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ABSTRACT:

Neural Radiance Fields (NeRFs) are non-convolutional neural models that learn 3D scene structure and color to produce novel
images of a given scene from a new view point. NeRFs are closely related to such photogrammetric problems as camera pose
estimation and bundle adjustment. NeRF takes a number of oriented cameras and photos as an input and learns a function that
maps a 5D pose vector to an RGB color and volume destiny at point. The estimated function can be used to draw an image using
a volume rendering pipeline. Still NeRF have a major limitation: they can not be used for dynamic scene synthesis. We propose
a modified NeRF framework that can represent a dynamic scene as a superposition of two or more neural radiance fields. We
consider a simple dynamic scene consisting of a static background scene and moving object with a static shape. We implemented
our DoubleNeRF model using TensorFlow library. The results of evaluation are encouraging and demonstrate that our DoubleNeRF
model achieves and surpasses the state of the art in the dynamic scene synthesis. Our framework includes two neural radiance fields
for a background scene and dynamic objects. The evaluation of the model demonstrates that it can be effectively used for synthesis
of photorealistic dynamic image sequence and videos.

1. INTRODUCTION

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) are
non-convolutional neural models that learn 3D scene structure
and color to produce novel images of a given scene from a new
view point. NeRFs are closely related to such photogrammet-
ric problems as camera pose estimation and bundle adjustment.
NeRF takes a number of oriented cameras and photos as an in-
put and learns a function that maps a 5D pose vector to an RGB
color and volume destiny at point. The estimated function can
be used to draw an image using a volume rendering pipeline.
NeRF models are widely used for photorealistic image syn-
thesis from novel viewpoint. Still NeRF have a major limitation:
they can not be used for dynamic scene synthesis.

In this paper we propose a modified NeRF framework that can
represent a dynamic scene as a superposition of two or more
neural radiance fields.

We used scenes from the SematicVoxels dataset (Kniaz et al.,
2020) to train and evaluate our DoubleNeRF model. We im-
plemented our DoubleNeRF model using TensorFlow library.
We used city scenes as the background and cars as foreground
dynamic objects. We evaluate our DoubleNeRF model and
baselines in terms of PSNR, SSIM, LPIPs and FID metrics. We
compare synthetic images generated for novel views with real
images from the dataset. The results of evaluation are encour-
aging and demonstrate that our DoubleNeRF model achieves
and surpasses the state of the art in the dynamic scene synthesis.

We proposed a novel DoubleNeRF framework for photorealistic
image synthesis from novel views. Our framework includes two
∗ Corresponding author

neural radiance fields for a background scene and dynamic ob-
jects. The evaluation of the model demonstrates that it can be
effectively used for synthesis of photorealistic dynamic image
sequence and videos.

2. RELATED WORK

The problem of effective and realistic representing 3D scene
is one of the key problems in computer graphics. As usual a
researcher has to find reasonable balance between the speed of
rendering and the quality of the rendering.

The traditional and accurate methods for creating photorealistic
3D model of a real scene are photogrammetry-based ones. Cur-
rently Structure-from-Motion (Shapiro and Stockman, 2001,
Knyaz and Zheltov, 2017) and Multi View Stereo are widely
used tools for 3D scene reconstruction basing on a set of im-
ages, allowing to reconstruct as large 3D scenes (Liu et al.,
2023), so complex 3D objects (Knyaz et al., 2020).

The progress in means and methods of machine learning gave
an impulse for applying such techniques for effective synthesiz-
ing new views of complex 3D scenes with given 3D model and
a set of scene images. Fully connected neural networks for syn-
thesis new view having a number of partial images (Mildenhall
et al., 2020) were recently proposed. They are termed as neural
radiance fields (NeRFs) and demonstrated high performance in
task of high-resolution photorealistic rendering.

NeRF uses continuous scene representation as spatial coordin-
ate vector (x, y, z) and viewing direction (θ, φ)). Basing on this
5D representation, NeRFs synthesize a new view of the scene
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represented by a set of images by directly searching the para-
meters, that minimize the rendering error for the given set. It
was shown (Mildenhall et al., 2020) that such approach allows
outperforming previous works on new views synthesizing by
neural rendering.

The advantages of NeRF models have attracted a lot attention
in the computer vision area in the following years and initiated
the researches in various areas, such as speeding the training,
improving the quality of rendering for sparse views, pose es-
timating by NeRF.

To improve NeRF performance in the case of sparse input
views, the RegNeRF model (Niemeyer et al., 2022) uses ad-
ditional depth and color regularization. It allowed RegNeRF to
outperform such NeRF models as PixelNeRF (Yu et al., 2021)
and Stereo Radiance Fields (SRF) model (Chibane et al., 2021),
that employed features from pre-trained networks or a prior
conditioning for rendering. The performance comparison was
performed using DTU (Jensen et al., 2014) and LLFF (Milden-
hall et al., 2019) datasets.

