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ABSTRACT:

This study proposes a method for detecting curved reflection symmetry in binary and grayscale images. The crucial step is to
construct a curvilinear symmetry axis generating a nonlinear transformation of the image coordinates that projects the curve on the
Y axis and makes the image maximally symmetric about this axis in terms of the Jaccard index. We proposed analytical estimations
for the symmetry axis curvature to make the transform bijective. We applied dynamic programming to construct the curvilinear
symmetry axis. The axis points are generated one by one with a local direction change at each point. To improve the computational
efficiency of the method for images of a given size, we construct a graph of possible transitions in advance. To estimate the
symmetry in grayscale images, we proposed two analogs to the Jaccard index. The experiments with image libraries demonstrated
that the method correctly handles images containing a single object on a homogeneous background.

1. INTRODUCTION

The estimation of the reflective symmetry measure is studied
for many years, and an extensive range of approaches is now
available. The problem statement may involve various types of
image distortion, such as parallel (Shen et al., 2000) and per-
spective (Bitsakos et al., 2008) projections. The recent works
actively use image similarity properties along straight lines (Lo-
mov et al., 2022a, Nguyen et al., 2022). However, these meth-
ods are not suitable where an initially symmetric or nearly sym-
metric object is nonlinearly articulated (see Figure 1). A human
easily comprehends the concept of symmetry in such shapes
and can detect such an articulation. As to real-world applic-
ations, the search for the curved symmetry axis is used for the
analysis of biomedical images (Liu and Liu, 2011), plant leaves,
and lab observations of animal movements.

Figure 1. Examples of images with manually detected curved
reflection axes (or their sections).

Using a measure to find the reflective symmetry axis (straight-
line reflection symmetry) is not a relevant solution to the prob-
lem. A solution based on computer vision theory requires a
formal definition of the “curved reflection axis” concept. It
could be a parametric functional description or an explicit list
of the axis pixels. Another aspect is a formal definition of the
“measure of symmetry” concept as applicable to such problems.
Our literature review briefly covers the available solutions fol-
lowed by our original solution which uses a dynamic program-

ming procedure to find the curved reflection axis.

2. RELATED WORK

(Lee and Liu, 2009) investigated an unconventional type of
symmetry: curved glide-reflection symmetry. Their algorithm
extracts points of interest from the image, estimates the para-
meters of the symmetry which makes the points symmetric with
respect to each other, and groups the points into clusters in the
parameter space to trace the curved reflection axis. This ap-
proach is refined by (Liu and Liu, 2011) for a more strict type
of symmetry: the curved reflection symmetry. In this case, the
axis is represented by a polyline generated by a graph-based
algorithm. To reduce the enumeration, an additional check
is introduced. It calculates the cross-correlation between the
quadrangle formed by two pairs of points of interest and its
copy reflected relative to the midline. Another restriction ap-
plies to the variation of the angle between adjacent segments of
the polyline. As a result, for each vertex in the graph, only a
given number of possible neighbors remains. However, such an
approach requires a special approximation algorithm, different
from Dijkstra’s algorithm, to find the optimal path in the graph,
since the quality functional depends on the global properties of
the path.

