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ABSTRACT: 

 

This paper proposes a multiresolution based U-net composite architecture for segmentation of remotely sensed images for building 

footprint identification. The features derived from curvelet decompositions at different scales are augmented to capture curvilinear 

discontinuities of the building footprint. This increases the contextual overview of the network as the same data on multiple scales is 

available for feature extraction and learning. This work further analyses the effects of different multiresolution methods on wavelets 

and curvelets for decomposition on segmentation performance. The performance is evaluated in terms of precision, recall, F-score, 

mean intersection over union, overall accuracy, local and global consistency errors. It is found that the proposed method has better 

class-discriminating power as compared to existing methods and has an overall classification accuracy of 92.4–95.22%. On 

comparison with the U-Net model performance, it is observed that the proposed network can identify the building areas with higher 

accuracy and mean intersection over union, the best performance being with curvelet basis of multiresolution analysis. 

 

 

 

1. INTRODUCTION 

Building footprint extraction from remotely sensed images is 

vital for the design and regulation of space in urban areas. It has 

important implications in urban planning, population estimation 

and topographic map creation. Rapid population increase in 

urban areas demands rapid infrastructure development which in 

turn is dependent on robust urban planning. Therefore, there is 

a growing demand for rapid and automatic building detection 

techniques. However, automatic building detection has been a 

long-term challenge in applied remote sensing due to the 

complex and heterogeneous appearance of buildings in 

variegated backgrounds. 

  

Detection of buildings from remotely sensed imagery can pose a 

challenge to semantic segmentation. Techniques involving 

semantic segmentation of aerial imagery can be classified into 

two broad categories: traditional methods and deep learning 

methods. Traditional methods of building detection tend to 

focus on extracting features that could optimally represent a 

building. These methods use features ranging from color, 

texture, shadow, shape, and spatial position relationships of an 

entity to extract features and then apply either clustering or 

classification to identify built-up areas (Ansari et al. 2020, 

Sharma and Singhai 2021, Wang et al. 2021).  

 

Deep neural networks have been used in remote sensing for 

classification (Liu et al. 2017) and urban analysis (Helber et al. 

2019). Fully convolutional networks have shown improved 

performance for classification (Mullissa et al. 2018, Maggiori et 

al. 2017). One such network was able to detect different classes 

and identify their shapes, such as built-up areas, road curvature, 

and vegetation boundaries. However, it was not capable of 

detecting small objects and classes with many internal 

boundaries, as boundaries of these objects may be blurred or 

improperly oriented, meaning the results are comparatively 

degraded (Audebert et al. 2016). Recent advances in neural 

network and deep learning frameworks and Convolutional 

Neural Networks (CNNs) in particular, have extended its 

application for building identification, owing to their powerful, 

nonlinear feature extraction capabilities (Xia et al. 2021, C Li et 

al. 2021).  

 

Various methods utilizing wavelet-based features in neural 

networks have also been explored to capitalize on multiscale 

features of wavelets in the computer vision domain (Liu et al. 

2018, Huang et al. 2017). Multiscale convolutional neural 

networks have also been used for classification (De Silva et al. 

2018). Neural networks utilizing multiscale directional features 

for image semantic segmentation, particularly in the context of 

remotely sensed image analysis, have only been explored in a 

limited sense. This work aims to investigate the utility of 

curvilinear features of curvelet based multiresolution analysis 

(MRA) in deep learning to identify building footprints from 

remotely sensed images. The major contribution of this work is 

to propose a new model based on a set of multiscale curvelet 

masks as feature maps to include directional information in a 

deep learning framework with the help of approximation 

learning. Experimental results show that the proposed curvelet-

assisted architecture is more effective than the wavelet-assisted 

and plain networks in identifying building footprints. 

 

2. MULTIRESOLUTION ANALYSIS 

2.1 Wavelet based MRA 

The main idea of this work is in the utility of multiresolution 

analysis in U-net framework. Wavelet based MRA decomposes 

an image into approximation and detailed subbands by 

projecting the data onto different basis functions. The following 

dilation equations with basis functions ϕ(.) and ψ(.) are used for 

decomposition,  
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where l[.] are approximation coefficients and h[.] are detailed 

coefficients of a filter bank, m and n are scaling dilation and 

translation indices respectively. 

 

The dilation equations in wavelet transform for MRA use a 

particular set of basis functions, which are defined by roughly 

the isotropic functions present at all scales and locations, 

making it suitable for isotropic features or slightly anisotropic 

features (Welland, 2003).  

