ages produced using the RGB images and their edge maps as
described in 3.1. Two methods were developed for the produc-
tion of the semantically enriched point cloud, the ”Triangula-
tion” and the ”Agisoft-Metashape” (Agisoft-Metashape, 2016).

Triangulation algorithm uses the python version of the Opencv
library for scene reconstruction. To be more specific, the ”Tri-
angulation” algorithm simplifies the complex steps, of an SfM-
MVS algorithm, into the standard two-image epipolar geometry
problem. The major steps of the proposed algorithm are (i) Ex-
tract images’ features using one of the available algorithms i.e.,
Akaze (Alcantarilla and Solutions, 2011), SIFT (Lowe, 2004),
SURF (Bay et al., 2006) or ORB (Rublee et al., 2011), (ii)

(a) Manually annotated RGB images.

(b) Reversed binary edge maps.

Figure 3. Manually annotated RGB images and binary edge
maps

choose the image pairs and match each of them using a Flann
based matcher (Muja and Lowe, 2009). Image pairs selection
is implemented with respect to the number of the given images,
for instance for five images (1, ..., 5) ten image pairs are con-
structed i.e., (1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5 and 4-5).
Then, (iii) calculate the essential matrix exploiting the detected
points and the camera matrix or the fundamental matrix, if the
camera matrix is not available. The camera matrix is calculated
using the exif data of each image, from which the focal length
and the principal point, are retrieved. If the principal point is not
available, it is defined as the center of the image. Afterwards,
(iv) calculate the rotation and translation matrix of one image
of the image pair, with respect to the other image. Finally, (v)
calculate the projection matrix, and generate a semantically en-
riched point cloud for each image pair i.e., ten different point
clouds.

Producing point clouds using a simple triangulation process
leads to several problems. A thorough review of the quality of
the point clouds, using the ”Triangulation” algorithm is presen-
ted in Section 5. The most important problem is the produc-
tion of a non-refined point cloud since the bundle adjustment
step is omitted. Additionally, the ”Triangulation” algorithm is
computationally inefficient. Thus, professional SfM-MVS e.g.,
Agisoft-Metashape, was combined with the four-channel im-
ages, for the production of a semantically enriched dense point
cloud. Agisoft-Metashape has the ability to create semantically
enriched point clouds by default since it can process multis-
pectral image. Additionally, Agisoft-Metashape is one of the
leading photogrammetric software so it guarantees that the se-
mantically enriched point cloud is produced exploiting state-
of-the-art techniques. The semantically enriched dense point
clouds produced using the ”Triangulation” algorithm as well as
the Agisoft-Metashape software are depicted in Section 4, in
which both experiments are presented.
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3.3 3D Edge Points Classification

During this effort, 3D edge detection, is conducted using a bin-
ary classification procedure. Producing semantically enriched
dense point clouds means that except for the geometric and
color information, there is also semantic information into the
saved file. In this effort, edge semantic information is passed
into the final file, which is stored in various formats such as
”.ply”, ”.txt” and ”.pts”, after the color values. Each 3D point
is associated with a label value ranging from 0 to 255 which
represents the non-edge and edge points, respectively. Finally,
3D edge points are detected by separating the 3D points with la-
bel value greater than an empirical threshold value. In fact, the
edge maps used as the forth channel into RGBL images, con-
tain only 0 and 255 values, but the produced ASCII files of the
semantically enriched point clouds contain label values ranging
from 0 to 255. On the one hand, for the ”Triangulation” al-
gorithm the reason for the aforementioned range should be the
annotation process in which the radiometry of the points close
to the annotated edges may be affected. On the other hand, the
Agisoft-Metashape may produce such labels i.e., in the range
between 0 and 255, because images’ dimensions change during
the process to robustly handle large number of images. Also,
the manual image annotation process affects the implementa-
tion using the Agisoft-Metashape as using the ”Triangulation”
algorithm. Thus, we define an empirical threshold value, to
classify the points over the threshold as edge points and all the
rest as non-edge points.

3.4 3D Edge Comparison

Several products are available in 3D space to detect 3D edges
like sparse point clouds, dense point clouds, 3D models and
textured 3D models. All of them can be georeferenced. In this
effort, a comparison between 3D edges detected in a georefer-
enced dense point cloud and on a georeferenced textured 3D
model, is conducted. Also, sparse point cloud was excluded
from the comparison, since we would like a dense represent-
ation of the edges i.e., the edges should contain as many 3D
points as possible. Apart from that, the textureless 3D model
was also omitted since texture is a fundamental characteristic
to visually detect edges on 3D models. Both, the 3D dense
point cloud and the textured 3D model were georeferenced us-
ing the same control and test points, in order to make the valid-
ation process accurate. The textured 3D model was generated
using a FARO 330X terrestrial laser scanner for the creation of
the object geometry in combination with digital images, which
were aligned using the Agisoft-Metashape pro software v.1.4.,
for the creation of object texture. The flowchart of the method
presented in this paper is depicted in Figure 4