(Teo et al., 2015) explores curvilinear symmetry of color im-
ages using Structured Random Forest to extract multiscale sym-
metric patches using features based in intensity, color, texture,
spectral and oriented Gabors. (Quan et al., 2018) considers
curved reflection symmetry in 3D space for surfaces when the
midpoints of the segments connecting pairs of symmetric points
lie on the curved reflection axis. The algorithm is used for path
detection for more efficient snake scans. (Liu et al., 2012) in-
vestigates the symmetry of 3D surfaces, but the symmetry axis
is a curve on the very surface. The detected axes are used to map
the points on two surfaces: first, the points lying on the axes are
mapped, then the points with similar properties (geodesic dis-
tances to the points of the axes) are mapped.
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The detection of curved reflection axes of symmetry is extens-
ively used in biomedical image processing. (Peng et al., 2008)
describes a normalization (straightening) algorithm for nemat-
ode images. The algorithm extracts the spline curve that best
approximates the object point cloud in terms of distances to
the curve. One step of the work (Lomov et al., 2022b) is the
detection of the main skeletal axis in the outlines of planarian
flatworms, also to generate its straightened shape. A “draft”
axis is obtained from the skeletal graph by pruning insignific-
ant edges and branches that deviates from the dominant local
direction. This procedure produces a single curve. It is then
extended to the terminal edges of the original skeleton in the
head and tail. Note that these methods handle relatively simple
shapes where the outlines can be approximated by a single fat
curve. The method proposed by (Peng et al., 2008) was further
enhanced as the standardization algorithm for the images of the
fruit fly nervous system (Qu and Peng, 2010). It introduces
the concept of a principal skeleton with a known topology iso-
morphic to a given graph. The problem is to approximate not
a single curve, but multiple curves corresponding to paths in
a graph as these curves are connected with their common ver-
tices. It is noteworthy that the basic skeletons are symmetric,
so we can introduce a special type of symmetry: skeletal. All
the considered methods produce normalized images symmetric
about the vertical axis.

3. MATHEMATICAL FORMALIZATION

The search for optimal reflection symmetry parameters can be
reduced to the search for the coordinate transform producing a
figure symmetric about the axis Y :{

x = x(u, v)

y = y(u, v).
(1)

The symmetry type determines the family of admissible trans-
forms. The conventional reflection symmetry implies motion
transforms:{

x = m11u+m12v +m13

y = m21u+m22v +m23,
M =

[
m11 m12

m21 m22

]
, (2)

where the matrix M is orthogonal. For shear symmetry (for
parallel projection), an arbitrary non-singular matrix M is ac-
ceptable. So, these cases are reduced to affine transforms. It
is determined by the choose of the origin and a pair of basis
vectors of the coordinate system. The problem of detecting the
curved reflection axis can be stated as follows. First, we define
the curve γ(t) = (a(t), b(t)) as the axis of symmetry. For con-
venience, let it be parameterized by its length:

‖γ′(t)‖ =
√

(a′(t))2 + (b′(t))2 = 1. (3)

Consequently, the tangent (a′(t), b′(t)) and normal
(b′(t),−a′(t)) vectors are unit vectors.

Consider the inverse coordinate transform{
u = u(x, y)

v = v(x, y).
(4)

For each point (x, y) it defines its prototype (u, v). The curve

γ(t) is the prototype of the axis Y . It can be represented as{
u(0, t) = a(t)

v(0, t) = b(t).
(5)

Other u(x, y) and v(x, y) can be defined as follows: a prototype
of the straight line y = t0 is the normal to the curve γ(t) at the
point t0 preserving the lengths along the straight lines:{

u(x, y) = a(y) + xb′(y)

v(x, y) = b(y)− xa′(y).
(6)

An example of such transform is shown in Figure 2.

Figure 2. Non-linear coordinate system generated by the curved
reflection symmetry axis (left), and the straightened image

(right).

Let the transform of the figure A with its characteristic function
χ(u, v) results in the figure A′ with its characteristic function

ψ(x, y) = χ (u(x, y), v(x, y)) , (7)

and A′′ is the reflection of this figure relative to the axis Y . In
the case of a straight-line reflection axis, the degree of sym-
metry can be estimated with, for example, the well-proven Jac-
card index applied to the original and reflected images (Kushnir
et al., 2017):

J(A′, A′′) =
|A′ ∩A′′|
|A′ ∪A′′| . (8)

Due to equality |A′ ∩A′′|+ |A′ ∪A′′| = 2|A′| for affine reflec-
tions, it suffices to maximize |A′ ∩A′′|. By analogy, we intend
to maximize |A′ ∩ A′′| over all possible transforms generated
by the curves γ(t).

Let us define the functions

l(p, q, φ) =

∫ +∞

−∞
χ(p+ z sinφ, q − z cosφ)dz, (9)

s(p, q, φ) =
∫ +∞
−∞ χ(p+ z sinφ, q − z cosφ)χ(p− z sinφ, q + z cosφ)dz.