 

A range of other basis functions have been used to extend 

traditional wavelets, which capture non-linear discontinuities at 

different scales and aspect ratios to better represent a boundary. 

A conceptual extension of wavelet-based MRA is a curvelet 

transform (Welland, 2003), which aims to overcome the 

representational constraints of wavelets. The curvelet transform 

is a curvilinear extension to the wavelet transforms in two 

dimensions constructed using non-separable and directional 

filter banks. With this set of basis images, it can effectively 

capture the smooth curves that are the dominant features in 

remotely sensed images with fewer coefficients. Ansari and 

Buddhiraju (2019) used curvelet-based texture features for slum 

identification in remotely sensed images, and it is found that the 

curvelet-based segmentation provides improved performance 

over the wavelet-based method. 

 

2.2 Curvelet based MRA 

The wavelet transform is optimal at representing straight-line 

discontinuities in horizontal, vertical and diagonal directions 

which are rarely observed in remotely sensed images. In order 

to analyse local line or curve discontinuities, a conventional 

way is to consider a partition for the image, and then apply the 

transform in a piece-wise approximation, to the obtained sub-

images. Curvelets partition the frequency plane into dyadic (2j) 

scales and sub-partition into angular wedges with parabolic 

aspect ratio. The curvelet transform refines the scale-space 

viewpoint by adding an extra factor of orientation, and operates 

by measuring information about an object at specified scales 

and locations but only along specified orientations. 

 

Curvelet transform works in two dimensions with spatial 

variable x, frequency domain variable ω, and the frequency-

domain polar coordinates r and θ. Curvelet transform is defined 

by a pair of windows, radial window {W(r)}, and angular 

window {V(t)}. A polar ―wedge‖ represented by Uj is supported 

by the radial window {W(r)} and angular window {V(r)}. 

 

2.2.1 Window functions: For constructing the curvelet 

functions, special window functions are defined which satisfy 

admissibility conditions. An explicit example is considered here 

which is representative for all possible choices of window 

functions being the fundamental to the curvelet construction. 

For this purpose, the scaled Meyer windows are used 

(Daubechies, 1992). 
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where v is smoothing function defined as 
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In order to obtain smoother functions W and V, polynomials 

ν(x) = 3x2 – 2x3 or   ν(x) = 5x3-5x4+x5 in [0, 1] can be used 

(Candès and Donoho, 2000). The curvelet elements are 

obtained as the inverse Fourier transform of a suitable product 

of the above windows. Therefore, the smoothness of V and W 

will ensure a faster decay of the curvelet elements in time 

domain. 

 

2.2.2  Scaling laws: In the curvelet pyramid, the scale is 

roughly equal to its length. The anisotropy is increasing with 

decreasing scales according to a quadratic power law. 

 

This principle gives two additional scaling relations.  

• Number of directions is about proportional to the inverse of 

the scale, and 

• Number of micro-locations is about proportional to the inverse 

of the scale. 

 

Another way of looking at scaling relations within the curvelet 

transform is to examine the transition from one scale to the next 

finer scale, i.e. from 2−s to 2−s−1. Each refinement of scale 

• doubles the spatial resolution; that is, the size of the dyadic 

squares in the pyramid is   reduced by a factor of two (much like 

wavelet pyramids). 

• doubles the angular resolution; that is, the number of 

directions of the anisotropic analyzing elements is increased by 

a factor of two. 

 

The data are first transformed into the frequency domain by 

forward discrete Fourier transform (DFT). The transformed data 

are then multiplied with a set of window functions. The shape 

of these windows is defined according to the parabolic scaling 

rule. The curvelet coefficients are obtained by inverse DFT 

from windowing data. Since the window functions are zero 

except on support regions of elongated wedges, the regions that 

need to be transformed by the inverse DFT are much smaller 

than the original data. On the wrapping curvelet transform, the 

DFT coefficients on these regions are ‗wrapped‘ or folded into 

rectangular shape before being applied to inverse DFT 

algorithm. The size of the rectangle is usually not an integer 

fraction of the size of the original data. This process is 

equivalent to filtering and subsampling the curvelet subband by 

rational numbers in two dimensions. 
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Discrete curvelet transform in the spectral domain utilizes the 

advantages of fast Fourier transform (FFT). During FFT, both 

image and curvelet at a given scale and orientation are 

transformed into the Fourier domain. The convolution of the 

curvelet with the image in the spatial domain then becomes 

their product in the Fourier domain. After this step, a set of 

curvelet coefficients are obtained by applying inverse FFT to 

the spectral product. This set contains curvelet coefficients in 

ascending order of the scales and orientations. 

