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ABSTRACT: 

Nowadays, automated blood cell evaluation play a major role in the classification and diagnosis of diseases. Despite the many 

possible ways to segment blood cells, the recognition efficiency remains insufficient, especially when different cell types overlap. 

Also, one should not forget about the cells structure complexity. Image segmentation and image classification are the main stages of 

this problem. At the same time, segmentation of blood smear images is considered the most important stage in automated disease 

detection systems. Often cell segmentation in blood smear images is performed as a separate mapping for white blood cells and red 

blood cells. We propose another problem statement that uses the capabilities of supervised and unsupervised CNNs for the semantic 

segmentation of objects of different sizes and shapes. CNN has encoder-decoder architecture and builds a pseudo-color map. We 

tested several CNN models using different color spaces converting initial images from RGB to Lab, HSV and CMYK color spaces 

and obtained promising experimental results for several microscopic datasets such as CellaVision DM96, All-IDB and Blood Cell 

Detection. 

1. INTRODUCTION

Hematology is a field of medicine that focuses on the study of 

the blood, and medical image processing holds a prominent 

position in this field. A vital hematological test frequently 

requested by medical practitioners to assess health is the 

complete blood cell (CBC) analysis, which includes cell 

segmentation, classification and counting. Red blood cells 

(RBCs), white blood cells (WBCs), and platelets are the three 

primary cell types that makeup blood. The majority of blood 

cells (around 40–45%) are RBCs, sometimes referred to as 

erythrocytes, which are the most prevalent form of a blood cell. 

Blood contains a large number of platelets, also known as 

thrombocytes. WBCs referred to as leukocytes, make up only 

1% of all blood cells. The quantity of RBCs has an impact on 

how much oxygen is delivered to our bodily tissues by RBCs. 

Platelets aid in blood coagulation, whereas WBCs fight off 

infections. 

Evaluation of hematologic disorders requires identification and 

description of the patient's blood. For the detection of disorders 

like anemia, leukemia, cancer, and other infectious diseases in 

pathological tests, the number of erythrocytes (red blood cells), 

leukocytes (white blood cells), platelets, and other blood cells 

are crucial. The majority of automated blood cell analysis 

systems are divided into three major phases: blood cell image 

segmentation, feature extraction, and blood cell classification. 

The segmentation of complex and varying shapes, as well as 

overlapping cells, is the most difficult phase of automation. 

WBC segmentation is an important component of the CBC 

analysis system, and the results have a direct impact on cell 

recognition accuracy. Eosinophils, basophils, monocytes, 

leukocytes, and neutrophils are the five types of white blood 

cells. The first three are granular, while the last two are non-

granular. The nonlinear optical method proved ineffective in 

distinguishing these types. 

Unsupervised methods for WBC segmentation include image 

thresholding, image clustering, and edge detection, and are 

focused on features such as color, shape, and brightness. Image 

thresholding methods typically employ image features to 

calculate a threshold that is then employed to separate image 

pixels into object pixels and background pixels. They typically 

achieve satisfactory high contrast segmentation of WBC nuclei 

but fail to accomplish satisfactory low contrast segmentation of 

WBC cytoplasm. 

A segmentation problem is regarded as a clustering algorithm 

by unsupervised methods. These methods typically extract 

image features before using them to classify image pixels. 

However, they are having difficulty with classification accuracy. 

Due to their limited image representation capability, traditional 

classifiers struggle to achieve high classification precision on 

large-scale image datasets. Currently, many deep learning 

models have been developed to improve segmentation results 

(Lu et al., 2021; Davamani et al., 2022; Dhalla et al., 2023). 

In this paper, we propose, cell segmentation in blood smear 

images based on color analysis and encoder-decoder CNN 

models. The color intensity of blood smeared images taken with 

various light microscopes may differ slightly due to differences 

in image acquisition process conditions. Lighting conditions 

and the various devices used to collect samples are among the 

issues that must be addressed because it is critical to standardize 

the image's intensity in the system. 
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The paper is structured as follows. A brief review of related 

work is presented in Section 2. Section 3 describes materials 

and methods for color space correction and CNN-based 

segmentation. Section 4 contains the experimental results. 