4. RESULTS

One set of data used during this effort was the RGB images and
the 3D model produced during two postgraduate theses ((Gian-
nakoula, 2018; Stefanou, 2018)) which were documenting the
Temple of Demeter in Naxos. The documentation was conduc-
ted using professional digital cameras and a Faro Laser Scan-
ner, from which the textured 3D Model was created. The de-
tection of 3D edges with the proposed approach exploits the
available RGB images while the comparison between the de-
tected 3D edges exploit the generated textured 3D Model. The
second set of data, which are two aerial RGB images, captured
in 2019 during a summer field course in the ancient Kymissala
in Rhodes, organized by the Laboratory of Photogrammetry

Figure 4. Flowchart of the proposed approach

SRSGE NTUA. The two RGB images were used in order to
check the performance of the ”Triangulation” algorithm using
aerial images instead of terrestrial, because the performance of
the algorithm using the latter was not satisfying. A sample of
images from both datasets, is depicted in Figure 5

Figure 5. RGB images from Temple of Demeter (First row) and
summer field course (Second Row).

4.1 Semantically Enriched Point Cloud Creation

In this section, the results from both the ”Triangulation” and the
”Agisoft-Metashape” methods, are presented. Figure 6 presents
the semantically enriched point clouds produced by the ”Trian-
gulation” algorithm. The first row depicts two 3D point clouds
created using the two aerial images. The difference between the
point clouds is that the first one was created using the Akaze
while the second one using the Sift, feature extraction method.
Additionally, the second row presents the semantically enriched
3D point cloud using two terrestrial images of The temple of
Demeter dataset.

The semantic information is passed into the 3D point cloud as
an extra value to the position and color values. Thus, the ASCII
file contains seven values instead of six (Figure 7).
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Figure 6. Semantically enriched 3D point clouds created using
the Triangulation algorithm. First row presents the point clouds

created exploiting the aerial images while the second row
exploiting the terrestrial images

Figure 7. ASCII file produced using the Triangulation algorithm

It is obvious that the 3D semantically enriched point clouds pro-
duced by the triangulation algorithm were not of sufficient qual-
ity especially using the terrestrial images. Besides, the scope of
the ”Triangulation” algorithm was to evaluate the general idea
under the simplest conditions. Thus, the Agisoft-Metashape
photogrammetric software was exploited in combination with
the constructed four-channel images. In this experiment, sev-
enty six RGBL images were used. Figure 8 depicts the se-
mantically enriched 3D dense point cloud generated using the
Agisoft-Metashape software. The first row depicts the same
view with different colors i.e., RGB and Scalar. The 3D edges
can be observed using the scalar visualization. The second row
depicts the same as the first one, but from a closer distance.

Figure 8. Semantically enriched dense 3D point cloud created
using the Agisoft-Metashape software.

The edge semantic information is passed into the 3D point
cloud in a way similar to the ”Triangulation” algorithm. Figure

9 depicts the ASCII file produced using the Agisoft-Metashape
software.

Figure 9. ASCII file produced using the Agisoft-Metashape
software

Finally 3D edge detection is performed by classifying the 3D
points into edge and non-edge regarding their label value. Ob-
serving the ASCII files of the semantically enriched 3D point
clouds the label value ranges from 0 to 255, for several reasons
as described in section 3.3. Figure 10 presents an experiment
conducted to specify the empirical threshold value described in
section 3.3. The classification is performed using six different
threshold values i.e., greater than 0, 50, 80, 100, 230 and equal
to 255, to examine the detected 3D edge points under each con-
dition. By increasing the threshold value, the detected 3D edge
points seems to be closely to the desired 3D edges. A threshold
value around 100, it visually seems to be the best one because
after that value many visually correct 3D points are excluded,
resulting to shorter edges (Figure 10).

Figure 10. Label values threshold experiment

4.2 3D Edge Comparison

The comparison of the detected 3D edges, was performed re-
garding (i) the 3D edge start point and end point and (ii) the
3D distance. To be more specific, there are four 3D edges (two
horizontal and two vertical), two of them are detected from the
3D model (one horizontal and one vertical) and the other two
are detected using the proposed approach (one horizontal and
one vertical). The start and end points were clearly defined in
all point clouds. The horizontal and vertical edges which were
collected from the 3D Model are the same as those which were
collected by the proposed approach, in 3D space. Thus, the
comparison between them can be conducted. Additionally, the
accuracy of the 3D Model and the 3D dense point cloud is es-
timates to approx. 0.008m.