(10)
The first one determines the total length of the intersection
between the line u cosφ+v sinφ = p cosφ+q sinφ and shape
A, and the second one is the length of the segments symmetric
about the point (p, q) within this intersection. We will use for
the curve γ(t) the parametrization φ(t) = atan2(b′(t), a′(t)).
Then |A′ ∩A′′| and |A′| are expressed with these functions:

|A′| =
∫ +∞

−∞
l(a(t), b(t), φ(t))dt, (11)
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|A′ ∩A′′| =
∫ +∞

−∞
s(a(t), b(t), φ(t))dt. (12)

There is a natural need to impose reasonable constraints on the
curve γ(t) to make the transform bijective (at least in the re-
gion of interest). Let the shape A be located in the image area
P with the diameter d. If the curve’s radius of curvature sat-
isfies the condition 1√

(a′′(t))2+(b′′(t))2
≥ ρ, then its possible

closed paths have length at least 2πρ and diameters at least 2ρ.
It means that any curve for which ρ > d

2
lies within the P re-

gion only partially. So we can restrict the set of curves under
consideration to the inner fragments only. Note that under such
a restriction the one-to-one correspondence in P may be viol-
ated, that is, there may exist such a pair of points (x1, y1) and
(x2, y2), that {

u(x1, y1) = u(x2, y2)

v(x1, y1) = v(x2, y2),
(13)

and (u, v) ∈ P . However, this is possible only for |x1| > d
2

and
|x2| > d

2
. It means that the distance to the points symmetric to

the chosen ones exceeds d, and their prototypes are outside of
P . As a result, double counting occurs only when calculating
|A′|, but not for |A′ ∩ A′′|. Finally, for ρ > d the transform is
bijective in the subdomain of P consisting of all the prototypes.

To find the trajectory that delivers the global optimum in reason-
able time, we propose a dynamic programming procedure that
processes images of a standard size.

4. DYNAMIC PROGRAMMING APPROACH

Dynamic programming is often used in symmetry detection
problems, in which a global symmetry region is assembled from
separate sections. The work (Westhoff et al., 2005) is devoted
to the detection of bilateral symmetry, taking into account the
determination of illumination-invariant features in images. The
approach from (Hooda et al., 2012) utilizes dynamic program-
ming to detect the rotational symmetry of plane shapes by com-
paring signatures obtained using the Fourier transform. In the
paper (Kushnir et al., 2017), dynamic programming is used to
match substrings of skeleton primitives, in this case, the com-
mon part of the chains can also be considered a curvilinear axis
of symmetry.

Let’s use the metaphor of an agent that moves along the field
P , and whose state is characterized by the position (a(t), b(t))
and the direction of gaze φ(t). When entering the state
(a(t), b(t), φ(t)) the agent receives a reward s(a(t), b(t), φ(t)).
The task of the agent is to follow the trajectory that maxim-
izes the cumulative reward

∫
s(a(t), b(t), φ(t))dt. At the same

time, due to the parametrization of the trajectory by its length,
the agent moves at a constant speed, and, since φ(t) coincides
with the direction of the tangent, it moves locally forward, in
the direction of view. The restriction on the radius of curvature
of at least ρ means that |φ(t2) − φ(t1)| ≤ |t2−t1|

ρ
, that is, for

each unit of length, the angle changes by no more than 1
ρ

.

Let’s move from a continuous set of states to a discrete one.
Let the possible direction of movement be represented by nθ
uniformly distributed angles φk = 2πk

nθ
, k = 0, . . . , nθ − 1.