 

The curvelet transform is implemented using a set of directional 

filters, which are designed using basis functions that have a 

choice of aspect ratios and directional orientations at multiple 

scales. The directional filter coefficients effectively capture the 

anisotropic relationship for curvilinear and disoriented edges. 

The implementation of a curvelet transform facilitates any level 

of decomposition, a seamless transition from one scale to 

another, and faithful reconstruction.  

 

The low-pass filter outputs approximation level information, 

whereas the band-pass filter extracts the detailed information 

from a band. The process of decomposition can further be 

iterated in the low-pass filtered band to extract details of an 

approximation. These decomposed subbands are augmented 

with the layers of the U-net to provide multiscale learning, 

along with directional information. 

 

3. MRA BASED NEURAL ARCHITECTURE 

The U-Net is fully convolutional network architecture, 

containing no fully connected layers which are present in most 

artificial neural networks. It consists of two units- the encoder 

and the decoder. The encoder is the down-sampling path made 

up of convolutional and max-pooling layers, which results in 

the activation maps to get compressed successively while 

capturing contextual information at every level of compression. 

The decoder comprises up-sampling layers and convolutional 

layers which expand the activation maps to get back the 

dimensions of the original image. The main intuition behind 

this network is that the down-sampling path increases the 

receptive field of the network, and the information lost in this 

process is given to the up-sampling path for the reconstruction 

of the original structure of the image. This is achieved by the 

skip connections which direct the higher-level features from the 

encoder directly to the decoder layers. Hence the learned 

features during down-sampling are utilized in the up-sampling 

process which results in smoother boundaries than an ordinary 

fully connected network would provide. Figure 1 describes the 

proposed curvelet based U-net architecture. 

 

In this paper, a version of the U-net (Ronneberger et al. 2015) is 

used by augmenting curvelet subbands of different size at 

different scales. During feature extraction, there are four steps, 

with the last three including several subbands. The feature maps 

in the same levels have the same size, while the feature maps in 

the following level are half that of the previous level. For a 3-

level decomposition, there are 16, 8, and 4 subbands 

respectively. The expansive part aims to extract feature maps for 

informal settlements using contourlet masks. The number of 

stages in contracting and expansive parts is the same. Having a 

convolutional layer followed by a max-pooling layer helps in 

gathering contextual information present at each level of 

decomposition in terms of generating activation functions. The 

decoder expands these activation functions with the help of the 

up-sampler and convolutional units to obtain the original size of 

a band. The central aim is to enhance the receptive field of the 

model using the down-sampler. The residual information in the 

process is fed to the up-sampler for faithful reconstruction. This 

is attained by the skip connections in the network, while the 

features learned during down-sampling are used in the up-

sampling part. In turn, this mechanism provides smoother edges 

than other fully connected convolutional networks. 

 

Building footprint identification is considered as a binary 

classification. For training, logistic regression is used by 

optimizing the energy function. A gradient decent algorithm is 

used to minimize the error function. Both the softmax and 

cross-entropy functions are considered for the error function. 

The softmax layer outputs two lines as a probability indicator 

for informal settlements and rest of the classes. The last layer is 

a convolutional layer measuring 1x1, which is used to transform 

the features into two classes for the pixel under consideration. 

The concatenation in the expansive segment is able to learn the 

features at multiple scales. The feature learning at multiple 

scales enhances the ability to capture different properties of the 

classes and improves the classification accuracy. 

 

 

 
Figure 1. Proposed curvelet based U-net architecture 

(Conv: Convolution layer; ReLU: Rectified Linear Unit; 

MaxPooling: Maximum Pooling; Concat: 

Concatenation; Curveband#x: curvelet subband at 

decomposition level x) 
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4. RESULTS AND ANALYSIS 

To demonstrate the robustness of the proposed algorithm, we 

evaluated the performance on the OpenCities dataset (GFDDR 

labs, 2020) which consists of thousands of building footprints 

from various cities and regions in Africa extracted from 

OpenStreetMap. The spatial resolution of the aerial imagery 

varies from region to region, varying from 0.03m x 0.03m - 

0.2m x 0.2m. Out of ten cities in the dataset, we used aerial 

imagery from three cities (Accra, Dares Salaam, Zanzibar) so as 

to have a dataset consisting of densely and sparsely populated 

regions alike with varying resolutions. This enables us to 

demonstrate that the method is not biased to a specific 

resolution and/or a particular building structure or clutter size 

since the imagery in the dataset is diverse, ranging from 

countryside to industrial areas consisting of multifarious 

architecture styles. 