Instant Neural Graphics Primitives (Müller et al., 2022) model
today demonstrates the state-of-the-art for NeRF models in
training and inference speed. The proposed approach exploits
hash encoding trained simultaneously multilayer perceptrons
(MLPs) of the NeRF. Along with advanced ray marching tech-
niques including exponential stepping, empty space skipping,
sample compaction, it allowed to dramatically reduce training
time comparing with baselines such as mip-NeRF (Barron et
al., 2021) or Neural Sparse Voxel Fields (NSVF) (Liu et al.,
2021) models.

Taking the advantages of multi view stereo in generating high
quality 3D scenes and their views, from the one side, and pos-
sibility of deep multi view stereo methods to reconstruct the
geometry of a scene in a short time, from the other side, Point-
NeRF (Xu et al., 2022) model can generate a radiance field us-
ing neural 3D point clouds fast and with high quality. The high
rendering performance of the Point-NeRF is based on aggregat-
ing neural point features near scene surfaces, in a ray marching-
based pipeline.

The comprehensive analysis of NeRFs considering these mod-
els from wide variety points of view as theoretical fundament-
als, existing approaches, methods, and datasets, metrics used
and state-of-the-art performance can be found in the dedicated
reviews (Tewari et al., 2022, Gao et al., 2022). But the most
relevant to our study are researches, that not only synthesize
the new view of a static, but address to scene composition with
NeRF. D-NeRF model (Pumarola et al., 2021) is aimed at ex-
tending NeRF to a dynamic scenes. It allows to synthesize and
render new images of rigid and non-rigid motion objects.

The model uses time as an additional input, and train the model
in two main steps. Firstly, the scene is encoded into a canon-
ical space, and, secondly, this canonical representation is maped
into the deformed scene at a particular time. At both stages
fully-connected networks are used.

The NeRF++ model (Zhang et al., 2020), was adapted to gener-
ate novel views for unbound scenes, by separating the scene us-
ing a sphere. The inside of the sphere contained all foreground
object and all fictitious cameras views, whereas the background
was outside the sphere.

3. METHOD

Our model works by combining two radiance fields nb (Fig-
ure 1) and no (Figure 2) representing the background scene
and the object consequently. The resulting neural radiance field
configuration is presented in Figure 3.

Figure 1. Camera configuration for the background neural
radiance field nb.

Figure 2. Camera configuration for object neural radiance field
no.

Figure 3. Superposition of two neural radiance fields.

Our contribution to the original NeRF model is twofold.

Firstly, we modify the object radiance field model to predict an
additional transparency component α, that represents the trans-
parency of scene at point x, y, z. We prepare the training data
for the object using the alpha channel to mask the background
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Figure 4. The DoubleNeRF framework overview at training (left) and inference (right) phahse

Figure 5. The examples of image scenes and corresponding voxel models from the SematicVoxels dataset

in the object scene. This allows us to perform 3D alpha com-
positing, similar to 2D splices (Kniaz et al., 2019, Kniaz et al.,
2023) that are widely used for image manipulation.

Secondly, we propose to represent the resulting scene as sum
of two neural radiance fields representing the static background
and dynamic object.

We used scenes from the SematicVoxels dataset (Kniaz et al.,
2020) (Figure 5) to train and evaluate our DoubleNeRF model.

3.1 Framework Overview

We consider a simple dynamic scene consisting of a static back-
ground scene and moving object with a static shape. We assume
that the surface brightness and reflections of the moving object
are independent from the location of the object with respect to
the background scene. Also we assume that two sets of oriented
images Ab and Ao are available.

The DoubleNeRF framework overview at training (left) and in-
ference (right) phahses is shown in Figure 4.

The first set Ab is used to estimate the neural radiance field
of the background scene. The set Ab does not include images
of the dynamic object. The second set Ao is used to estimate
neural radiance field of the dynamic object. Using these two
sets, we estimate two neural radiance fields nb and no. Neural
radiance field nb operates with the scene coordinate system
ObXbYbZb. The origin of the scene coordinate system is loc-
ated in the center of mass of the scene 3D model on the ground
level. The Xb axis is directed coolinear to the projection of the
optical axis of the first camera in the setAb. TheZb is normal to
the surface of the ground. The Yb compliments the coordinate
system to right-handed.

Neural radiance field no operates in the object coordinate sys-
tem OoXoYoZo. The origin of the object coordinate system

is located on the projection of the center mass to the ground
plane. The Xo axis is directed toward to the positive direction
of the construction axis of the object (e.g., toward the forward
motion of the car). The Zo axis is normal to the surface of
the ground. The Yo axis compliments the coordinate system to
right-handed.

The object neural radiance field no does not include background
scene. In other words, for any point in no that is not located on
the object, the volume density is equal to 0. Therefore, we can
assume that the resulting dynamic radiance field is the sum of
two static radiance fields:

nd(x, y, z,Θ, φ) = nb(x, y, z,Θ, φ)

+ no(x
′
o, y
′
o, z
′
o,Θ, φ),

where x′0, y′0, z′0 are object coordinates transformed from the
scene coordinate system to the object coordinate system,

Xo = [xo, yo, zo]
T , (1)

X ′o = Rbo ·Xo + Tbo, (2)

where Rbo is the rotation matrix that defines a transformation
from the background scene coordinate system to the object
coordinate system, Tbo is the translation from ObXbYbZb to
OoXoYoZo.