Each angle defines its own Cartesian coordinate system with

basis {uk = (cosφk, sinφk),vk = (− sinφk, cosφk)}, where
the expansion of the point (u, v) is carried out as follows:[

uk
vk

]
=

[
cosφk sinφk
− sinφk cosφk

] [
u
v

]
. (14)

We also assume that the values uk and vk are quantized with
a step of 1

nx
and 1

ny
, respectively. At the next stage, the agent

takes a step forward, and either does not turn or turns by the
angle θ = 2π

nθ
to the left or the right, that is, changes the angle

to the neighboring one. In this case, due to the rotational sym-
metry of the positions, it suffices to consider the steps for φ0

only. When turning left,[
ul(u, v)
vl(u, v)

]
=

[
cos θ sin θ
− sin θ cos θ

] [
u

v + 1

]
, (15)

or, taking into account the discretization of coordinates to the
values (i, j, k) for the abscissa, ordinate, and angle, respect-
ively:
il(i, j) = round

(
nx
(

cos θ · i
nx

+ sin θ ·
(
j
ny

+ 1
)))

jl(i, j) = round
(
ny
(
− sin θ · i

nx
+ cos θ ·

(
j
ny

+ 1
)))

kl(k) = mod (k − 1, nθ) .
(16)

Similarly, when turning to the right, we get
ir(i, j) = round

(
nx
(

cos θ · i
nx
− sin θ ·

(
j
ny

+ 1
)))

jr(i, j) = round
(
ny
(

sin θ · i
nx

+ cos θ ·
(
j
ny

+ 1
)))

kr(k) = mod (k + 1, nθ) ,
(17)

and in the absence of rotation
if (i, j) = i

jf (i, j) = j + ny

kf (k) = k.

(18)

Figure 3. Visualization of the transition function. Blue dots and
arrows — states and transitions when turning to the left, red —

when turning to the right, green — without turning.

An illustration of the possible steps for nθ = 90, nx = 2,
ny = 1 is shown in Figure 3. For convenience, we assume that
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the field P is circular with radius r. Then, for any angle, the
points of the field are given by the inequality (uk)2 + (vk)2 ≤
r2. Thus, the state (i, j, k) with ( i

nx
)2 + ( j

ny
)2 > r2 lies

outside the field, we will consider it final. The state (i, j, k),
which is not final, and to which none of the non-final states
leads, will be considered the start state. The set of final states
will be denoted by F and the set of start states by S. Since
the rewards at each step are non-negative, our task is to trace
the trajectory from one of the initial states to one of the fi-
nal ones. Let s(i, j, k) denote the reward for getting into the
state (i, j, k) described earlier. Then the maximum cumulative
reward c(i, j, k) achievable when starting from this state can
be determined as follows (here and below we use the notation
c◦(i, j, k) for c(i◦(i, j), j◦(i, j), k◦(k)) where ◦ stands for l, f
or r):

c(i, j, k) =


s(i, j, k), if (i, j, k) ∈ F
s(i, j, k) + max(cl(i, j, k),

cf (i, j, k),

cr(i, j, k)), if (i, j, k) /∈ F.
(19)

Determination of the optimal trajectory by such a recursive
formula is naturally implemented as a dynamic programming
paradigm with starting calculations only from start states, given
as Algorithm 1. Note that the absence of cycles in the trans-
ition graph is of fundamental importance, which is ensured by
selecting a sufficiently high number of angles nθ for given nx,
ny , and r. Also, with a fixed field size r, the transition functions
can be calculated in advance; for the image (figure) itself, only
the reward functions s(i, j, k) and c(i, j, k) are calculated.

5. TRANSITION GRAPH PREPROCESSING

However simple in implementation, direct computation by re-
cursion may be computationally inefficient. To avoid recursion,
it is necessary to calculate the reward values for the points in a
certain order, referring only to those rewards that have already
been calculated. So, at the first stage, we can assign rewards
c(i, j, k) to all final states. We will consider these points as
points of the first layer. In the second step, we can calculate the
rewards for the points from which all steps lead to the first layer,
in the third — to the first and second layers, and so on. Thus,
a point is considered to be a point of the n-th layer if all steps
lead to points of layers less than n, and the maximum of them
is n − 1. As a result, to determine the layer number L(i, j, k),
we can write the following recursive formula:

L(i, j, k) =


1, if (i, j, k) ∈ F
1 + max(Ll(i, j, k),

Lf (i, j, k),

Lr(i, j, k)), if (i, j, k) /∈ F.

