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ABSTRACT:

The paper deals with the construction of dynamic occupancy maps, where the grid cell can contain not only information about the
presence or absence of an obstacle, but also information about its velocity. We propose a multimodal approach to constructing
2D dynamic occupancy maps from LiDAR point clouds and camera images. The approach involves building a static occupancy
map from LiDAR data and then adding information about cell velocities based on neural network instance segmentation and object
tracking in monocular onboard camera images. Pedestrians and vehicles were considered as dynamic objects. One of the important
stages is the projection of the object masks found in the images onto a 2D occupancy map. We compared the proposed approach
with the classical method of constructing dynamic occupancy maps from LiDAR data based on the Monte Carlo method. An
experimental quality evaluation of the approaches was carried out using the popular Mapillary Vistas and Waymo Open Datasets
containing street scenes and a large number of dynamic objects. We demonstrate that the considered approaches can work in real
time, which indicates the possibility of their application as part of the on-board control systems of autonomous cars or ground
mobile robots. The software implementation of the proposed dynamic occupancy reconstruction approach is publicly available at
the link: https://github.com/andrey1908/nn-dynamic-occupancy.

1. INTRODUCTION

The construction of occupancy map as 2D grid (Moravec and
Elfes, 1985) is simple and useful way of representing surround-
ing environment. A low probability of occupancy means that
there is no obstacle in this cell and it is possible to pass through
it, and a high probability of occupancy means that there is an
obstacle in the cell and it is impossible to pass through it. This
representation of the environment is convenient for use in plan-
ning algorithms. Planning algorithms use occupancy maps to
avoid obstacles when moving from one point of the map to an-
other.

Occupancy maps are well suited for representing static environ-
ments. However, a presence of a dynamic obstacles can make it
more difficult to navigate in the environment. Scenes with dy-
namic objects need additional information about dynamic state
of the map to represent moving objects. For this purpose, dy-
namic occupancy maps are generated with information about
states of occupied cells (dynamic or static) and optionally velo-
city of dynamic cells.

The Figure 1 shows examples of visualization of a dynamic oc-
cupancy map built from mobile robot LiDAR data. The figure
shows two visualization options: visualization of the velocity
vectors of the map cells and visualization of the velocity vector
directions using colored pixels. Cells in which particles have a
large spread in velocities are considered static and their velocit-
ies are not displayed.

In our paper we propose an multimodal approach for recon-
struction dynamic occupancy maps using neural network-based
image instance segmentation and LiDAR data. This approach
is described in Section 3.1.

(a) (b)

Figure 1. Visualization of the dynamic occupancy maps: (a) -
visualization with velocity vectors, (b) - visualization of velocity

using colored pixels.

We also compare its performance on a fragment of the Waymo
Open Dataset (Sun et al., 2020) with the classical approach
based on the Monte Carlo method (Section 3.2), and evaluate
their performance.

2. RELATED WORK

Dynamic occupancy map reconstruction. To estimate ve-
locities on occupancy map different approaches are used. In
approach described in (Coué et al., 2006) authors use 4D grid
to represent dynamic map. Two additional dimensions are used
to represent velocities of the cells. Significant disadvantage of
this approach is that it requires too much time to process 4D
grid, as there are a lot of cells.

Another approach (Pietzsch et al., 2009) uses LiDAR to build
occupancy map. Changes of cells states on occupancy grid are
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monitored to detect dynamic objects. Velocity of dynamic ob-
jects are determined using radar measurements.

There are approaches that don’t use velocities from sensors,
but determine velocities by some method. For example ap-
proach described in (Danescu et al., 2011) uses particle-based
method. First stereo image is used to build occupancy grid
map. Then particles representing assumptions about occupied
cells velocities are initialized. Each next occupancy grid map
is used to verify particles that successfully predicted displace-
ment of occupied cells and particles reevaluation takes place.
Another particle filter-based approaches are (Tanzmeister et al.,
2014), (Rummelhard et al., 2015), (Nuss et al., 2018). Us-
ing particles allows to parallelize computation efficiently, that
allows to widely use these approaches on different mobile plat-
forms.

Another way to determine dynamic objects is represented in (Li
and Ruichek, 2014). This method uses stereo image sensor to
estimate odometry of the ego-vehicle. Outliers from odometry
estimation considered to lie on dynamic objects. To segment
dynamic objects on the image, depth images generated from
stereo images are used.