Section 5 concludes the paper. 

 

2. RELATED WORK 

Traditional image segmentation methods include a wide variety 

of algorithms, which are classified as rule-based (thresholding-

based segmentation, color-based segmentation, region-based 

segmentation, clustering-based segmentation, watershed 

segmentation, supervised segmentation methods, frequency 

domain methods, and so on) and deformable model-based 

(segmentation using active contours and level-set methods). 

They are presented in the literature published in 1980-2010 and 

discussed in detail in some surveys (Saraswath and Arya, 2014; 

Rodellar et al., 2018). The main challenges for these methods 

are noise removal with smoothing, Wiener filter, etc., as well as 

edge enhancement with morphological analysis, discrete 

curvelet transform, etc. Currently, these methods remain in the 

area of interest for creating hybrid approaches to the blood cell 

segmentation and classification. Adaptive cell segmentation 

using an improved fuzzy c-means algorithm was proposed in 

(Davamani et al., 2022), followed by an enhanced hybrid 

learning model with the help of long-short term memory and 

neural network classifiers. 

 

Cell segmentation in blood smear image has different problem 

statements. There are a few publications on RBC segmentation, 

mostly based on color analysis. Many publications examine and 

develop methods for the WBC segmentation as a complex 

problem. At the same time, platelet segmentation is of no 

interest other than platelet counting (Shahzad et al., 2020; 

Drałus et al., 2021). Cell segmentation is usually performed in 

different color spaces in order to obtain separate WBCs and 

RBCs segmentation maps (Cao et al., 2018). 

 

In recent years, deep convolution neural networks have become 

the SOTA of supervised image segmentation, demonstrating 

remarkable performance for medical image segmentation (Guo 

et al., 2019). The CNN encoder–decoder architectures can 

extract more contextual information, and most CNN 

segmentation models use this approach instead of representing 

the segmentation task as a classification task. The encoder, 

consisting of convolution operations, extracts optimal features, 

and the decoder restores the image resolution using 

interpolation methods or transposed convolutions. Typically, all 

the output feature maps from the encoder layers are associated 

with decoder layers to optimize the segmentation results in the 

form of a final output image. Such models show superiority in 

multi-scale feature detection compared to hand-crafted feature 

models. 

 

The encoder can consist of some pre-defined networks. Let us 

list the commonly used models for semantic segmentation of 

medical images, among which are VGG (Simonyan and 

Zisserman, 2015), ResNet (He et al., 2016), SegNet (Tran et al., 

2018), U-Net (Olaf et al., 2015; Kadry et al., 2022), U-Net++ 

(Lu et al., 2021), and DeepLabV3+ (Reena and Ameer, 2021). 

Recently, sophisticated models have been developed in this 

scope. A contour proposal network for instance segmentation 

that detects the possible overlap of objects in an image based on 

Fourier descriptors, with different backbone networks has been 

proposed in (Upschulte et al., 2022). A dual-path model to 

identify and fuse low-level and high-level features as the end-

to-end network for leukocyte segmentation from blood smear 

images has been presented in (Dhalla et al., 2023). The encoder 

block was inspired by the ResNet50 network, and the viral 

lightweight attention module was focused on spatial and 

channel features. The transformer-based model in a practical 

medical scenario of leukocyte detection has been applied in 

(Leng et al. 2023). In (Depto et al., 2023), medical image 

imbalance as a crucial issue in the context of predictive 

modelling was studied in three broad categories: input-based 

methods, GAN-based methods, and loss-based methods. 

 

Despite recent great advances in supervised learning based 

medical image segmentation, unsupervised image segmentation 

remains a promising research direction due to the well-known 

objectivities of unsupervised learning, especially in the medical 

field. Unsupervised color image segmentation techniques can be 

divided into the following categories: thresholding-based 

methods, edge-based methods, clustering-based methods, 

region-based methods, graph-based methods, and hybrid 

methods. Hybrid methods usually fuse different features or 

combine segmentation results obtained by different methods. 

However, it is difficult for them to determine the optimal 

parameters. One of the first applications of artificial neural 

networks was the development of the pulse coupled neural 

network (PCNN). The most significant modifications were the 

RG-PCNN model (Stewart et al., 2002), which combined 

PCNN with region growing for greyscale image segmentation, 

and extension of the RG-PCNN model for color images 

segmentation (Xu et al., 2018). 