(20)

Obviously, to calculate this function, we can also use Algorithm
1, assuming that all s(i, j, k) are equal to 1. The geometric
meaning of L(i, j, k) is the length of the maximum path from
the state (i, j, k) to one of the final states. Note that due to
the rotational symmetry property the values of L(i, j, k) depend
only on i and j. Layer function for r = 32, nθ = 240, nx = 4,
ny = 4 is shown in Figure 4. Using the pre-calculated values of
this function in the form of sets λt = {(i, j, k) | L(i, j, k) = t}
for a combination of standard parameters, we get to the non-
recursive algorithm, listed as Algorithm 2.

Algorithm 1 Recursive construction of a curvilinear axis
of symmetry
Require: Start states S, final states F , immediate rewards
s(i, j, k), possible steps {i◦(i, j), j◦(i, j), k◦(i, j)}◦∈{l,f,r}

Ensure: Cumulative rewards c(i, j, k), optimal steps d(i, j, k)
procedure CALCREWARD(i, j, k)

if c(i, j, k) 6= −1 then
return

end if
CalcReward(il(i, j), jl(i, j), kl(k))
CalcReward(if (i, j), jf (i, j), kf (k))
CalcReward(ir(i, j), jr(i, j), kr(k))
c(i, j, k)← max(cl(i, j, k), cf (i, j, k), cr(i, j, k))
if c(i, j, k) = cf (i, j, k) then

d(i, j, k)← (if (i, j), jf (i, j), kf (k))
else if c(i, j, k) = cl(i, j, k) then

d(i, j, k)← (il(i, j), jl(i, j), kl(k))
else

d(i, j, k)← (ir(i, j), jr(i, j), kr(k))
end if
c(i, j, k)← c(i, j, k) + s(i, j, k)

end procedure
function TRACETRAJECTORY(i, j, k)

T = [(i, j, k)]
while T.back /∈ F do

T.push back(d(T.back))
end while
return T

end function
for all (i, j, k) do

if (i, j, k) ∈ F then
c(i, j, k)← s(i, j, k)

else
c(i, j, k)← −1

end if
end for
for (i, j, k) ∈ S do

CalcReward(i, j, k)
end for
(i∗, j∗, k∗) = arg max c(i, j, k)
T = TraceTrajectory(i∗, j∗, k∗)

Algorithm 2 Non-recursive construction of a curvilinear
axis of symmetry

Require: Layer sets Λ = [λ1, λ2, . . . , λn], immediate rewards
s(i, j, k), possible steps {i◦(i, j), j◦(i, j), k◦(i, j)}◦∈{l,f,r}

Ensure: Cumulative rewards c(i, j, k), optimal steps d(i, j, k)
for (i, j, k) ∈ λ1 do

c(i, j, k) = s(i, j, k)
end for
for t = 2, . . . , n do

for (i, j, k) ∈ λt do
c(i, j, k)← max(cl(i, j, k), cf (i, j, k), cr(i, j, k))
if c(i, j, k) = cf (i, j, k) then

d(i, j, k)← (if (i, j), jf (i, j), kf (k))
else if c(i, j, k) = cl(i, j, k) then

d(i, j, k)← (il(i, j), jl(i, j), kl(k))
else

d(i, j, k)← (ir(i, j), jr(i, j), kr(k))
end if
c(i, j, k)← c(i, j, k) + s(i, j, k)

end for
end for
(i∗, j∗, k∗) = arg max c(i, j, k)
T = TraceTrajectory(i∗, j∗, k∗)
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Figure 4. Visualization of state layers. The petal-like pattern is
caused by the discretization of states.

6. EXPERIMENTS

r = 16 r = 24 r = 32

ny

nx
1 2 4 8 1 2 4 8 1 2 4 8

1 190 196 200 200 290 296 300 302 392 398 400 402
2 128 132 134 134 194 198 200 202 262 266 268 268
4 110 112 114 116 168 170 172 172 224 228 230 230
8 102 106 106 108 156 160 160 162 210 212 214 214
16 100 102 104 104 152 154 156 156 202 206 208 208

Table 1. The minimum number of angles required for a graph of
transitions to be acyclic.