Dynamic objects can be segmented not only by using depth im-
ages, but also using semantic segmentation of camera images.
This approach is used in (Shepel et al., 2021). Semantic la-
bels of potentially dynamic objects are mapped onto occupancy
map. The map itself is built using stereo images.

Object segmentation methods. The main modern methods
for segmenting a scene surrounding a vehicle and including dy-
namic objects (people, cars, etc.) are deep neural networks of
various architectures.

Object segmentation on a three-dimensional scene using
LiDAR data can be carried out:

• directly in LiDAR point clouds, such as PointNet (Qi et
al., 2017) or KPConv (Thomas et al., 2019);

• by constructing an intermediate spherical projection like
SqueezeSegV3 (Xu et al., 2020a), SalsaNeXt (Cortinhal
et al., 2020) and its modifications (Stokolesov and Yudin,
2021);

• using a voxel representation of the scene, such as Cylin-
der3D (Zhou et al., 2020a) and AF2S3Net (Cheng et al.,
2021b);

• using a complex representation of scenes. For example,
SPVNAS (Xu et al., 2021) uses a simultaneous point-voxel
representation of the scene, RPVNet (Xu et al., 2021) uses
the representation of the scene in the form of projections,
points and voxels;

• with multimodal approaches, such as 2DPASS(Yan et al.,
2022), which simultaneously use LiDAR and camera data
and demonstrate the best results on popular benchmarks.

It should be noted that the existing open implementations of the
highest quality LiDAR data segmentation methods (multimodal
or using a complex representation of the scene) are far from the
possibility of their operation in real time.

In this regard, in our paper, the main attention is paid to the
methods of dynamic object segmentation in the images of on-
board cameras. One of the basic methods is the Mask R-CNN

approach (He et al., 2017),(Yudin et al., 2019), but it loses sig-
nificantly in quality to the methods of DeterctoRS(Qiao et al.,
2021), HTC++(Liu et al., 2021b), and recently appeared trans-
former models, for example Mask2former(Cheng et al., 2021a),
Oneformer(Jain et al., 2022), etc.

The possibility of real-time performance for a neural network
model is the most important criterion for application in ap-
proaches related to the online mapping in robotics. One of the
fastest instance segmentation models is YOLACT Edge (Liu
et al., 2021a). Another model that provides similar perform-
ance but significantly higher quality is the recently introduced
YOLOv8 (Jocher et al., 2023) model. In our paper we focus on
usage of such real-time models.

Object tracking methods. We consider the problem of multi-
object tracking, where until now one of the basic algorithms is
the Hungarian algorithm for association of found object identi-
fiers (Basharov and Yudin, 2021).

The recognition of identifiers of different objects (instances)
and their tracking on a sequence of data, in particular images,
can be carried out based on simple kinematic motion models
and using the Kalman filter, for example, using the SORT (Be-
wley et al., 2016) or ByteTrack (Zhang et al., 2022) approach.

Another approach is to predict unique vector representations
(embeddings) for each of the objects, this is dominated by
neural network models, for example, PointTrack++(Xu et
al., 2020b), CenterTrack(Zhou et al., 2020b). There are
transformer models for tracking objects, for example, Track-
Former(Meinhardt et al., 2022).

Popular modern approaches are real-time neural network modi-
fications of the SORT approach, for example, DeepSORT (Wo-
jke et al., 2017), StrongSORT (Du et al., 2023), etc.

A limitation of using neural network approaches for tracking
objects is their possible overfitting for a specific data domain.

3. METHODOLOGY

3.1 Multimodal approach for 2D occupancy reconstruc-
tion using neural networks

Approach for 2D dynamic occupancy reconstruction. Our
approach uses image instance segmentation and tracking al-
gorithms to recognize potentially dynamic objects. Fig. 2 gives
an overview of our approach. Camera images are used to seg-
ment and track dynamic objects (people, vehicles, etc.). Track-
ing information is added to LiDAR point cloud using extrinsic
camera-LiDAR calibration and then static occupancy map with
tracking information is built. To estimate velocity of tracked
objects on the map we determine displacement of each tracked
object between two sequential maps and using time between
this maps estimate velocity. Detailed description of each step is
given in the following paragraphs.