 

To evaluate the semantic segmentation performance of the 

proposed model, we used mean intersection over union (mIoU), 

precision, recall (R), F1-score (F1), and overall pixel accuracy 

(OA) as performance metrics. We compare and contrast our 

method with several other state-of-the-art architectures 

including U-net, random forest classifier, support vector 

machines and fully connected network (FCN-32s). Table 1 

details the quantitative semantic segmentation results averaged 

across multiple images of varying spatial resolutions and 

building clutter taken over a large study area of all the networks 

implemented for comparative analysis. Figure 2 shows 

qualitatively the comparative performance of the proposed 

methodology contrasted against the state-of-the-art 

architectures.  

 

Model mIoU P R F1 OA(%) 

U-Net 0.91 0.90 0.89 0.92 92.03 

FCN-32s  0.89 0.85 0.86 0.87 91.17 

Random Forest  0.84 0.87 0.88 0.89 90.07 

SVM 0.86 0.84 0.79 0.89 89.74 

Wavelet U-net 0.92 0.91 0.90 0.91 93.24 

Proposed U-Net 0.94 0.92 0.92 0.93 95.22 

mIoU: mean intersection over union, P: precision, R: recall, F1: 

F1 score, OA: percentage overall accuracy 

Table 1. Performance Comparison 

 

 

 Image#1 Image#2 

Model LCE GCE LCE GCE 

U-Net 0.41 0.43 0.39 0.42 

Wavelet U-net 0.085 0.089 0.086 0.089 

Proposed U-Net 0.070 0.078 0.072 0.080 

LCE: Local consistency error, GCE: Global consistency error  

Table 2. Degree of matching performance 

 

In order to assess the effectiveness of different MRA features 

apart from visual interpretation, local and global consistency 

errors (LCEs and GCEs) are computed as quantitative measures 

to evaluate the degree of matching between segmentation output 

and the reference site (Table 2). 

 

GCE forces all local refinements to be in the same direction and 

assumes that one of the segmentations must be a refinement of 

the other. LCE and GCE quantify the degree of matching 

between segmentation results obtained from different MRA 

methods and the reference segmentation window generated 

from human visual interpretation. The lower values of LCE and 

GCE demonstrate higher degree of matching for curvelet (0.07, 

0.078) and wavelet (0.085, 0.089) features when compared to 

non-MRA (0.39, 0.42) segmentation. 

 

The experimental results for the curvelet based method 

exhibited good performance in terms of both visual 

interpretation and feature discrimination and are sufficiently 

robust against random pixels while preserving spatial 

arrangement. An overall classification accuracy of 92.4–95.22% 

is achieved with proper boundary shapes using curvelet method. 

 

 

  
Original Image#1 Original Image#2 

  

  

Ground Truth 

 

  
Building footprint without MRA 

 

  
Proposed Method 

Figure 2. Building footprint identification 
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5. CONCLUSIONS 

In this work, we developed a curvelet based multiresolution 

analysis approach in U-net framework for the building footprint 

extraction. The method progressively combines subbands of 

curvelet decompositions at various scales to extract different 

disoriented details, which are key manifestations of the building 

footprints in remotely sensed images. The proposed algorithm is 

tested on OpenCities images of covering different regions of 

formal and informal urban settlements. The results were 

compared with plain U-net and wavelet-assisted U-net models. 

The performance was evaluated based on the visual 

interpretation, precision, recall, F-score, mIoU, and overall 

accuracy of these methods. The results showed that multiscale 

curvelet subbands in the proposed U-net yielded better accuracy 

and boundary continuity than the prior proposals. The improved 

performance was because of the ability of the curvelet transform 

to capture curvilinear features of linear and nonlinear 

discontinuities when compared with plain U-net and wavelet-

assisted U-net models. This approach may be extended to train 

other architectures since there is no network-dependent 

modification required. Future scope includes evaluating the 

applicability of the method for other remote sensing tasks like 

change detection, land use and land cover classification, among 

others. 
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