Table 1 shows that the number of angles required for the graph
to be acyclic depends much more on the accuracy of the approx-
imation along the Y axis than along the X axis. At the same
time, with an increase in ny , the number of required angles de-
creases and approaches 2πr, which corresponds to the estimate
in the continuous case. To strike a balance between the num-
ber of states, the approximation error and the flexibility of the
trajectory, we will further use the parameters nx = 4, ny = 4,
nθ = 230. Combined with the radius r = 32, this results in
processing square images with the side of 2rny = 256.

Recall that the Jaccard index for a straightened figure A′ and its
reflection A′′, which has the same area, is defined as

J(A′, A′′) =
|A′ ∩A′′|

2|A′| − |A′ ∩A′′| . (21)

In this case, both the numerator and the denominator depend
on the dewarping transform, and the measure cannot be rep-
resented as the sum of rewards at the points of the trajectory.
Therefore, it is more convenient to consider index normaliza-
tion taking into account the area of the non-straightened image:

J̃(A′, A′′) =
|A′ ∩A′′|

2|A| − |A′ ∩A′′| . (22)

There is also a need to generalize the Jaccard index for gray-
scale images. Cross-correlation of grayscale or color images G
and H is often considered (Masuda et al., 1993, Gnutti et al.,
2017) as an analog of their intersection. This leads to the fol-
lowing formulation of the Jaccard index, taking into account the
normalization of values in the range [0, 1]:

Jprod(G,H) =

∑
i,j gijhij∑

i,j (gij + hij − gijhij)
. (23)

We also propose an alternative formulation of the measure
based on the minimum of the corresponding pairs of values:

Jmin(G,H) =

∑
i,j min(gij , hij)∑
i,j max(gij , hij)

. (24)

Figure 5. The result of the search for the symmetry of a figure
by the standard reflection symmetry procedure (left), the

proposed procedure (center), and the corresponding straightened
image (right).

Both measures are relevant for binary images as well. Note that
the min-based measure is equal to 1 whenever the image com-
pletely coincides with its reflection, and in the prod-based one,
this requires an additional condition that all values are equal to
0 or 1.

Figure 5 shows the results of the curved reflection axis detection
using the proposed procedure and the resulting straightened im-
age. The given examples demonstrate that strict segmentation
is not necessary for successful operation of the method. The
corresponding symmetry measures are summarized in Table 2.
Note that by definition above, Jmin ≥ Jprod for the same axis
of symmetry, and the best axis of curved symmetry has a better
value than the axis of straight symmetry for the same type of
Jaccard index.

Image
Straight reflection

symmetry
Curved reflection

symmetry
Jprod Jmin Jprod Jmin

Butterfly 0.8079 0.8085 0.9322 0.9412

Elmo 0.3154 0.5074 0.4447 0.8236

Gym 0.1207 0.3708 0.1669 0.5704

Table 2. Symmetry measure values for images in Figure 5.

For further experiments, as in work (Liu and Liu, 2011),
two subcategories were selected from the Swedish leaf data-
set (Söderkvist, 2001) containing oak and rowan leaves, as well
as 30 X-ray images of the human spine. The results that the
method can correctly handle images of corrupted leaves (Fig-
ure 6a-A), which compares favorably with possible approaches
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J̃ = 0.8480 J = 0.8386 J̃ = 0.9825 J = 0.8482 J̃ = 0.9778 J = 0.8649

(a) (A) (b) (B) (c) (C)

J̃ = 0.8247 J = 0.8249 J̃ = 0.8136 J = 0.6906 J̃ = 0.7001 J = 0.7077

(d) (D) (e) (E) (f) (F)

J̃ = 0.7070 J = 0.6328 J̃ = 0.7541 J = 0.7608 J̃ = 0.8343 J = 0.8366

(g) (G) (h) (H) (i) (I)

Figure 6. Results on Swedish leaf (rows 1 and 2) and
human-spine X-ray (row 3) datasets. Small letters denote

original images, capital letters denote straightened images.

based on medial axis transform (Siddiqi and Pizer, 2008). In
the case of searching for symmetry for a branch of leaves, it is
worth noting that, from the point of view of the areal measure
of symmetry, movement along the stem may not be as valuable
as movement perpendicular to paired leaves, especially if they
differ in size (Figure 6e-F). Finally, the method can experience
serious problems when the object of interest is surrounded by
a background that is slightly inferior to it in intensity (Figure
6g-G).