Image instance segmentation neural network This section
describes approach used to segment potentially dynamic ob-
jects on images. We used YOLOv8 (Jocher et al., 2023) seg-
mentation network and fine-tuned it on Mapillary Vistas data-
set (Neuhold et al., 2017). Dataset images were split into train-
ing and validation sets containing 18,000 and 2,000 images
respectively. For training and validation were used two cat-
egories: vehicle and person. Mapillary Vistas dataset contains
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Figure 2. Structure of the proposed approach for 2D dynamic occupancy reconstruction based on LiDAR and monocular camera data.

more detailed category labels, so we combined multiple cat-
egories into one. Vehicle category contains Bus, Car, Caravan,
Trailer, Truck and Other Vehicle categories from original data-
set categories. Person contains Person, Bicyclist, Motorcyclist
and Other Rider. Number of person instances is about 60,000,
vehicle instances - about 140,000. For training and validation
we used input resolution 640x640 to ensure low latency of se-
mantic segmentation.

Dynamic object tracking approach. To perform tracking of
detected objects we use multi-object tracking algorithm ByteT-
rack (Zhang et al., 2022) which has effective software imple-
mentations (Broström, 2023). This implementation is special-
ized to work with YOLOv8 networks. It was modified to out-
put tracking images where each tracked object is shown with a
unique color.

Static occupancy map generation using LiDAR data. To
build static occupancy grid map we use LiDAR data. Ego
vehicle motion is estimated using real-time SLAM algorithm
Cartographer (Hess et al., 2016). First, points from LiDAR
point cloud are filtered by their height. Only points that are
considered obstacles for the ego vehicle are left, that is low
points on the ground and high points above the ego vehicle are
filtered out. Remaining obstacle points are projected onto the
horizontal plane, simply by removing Z coordinate. Then each
2D projected point is assigned to a cell on the grid map making
that cell occupied. After that ray tracing algorithm fills gaps
between ego vehicle and occupied cells creating empty areas
with free cells. We call occupancy grid built from one LiDAR
point cloud a local map.

To filter out noise in LiDAR measurements we combine two
sequential local maps into one occupancy grid map. To do this
we shift local maps according to the ego vehicle motion and
mark a cell in output occupancy grid map occupied only if this
cell is occupied in both local maps. Resulting map shows only
surrounding environment around the ego vehicle and do not re-
member passed locations.

Dynamic occupancy map reconstruction using camera im-
age. We use camera to retrieve semantic information and
add it to occupancy map. First, we perform image instance
segmentation on the input image to produce semantic image
(mask). Semantic image shows detected objects with colors
corresponding to the object categories. Then LiDAR points are
projected onto semantic image using extrinsic LiDAR-camera
calibration and intrinsic camera parameters. Each LiDAR point
projected onto semantic image takes color of the pixel where
this point was projected to. Thus we can retrieve colored point

cloud, where color of the point corresponds to the semantic
label of the detected object. Building occupancy map using
colored point clouds allows us to add semantic information to a
2D grid.

If tracking image is used instead of semantic image, then color
on occupancy grid map shows not object category, but unique
tracked object itself.

To formalize the process of assigning color from tracked image
to LiDAR points, we use following expressions:

p̃i = TC→L ∗ pi,

s ∗

u
v
1

 = K ∗ p̃i,

K =

fx 0 cx
0 fy cy
0 0 1

 ,

where TC→L - 4x4 transformation matrix, that transforms cam-
era frame to LiDAR frame (extrinsic camera-LiDAR calibra-
tion), pi - LiDAR point, K - intrinsic camera parameters, s -
normalization factor, (u, v) - image pixel where LiDAR point
pi is projected.

3.2 Dynamic occupancy map reconstruction based on
Monte Carlo method

In our paper we investigate the Dynamic Occupancy Grid Map
(DOGM) algorithm (Nuss et al., 2018). It is a particle filter
based approach for building dynamic occupancy grid maps. As
input, the algorithm takes a sequence of static occupancy maps
and position of the robot to perform motion compensation. Mo-
tion compensation is needed to subtract the movement of the
robot from the movement of obstacles.

The main idea of the algorithm is to represent the dynamic oc-
cupancy map as a set of a large number of particles ( 106) on a
plane. Each particle has coordinates on the plane, velocity pro-
jections and weight. The weight determines the contribution of
the particle to the probability of occupancy of the cell in which
it is located. That is, the sum of the weights of particles in a cell
is equal to the probability of its occupancy.