 

3. MATERIALS AND METHODS 

In this section, an overview of the proposed approach is 

discussed in Section 3.1. Datasets for experiments are briefly 

described in Section 3.2. The proposed color space correction 

and CNN-based segmentation are presented in Sections 3.3 and 

3.4, respectively. 

 

3.1 Overview of the Proposed Approach 

Often cell segmentation in blood smear images is performed as 

a separate mapping for WBCs and RBCs. Due to the fact that 

WBCs are few number compared to the RBCs ones, methods, 

first, segment WBCs using pre-processing, color transform, 

thresholds, and machine learning methods and, second, subtract 

the WBC map from the initial image in order to segment RBCs. 

As a result, two maps are obtained. We propose another 

problem statement that uses the capabilities of CNNs for the 

semantic segmentation of objects of different sizes and shapes. 

CNN has encoder-decoder architecture and builds a pseudo-

color map. We tested several CNN models using different color 

spaces converting initial images from RGB to Lab, HSV and 

CMYK color spaces. 

 

3.2 Datasets 

For experiments, we used three datasets with varying levels of 

complexity. The first dataset, CellaVision DM96 (Acevedo et 

al., 2020), comprises 10,000 images of blood smears captured 

using a digital microscope. The images have a resolution of 

1280960 and contain different types of blood cells such as red 

blood cells, white blood cells, platelets, and other artifacts. The 

dataset is split into a training set of 7,000 images and a test set 

of 3,000 images, with each image annotated with the type of 

cell and its location. 
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The All-IDB dataset (Labati et al., 2011) contains 108 blood 

smear images with a resolution of 25921944 captured at 

1000 magnification. The dataset includes both normal and 

abnormal blood cells, with the abnormal cells classified into 

different types of leukemia. The dataset is split into a training 

set of 49 images and a test set of 59 images. 

 

The Blood Cell Detection dataset (Blood Cell Detection 

Dataset, 2023) is a collection of 12,500 images of blood cells 

captured under a microscope. The images have a resolution of 

640480 and contain three types of blood cells, namely red 

blood cells, white blood cells, and platelets. The dataset is split 

into a training set of 9,375 images and a test set of 3,125 

images, with each image annotated with the type of cell and its 

location. Sample images from these datasets are depicted in 

Figure 1. 

 

 
a 

 
b 

 
c 

Figure 1. Sample images from datasets: a) the CellaVision 

DM96, b) the All-IDB, c) the Blood Cell Detection. 

 

Preprocessing plays a crucial role in the success of image 

analysis tasks, particularly in the domain of medical imaging. In 

this study, we present the preprocessing steps performed on 

three datasets of blood smear images with varying levels of 

complexity. Firstly, the images were resized to a fixed size of 

256256 pixels to ensure consistency in the input size of the 

models. Secondly, color space conversion was carried out from 

the RGB color space to the Lab, HSV, and CMYK color spaces 

to experiment with different color spaces. Thirdly, data 

augmentation techniques, such as rotation, flip, and zoom, were 

used to increase the diversity of the training dataset and 

improve the performance of the models. Fourthly, each image 

annotation was verified by a trained medical professional to 

identify the regions of interest for the respective cell type 

(WBCs, RBCs, platelets). Lastly, the annotated images were 

split into training, validation, and test sets using a random split 

with a ratio of 80:10:10. In addition, normalization was 

performed to have a mean of zero and a standard deviation of 

one, which helps in faster convergence during the training 

phase. These preprocessing steps ensure the consistency and 

quality of the datasets, thereby improving the performance of 

the models during training and testing. 

 

The features of RBC, WBC, and platelets can vary depending 

on the specific application or analysis being performed. Some 

common features for each cell type are presented in Table 1. 

 

Features RBC WBC Platelets 

Size Smaller Larger Smallest 

Shape Biconcave Round/Irregular Oval/Round 

Color Red (due to 

hemoglobin) 

Colorless Colorless 

Texture Smooth Granular Granular 

Spatial 

Distribution 

Uniform Random Random 

Table 1. Some features of RBCs, WBCs, and platelets. 