4.2.1 3D start point and 3D end point: A series of meas-
urements were performed using the Cloud-Compare (Cloud-
Compare, 2003) software. To be more precise, the textured 3D
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model was inserted in the Cloud-Compare and then, the 3D start
point and end point of each edge were picked multiple times
using the ”point picking” tool. In fact, we got several ”obser-
vations” of the start and end point of each edge from the 3D
model. The same steps were applied using the detected, by the
proposed approach, 3D edges. Then, an average value of each
set of observations were calculated for the 3D model and the
3D edge detection approach for each edge and were subtracted
to each other according to X, Y and Z dimension (Table 1).

Horizontal Edge
3D Model X (m) Y (m) Z (m)

Start Point 1012.755 1011.590 106.326

End Point 1010.670 1012.950 106.337

3D Edge Detection X (m) Y (m) Z (m)

Start Point 1012.746 1011.574 106.33

End Point 1010.662 1012.933 106.332

Absolute Differences
Start Point 0.008 0.016 0.004
End Point 0.008 0.017 0.006

Vertical Edge
3D Model X (m) Y (m) Z (m)

Start Point 1011.492 1016.868 102.937

End Point 1011.490 1016.860 106.063

3D Edge Detection X (m) Y (m) Z (m)

Start Point 1011.499 1016.849 102.914

End Point 1011.488 1016.851 106.054

Absolute Differences (m)
Start Point 0.007 0.019 0.023
End Point 0.002 0.010 0.009

Table 1. Start point and end point comparison

4.2.2 Length: Apart from the 3D coordinates of the start
and end points, multiple observations of the length of each edge
were collected. Then, the average length and the difference
between the average length using the 3D model and the 3D edge
detection approach, were also calculated. Each average length
and the absolute difference of them are presented in Table 2.

Horizontal 3D Model 3D Edge Detection
3D Euclidean Distance (m)

Average Value 2.500 2.484

Difference 0.016

Vertical 3D Model 3D Edge Detection
3D Euclidean Distance (m)

Average Value 3.147 3.154

Difference 0.007

Table 2. Length of each edge as the average 3D euclidean
distance between a set of start and end points.

5. DISCUSSION OF RESULTS

The presented results are visually evaluated regarding each
point cloud creation method. More concretely, the ”Triangu-
lation” algorithm produces a non-refined 3D point cloud for
each image pair, which obviously is computationally expens-
ive. Additionally, it struggles to produce point clouds using
terrestrial images as depicted in Figure 6. However, the scope
was to evaluate the general idea and to investigate it using a
simple experiment, which was achieved. On the other hand, the
proposed method is combined with a professional photogram-
metric pipeline i.e., Agisoft-Metashape, thus the semantically
enriched 3D dense point cloud could be of state-of-the-art qual-
ity. In this effort the 3D point clouds were not post processed
to achieve the best results. Additionally, the creation proced-
ure, of the four-channel images, associates correctly the pixels
between the RGB channels and the label channel since the de-
tected 3D edge points are in the correct 3D position.

The 3D edge comparison approach was performed taking into
account a hypothetical 3D vectorization procedure. To be more
specific, we assume that we want to 3D vectorize the desired
edge using either the detected 3D edge or the 3D model. Hence,
multiple observation using both data sources were conducted
for each edge. The absolute differences between each case are
depicted in Table 1. No safe conclusion can be derived for the
accuracy of the proposed approached due to the limited exper-
iments. However, the absolute differences are into the general
desired range i.e., are not observed extreme differences and are
close to the accuracy of the source data i.e., 0.008 (m).

6. CONCLUSIONS

In this paper, a first implementation of 3D edge detection
method which exploits four-channel images, is presented. The
proposed approach was evaluated on real-world data of cultural
heritage assets. The proposed approach has several drawbacks
which could be a starting point for future work and research.
To be more specific, automated 2D edge detection, traditional
and learning, algorithms could be included to the proposed
approach. Additionally, open source SfM-MVS photogram-
metric pipelines like VisualSfM and CMVS-PMVS (Visual-
SfM, 2022), Meshroom (Meshroom-AliceVision, 2022) and
OpenSfM (Mapillary-OpenSfM, 2022) could be tested using
four-channel images for the production of semantically en-
riched point clouds in order for the proposed approach to be
available to anyone. Of course, a 3D vectorization procedure
should be integrated into the proposed method to automate the
production of 3D architectural vector drawings. Additionally, a
comparison using a large amount of 3D edges should be con-
ducted to correctly evaluate the proposed approach. However,
the proposed approach is a simple yet efficient pipeline because
it exploits the SfM-MVS advantages e.g., bundle adjustment,
to detect 3D edges with the best possible accuracy depending
on the 2D edge semantic information. Moreover, the proposed
method does not introduce additional errors, as it does not in-
volve further mathematical calculations to the SfM-MVS stand-
ard ones.
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