Initialization of the particles occurs during the processing of
the first static occupancy map. Particles are generated in oc-
cupied cells, and the higher the probability of occupancy, the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W3-2023 
ISPRS Intl. Workshop “Photogrammetric and computer vision techniques for environmental and infraStructure monitoring, Biometrics and Biomedicine” 

PSBB23, 24–26 April 2023, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W3-2023-137-2023 | © Author(s) 2023. CC BY 4.0 License. 139

LiDAR
PointClouds

Camera
Images

Odometry Estimation
(Cartographer)

Instance
Segmentation

(YOLOv8)
Object Tracking Object Mask

Projection

Generation
of Static Maps
with Tracking
Information

Dynamic
Occupancy

Map

Generation
of Dynamic
Occupancy

Map



more particles are generated in that cell. Particle velocities are
distributed randomly with the mathematical expectation equal
to zero. The weights of all particles are chosen to be the same
and the sum of particle weights in a cell is equal to occupancy
probability of that cell.

Each time before updating the particles with a new static map,
the position of the particles is predicted based on their velocit-
ies. Particles are shifted from their current position, taking into
account their velocities and the time elapsed from the moment
the previous static map was processed until the moment when
the new map was received.

Part of the static map around the robot is used to update the
particles. Since the robot is moving, the area of the map that
is used to update the particles is also moving, and relative to
this area, all static obstacles are moving at a speed opposite to
the speed of the robot. In order for static obstacles to remain
static when the robot moves, it is necessary to perform motion
compensation. To do this, all particles are shifted opposite to
the displacement of the robot, that is, in the same way as static
obstacles are displaced when the robot moves relative to the
latter.

After predicting the position of particles and compensating for
motion, the particle weights are updated and new particles are
generated. Particle weights are updated according to which
areas of the static map they fall into after predicting their po-
sition. If a particle hits a free area, then its weight decreases, if
it enters an occupied area, then it increases. New particles are
generated in those cells where there are few particles, but which
have a high probability of being occupied on a static map. The
velocities of the new particles are initialized by a random dis-
tribution with the mathematical expectation equal to zero.

After the generation of new particles, a selection is made from
old and new particles so that the number of particles remains
unchanged. After selection, the probability of occupancy of
each cell of the dynamic map is calculated as the sum of the
weights of the particles in this cell, and the obstacle velocity
in the cell is calculated as the average of the particle velocit-
ies in this cell. Thus, a dynamic occupancy map is formed that
contains information not only about the probabilities of cell oc-
cupancy, but also about their velocities.

4. EXPERIMENTS

4.1 Hardware and Software Setup

All the experiments are performed on desktop computer with
Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz, NVidia GeForce
RTX 2080 GPU and on embedded platform NVidia Jetson
Xavier.

4.2 Image Instance Segmentation Results

We trained two versions of YOLOv8 (Jocher et al., 2023):
YOLOv8 nano and YOLOv8 medium. These networks differ
in number on parameters, so YOLOv8 medium is more accur-
ate but YOLOv8 nano is faster.

For training we used Mapillary Vistas dataset. Training was
performed on two classes: person and car. Input image resol-
ution was 640x640. Table 1 shows metrics on validation set
for selected classes. These metrics are good enough for our

Table 1. The quality of instance segmentation on the Mapillary
Vistas dataset

person AP vehicle AP mAP
YOLOv8 nano 30.8 54.2 42.5

YOLOv8 medium 41.5 60.9 51.2

Table 2. The performance of instance segmentation using
NVidia GeForce RTX2080

Inference time, ms
YOLOv8 nano 6.9

YOLOv8 medium 9.6

approach. Fig. 3 shows inference examples of YOLOv8 nano
network on validation images of Mapillary Vistas dataset.

Performance of both YOLOv8 nano and medium are presen-
ted in Table 2. We could achieve high performance due to
using small network architectures and small input image size
(640x640). High performance is important for our approach
since it is intended to be used in dynamic environments, where
low response time is required.

Figure 3. Example of YOLOv8 nano inference on validation
images of Mapillary Vistas dataset.

4.3 Dynamic Object Tracking Results

Table 3 shows tracking metrics on a fragment of the Waymo
Open dataset (3D Tracking task). When computing metrics
ground truth odomtery was used instead of Cartographer odo-
metry. We used ground truth odometry to exclude influence of
odometry drift on tracking metrics.