 

3.3 Color Space Correction 

In practice, the color of a blood smear image is highly variable 

due to lighting conditions, different staining times, unstable 

smear thicknesses, and different physical qualities of samples. 

In this regard, there is a need for color normalization. One of 

the simplest approaches is a color correction method based on 

color transfer between images (Reinhard et al., 2001), one of 

which is an accurately segmented template image. The color 

characteristics are transferred from the template to the input 

image using mean value and standard deviation in Lab color 

space (Garcia-Lamont et al., 2018). The algorithm includes the 

following steps: 

 

1. Transform the input image and the template image 

from RGB color space to Lab color. 

2. Calculate the mean value and standard deviation of 

the input image and the template image in Lab color space. 

3. Subtract the mean value from all the pixels of the 

input image using the following equation: 

  

 ; ;L L L a a a b b b        ,   (1) 

 

where  L, a, b = the L, a, b components of each pixel 

 L , a , b  = the mean values of the L, a, b 

components 

 L, a, b= the resultant values of each pixel 

4. Scale the pixels of each color component of the 

synthesized image, taking into account the corresponding 

standard deviations: 

  

 ; ;
L a b

t t t

L a b

i i i

L L a a b b
  

       
  

,   (2) 

 

where  L

t , a

t , b

t  = the standard deviation of the L, a, b 

components of the template image 

 L

i , a

i , b

i  = the standard deviation of the L, a, b 

components of the input image 

 L, a, b = the resultant values of each pixel 

5. Transform the synthesized image from the Lab color 

space to RGB color space. 
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The application of the algorithm mentioned above helps to 

better segment WBCs. Example of color transfer is depicted in 

Figure 2. 

 

 
 a   b        c 

Figure 2. Example of color transfer: a) template image, b) input 

image, c) synthesized image. 

 

The studies have shown that all types of blood smear cells are 

visible in three components: the B component of the RGB color 

space, the V component of the HSV color space, and the Y 

component of the CMYK color space.  

 

Color space correction is one of the standardisation methods 

because it can be used to modify the obtained input image to a 

conventional color characteristic template. Following the color 

correction phase, the image must be segmented in order to 

localise the appropriate WBC region. WBC is localised by 

removing other regions and debris like RBC, platelets, and 

background. Nevertheless, segmenting the WBC region is 

difficult due to inconsistent morphological features. This is due 

to the fact that WBC is divided into two parts: the nucleus and 

the cytoplasm. The nucleus has higher color intensity than the 

cytoplasm, and the nucleus is the inner part of the WBC, 

whereas the cytoplasm is the outer part. 

 

3.4 CNN-based Segmentation 

To address the aforementioned issues, this study proposed a 

multi-level deep convolutional encoder-decoder network for 

blood cell segmentation. An encoder-decoder used to precisely 

segment WBC particles from blood smear images. It employs 

CNN-based encoders and decoders that have been pre-trained. 

As attention maps, the first feature maps built by network are 

used. These maps are fed into the second network along with 

the initial 3-channel image to produce the final mask. This 

mechanism enables the latter encoder-decoder pair to explicitly 

focus on WBC particles while ignoring other blood cells and 

debris, improving segmentation accuracy. 

 

In this study, we propose a modified version of the U-Net 

architecture for the segmentation of blood smear images. The 

proposed model aims to improve the accuracy of WBC, RBC, 

and platelet segmentation in blood smear images. The 

modifications include the addition of batch normalization layers 

and dropout layers to improve the robustness and generalization 

of the network. In addition, we incorporated a dilation 

convolution operation to capture larger spatial context and a 

squeeze-and-excitation (SE) module to enhance feature 

representation. 

 

The encoder model consists of four convolution blocks. Each 

block comprises two convolution layers followed by a batch 

normalization layer and a ReLU activation function. The 

convolution layers have a filter size of 33 and a stride of 1. 

Max pooling layers with a filter size of 22 are used to 

downsample the feature maps. Dropout layers with a rate of 0.5 

are added after each max pooling layer to prevent overfitting. 