(a) (b) (c)

(d) (e) (f)

Figure 7. Comparison of the proposed method (bottom row)
with (Liu and Liu, 2010) (top row). The pictures in the top row

are from the cited article.

Figure 7 presents the results of comparing the proposed method
with the (Liu and Liu, 2011) method on images that are mis-
takenly processed by the cited method. The proposed method
can successfully process grayscale images only if they are seg-
mented at least loosely (for example, Figure 7e was contrasted
according to the distance from pixel color to the green color
(0, 255, 0) in RGB space). For Figure 7f the top and the bot-
tom halves of the image turned out to be very similar, which

led to the detection of an almost horizontal axis of symmetry.
This does not correspond to the desired result of detection in
the form of a curve passing along the spine.

J̃ = 0.8257 J̃ = 0.8106 J̃ = 0.8847

J = 0.6347 J = 0.6749 J = 0.7458

(a) (b) (c)

J̃ = 0.7277 J̃ = 0.7134 J̃ = 0.7155

J = 0.7245 J = 0.6351 J = 0.5947

(d) (e) (f)

Figure 8. Problematic images. The normals to the axis of
symmetry that generate the rows of the straightened image are

shown in green.

Images for which the method finds unconvincing axes of sym-
metry are shown in Figure 8. For oak leaves (top row), the prob-
lems are primarily caused by the asymmetry of the shape itself,
which has very different edges on the left and right. For rowan
leaves (bottom row), the method is incapable of describing cur-
vilinear symmetry with a shear, when the segment connecting a
pair of symmetric points is not necessarily perpendicular to the
axis of symmetry. In total, images with unsuccessful axes from
the expert’s point of view were accumulated 25 out of 150 —
15 among oak leaves and 10 among rowan leaves. For the same
number of images, the method (Liu and Liu, 2011) does not
detect an axis of sufficient length, and not all complete axes
are of good quality. This shows the superiority of the proposed
method on binary images, since it always extracts some axis of
symmetry, the quality of which can be estimated by the Jaccard
index.

8 16 24 32 40 48
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Figure 9. Dependence of the operating time on the number of
states at nx = 4, ny = 4, nθ = 7.5r.

The software implementation of the proposed algorithms is per-
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formed in the C++ programming language. The plot in Figure
9 shows that the running time of the algorithm is directly pro-
portional to the number of states when tracing the trajectory,
which, in turn, has a near-quadratic dependence on the radius at
a fixed grid step.

7. CONCLUSION

The paper proposes a stable, mathematically substantiated al-
gorithm for finding a curvilinear axis of symmetry. The al-
gorithm implies a simple procedure for straightening images
by drawing normals to a curvilinear axis. Use of dynamic pro-
gramming approach allows to find a globally optimal traject-
ory in the class of trajectories that ensures the correctness of
the straightening transform. As in the case of simple reflec-
tion symmetry, the measure of symmetry is assessed by the Jac-
card index between two images, the straightened image and its
reflection. The algorithm shows convincing results on binary
images, as well as on those grayscale images where the ob-
ject of interest is separated from the background. For grayscale
images, two analogs of the Jaccard index are proposed. The
computational efficiency of the proposed procedure implement-
ation in C++ programming language ensures the processing of
256× 256 images in less than half a second.

There is an open problem related to the limitation on bending,
which does not allow the processing of significantly “swirling”
images. In addition, in the real world, shapes with curvilinear
symmetry, as a rule, also have a non-uniform shear along the
axis.
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