From the Table 3 we can see that tracking metrics are quite low.
There are multiple reasons for that. First of all, we used low
input resolution for image segmentation (640x640) to ensure
high processing speed, because information about dynamic ob-
jects should be available as soon as possible to make decisions
about collision avoidance. So objects located far away are hard
to segment and track due to low input image resolution. An-
other reason for low metrics is that we can track only objects in
front of camera, while Waymo Open dataset provides tracking
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information about all objects that are visible in LiDAR point
cloud. While LiDAR can retrieve information from all direc-
tions, camera can see only small area in front of ego vehicle.
One more reason is that instance segmentation and projection
of semantic information on LiDAR data might be inaccurate,
which causes false detections on the background structures (e.g.
walls).

Later we will show two examples of tracking dynamic objects
with both our approach and Monte Carlo method. We will be
able to see, that our method successfully tracks dynamic objects
on the scene.

Table 3. Tracking metrics on a fragment of the Waymo Open
dataset using ground truth odometry

Recall Precision AP MOTP
YOLOv8 nano 0.0351 0.2428 0.3486

YOLOv8 medium 0.0392 0.2427 0.3502

4.4 Dynamic Occupancy Map Reconstruction Results

Performance of neural network-based approach. Table 4
presents performance estimation results for our neural-network-
based approach on Nvidia GeForce RTX 2080. The map was
chosen to be 100x100 meters in size. All pipeline takes 22 ms,
which is acceptable in dynamic environments.

Table 4. Performance of the neural network-based approach

Neural network-based stage Nvidia GeForce
RTX 2080
(100x100m map)

Semantic segmentation (for
YOLOv8 medium)

9,6

Tracking 1,3
Occupancy grid building 9,8
Velocity estimation 1,3

Performance of the approach based on the Monte Carlo
method. Approach testing was performed on static occu-
pancy maps built from LiDAR data. The Table 5 presents
the results of measuring the performance of the Monte Carlo
method-based approach on various platforms. All pipeline
takes 28.5 ms on the same platform that our approach was tested
on. This time does not include static occupancy grid building
and map resolution is much smaller. But this approach also
shows good performance to be used in dynamic environments.

Table 5. Performance of the approach based on the Monte Carlo
method for various platforms

Monte-Carlo approach stage Nvidia GeForce
RTX 2080
(20x20m map)

Nvidia Jetson
Xavier (10x10m
map)

Converting a static occupancy map
from ROS format to a format for
updating a dynamic map, ms

2 8

Motion compensation, ms 0,5 1
Dynamic map update, ms 23 39
Converting a dynamic occupancy
map to ROS format, ms

3 1

Example of Map Reconstruction Fig. 4 shows an example
of dynamic occupancy map reconstruction using both ap-
proaches: based on a neural network and the Monte Carlo
method. The figure shows two different scenes in two columns.
The first row shows dynamic map built by Monte Carlo method.
The map highlights moving cells with a certain color depend-
ing on the direction where the cell is moving. The second row
provides additional information about velocities of dynamic
cells on the map built by Monte Carlo method. Velocities of

dynamic cells are shown with arrows. The third row shows dy-
namic map built by neural network-based approach. Segmen-
ted objects are highlighted on the map with the same color as
on the segmented image (the fourth row). Arrows show the ve-
locity of tracked objects. The fourth row presents segmented
images after tracking, that is color of segmented object repres-
ents unique tracking identifier of that object.

From these two examples we can see that neural network-based
approach successfully detects and tracks dynamic objects on
the scene. Estimated velocity is not much different from the
velocity estimated by Monte Carlo method, as can be seen from
the pictures.

Figure 4. Example of dynamic map reconstruction. Each column
is a separate example. The first row is Monte Carlo method
result visualization (color indicates velocity direction). The

second row is Monte Carlo method result with each dynamic
cell velocity shown with an arrow. The third row is result of

neural network-based approach. The fourth row contains image
segmentation results with color representing the tracking id.

5. CONCLUSION

State-of-the-art neural networks such as YOLOv8 allow to
perform fast yet accurate image instance segmentation. Us-
ing tracking results and accurate LiDAR range data we can
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build precise occupancy grid maps with dynamic object loca-
tion and velocity estimation. We provided examples of suc-
cessful dynamic objects detection and velocity estimation by
two approaches: based on neural network and on Monte Carlo
method. Promising directions for improving the proposed
neural network-based approach are the usage of images from
a larger number of cameras installed around the car and the
ability to work with an increased image resolution. It should
be noted that the real-time performance of the approaches dis-
cussed in this paper allows them to be used in on-board systems
of autonomous cars and ground mobile robots.
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