3.2 Dataset Generation

We used scenes from the SematicVoxels dataset (Kniaz et al.,
2020) to train and evaluate our DoubleNeRF model.
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Figure 6. Example images from the training set for background scene (top) and object scene (bottom).

Figure 7. Example images from the training set for background scene (top) and object scene (bottom).

The Semantic Voxels Dataset consists of 116,000 samples, that
presents 3D and 2D data for 36 scenes. Each data sample rep-
resents a single camera pose, and includes a color image and a
camera pose for this image, a depth map and a semantic voxel
model, and an object pose annotations for all classes. The data-
set is consistent with NuScenes dataset format (Hodaň et al.,
2017). Semantic Voxels dataset has two parts: real and syn-
thetic. The real split was generated using a Structure-from-
Motion (SfM) technique similar to (Hodaň et al., 2017). It con-
sists of 16,000 images.

The examples of images of real scenes and corresponding voxel
models from the SematicVoxels dataset are presented in Fig-
ure 5.

Example images from the training set for background scene and
object scene are presented in Figure 6 and 7. We manually la-
belled the background in the object split of the dataset.

4. EVALUATION

4.1 Qualitative Evaluation

We evaluate our model quantitatively using example novel
views generated by our algorithm. Comparison of the

scene generated using only the original NeRF model and our
DoubleNeRF model are presented in Figures 8 and 9.

4.2 Quantitative Evaluation

4.2.1 Metrics. We evaluate our DoubleNeRF model and
baselines in terms of PSNR, SSIM, LPIPs and FID metrics.

The Structural Similarity Index Measure (SSIM) is calculated
on various windows of an image. The measure between two
images x and y of the same size N ×N is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

µx, µy – the pixel sample mean of x and y correspondingly;
σ2
x, σ

2
x, σxy – the variance of of x and y, covariance of x and y

correspondingly;
c1, c2 – two variables intended for stabilizing the division in
case of weak denominator (Nilsson and Akenine-Möller, 2020);

The Peak Signal-to-Noise Ratio (PSNR) (in dB) is defined as:
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Figure 8. A novel view generated by the original NeRF model
(top) and our DoubleNeRF model (bottom).

Figure 9. A novel view generated by the original NeRF model
(top) and our DoubleNeRF model (bottom).

PSNR = 10 · log10

(
MAX 2

I

MSE

)
= 20 · log10

(
MAX I√
MSE

)
= 20 · log10(MAX I)− 10 · log10(MSE),

where MSE is mean squared error defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2.

and MAXI is the maximum possible pixel value of the image.

The Fréchet inception distance (FID) is a metric used to as-
sess the quality of images. FID compares the distribution of
generated images with the distribution of a set of real images
(”ground truth”). For two multidimensional Gaussian distribu-
tions N (µ,Σ) and N (µ′,Σ′), it is given by:

dF (N (µ,Σ),N (µ′,Σ′))2 = ‖µ− µ′‖22 + trace;

trace = tr

(
Σ + Σ′ − 2

(
Σ

1
2 · Σ′ · Σ

1
2

) 1
2

)

Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018) metric is used to measure the ‘perceptual’ similar-
ity between different images. It is calculated using activations
of feature maps of a deep neural network (e.g., VGG (Simonyan
and Zisserman, 2014)). To measure the distance between two
images, each image is transformed to a feature map and L2 dis-
tance is calculated between the correspondent feature maps. We
calculate distance from synthetic images generated by a given
model and real images. LPIPS measures the distance || · || in a
CNN feature space, considering a ‘perceptual loss’ in an image
regression problems. LPIPs can be expressed as:

LPIPS(x, x′) := ‖fθ(x)− fθ(x′)‖

We compare our DoubleNeRF model with three baselines: the
original NeRF model, image splice generated using the Blender
3D creation suite, and simple 2D image splice.

The results of quantitative evaluation are presented in Table 1.
While the original NeRF model outperforms our model in all
metrics it does not include an additional spliced object. Com-
parison with traditional 2D splicing technique demonstrates that
our DoubleNeRF model outperforms other methods by a large
margin.

PSNR SSIM FID LPIPS
Blender 15.0 0.712 87 0.9
2D splice 12.1 0.763 91 0.8
NeRF 40.1 0.902 23 0.25
DoubleNeRF 39.2 0.989 45 0.31

Table 1. Quantitative results for novel view synthesis.

5. CONCLUSION

We propose the DoubleNeRF framework for synthesizing a new
view of an initial static scene described by a set of images with
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embedded new object, also generated by neural radiance field.
A new view is generated as a superposition of two neural radi-
ance field, and has high perceptual quality.

We compare synthetic images generated for novel views with
real images from the dataset. The results of evaluation demon-
strate that our DoubleNeRF model achieves and surpasses the
state of the art in the dynamic scene synthesis.
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