 

The decoder model is composed of four upsampling blocks, 

each block comprises an upsampling layer followed by two 

convolution layers with a filter size of 33 and a stride of 1. 

Batch normalization layers and ReLU activation functions are 

applied after each convolution layer. Skip connections are used 

to concatenate the corresponding feature maps from the encoder 

model to the decoder model. In addition, a dilation convolution 

layer with a dilation rate of 2 is added to capture larger spatial 

context. 

 

The SE module is added to the decoder model to enhance 

feature representation. The SE module consists of two fully 

connected layers with a global average-pooling layer in 

between. The output of the global average-pooling layer is fed 

into the fully connected layers with a sigmoid activation 

function. The modified U-Net architecture is shown in Table 2. 

 

 

Layer type Output size Filter size/ 

Stride 

Number of 

parameters 

Input (512, 512, 3) – – 

Convolutional (512, 512, 32) 33/1 896 

Batch Norm (512, 512, 32) – 128 

ReLU (512, 512, 32) – – 

Convolutional (512, 512, 32) 33/1 9,248 

Batch Norm (512, 512, 32) – 128 

ReLU (512, 512, 32) – – 

Max Pooling (256, 256, 32) 22 – 

Dropout (256, 256, 32) – – 

Convolutional (256, 256, 64) 33/1 18,496 

Batch Norm (256, 256, 64) – 256 

ReLU (256, 256, 64) – – 

Convolutional (256, 256, 64) 33/1 36,928 

Batch Norm (256, 256, 64) – 256 

ReLU (256, 256, 64) – – 

Table 2. The modified U-Net architecture. 

 

The unsupervised deep embedded clustering (DEC) model 

consists of an encoder, a clustering layer, and a decoder (Xie et 

al., 2016). The encoder network includes convolutional layers 

that extract features from the input image. The clustering layer 

maps the encoded features to a low-dimensional space, where 

clustering is performed. The decoder network reconstructs the 

input image from the encoded features. The architecture of the 

DEC model is presented in Table 3. 

 

Layer type Output size Number of 

parameters 

Input  (height, width, channels) 0 

Convolutional (height, width, 32) 32 

Max Pooling (height/2, width/2, 32) 0 

Convolutional (height/2, width/2, 64) 18,496 

Max Pooling (height/4, width/4, 64) 0 

Convolutional (height/4, width/4, 128) 73,856 

Max Pooling (height/8, width/8, 128) 0 

Convolutional (height/8, width/8, 256) 295,168 

Max Pooling (height/16, width/16, 256) 0 

Convolutional (height/16, width/16, 512) 1,180,160 

Clustering (num_clusters) 524,800 

Decoder (height, width, channels) 576,576 

Total – 2,192,192 

Table 3. The DEC architecture. 
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The DEC model was trained in two phases. In the first phase, 

the encoder and clustering layers are trained using an 

unsupervised clustering algorithm such as K-means. In the 

second phase, the decoder network is trained to reconstruct the 

input image from the encoded features. 

 

For unsupervised learning, we split the dataset into 80% 

training data and 20% validation data. We used the binary 

cross-entropy loss function and the Adam optimizer for training. 

The learning rate was set to 0.001, and the batch size was set to 

16. We trained the model for 100 epochs. 

 

4. EXPERIMENTAL RESULTS 

In this study, we utilized Python and the Keras deep learning 

framework to implement our proposed method for blood cell 

segmentation. The training and testing of the model were 

performed on a machine equipped with an Intel Core i7 CPU 

and an NVIDIA GeForce GTX 1080 Ti GPU. Figures 3 and 4 

present the accuracy and loss evaluations for the Mod U-net 

model and the DEC model, respectively. 

 

 
a 

 
b 

Figure 3. Accuracy and loss evaluations: a) accuracy results for 

the Mod U-Net model, b) losses for the Mod U-Net model. 

 

To evaluate the performance of our models, we utilized several 

metrics commonly used in image segmentation tasks. 

Specifically, we reported the precision, recall, and F1-score. 

The precision metric measures the ratio of true positive 

predictions to the total number of positive predictions, while 

recall measures the ratio of true positive predictions to the total 

number of actual positive cases. The F1-score is the harmonic 

mean of precision and recall, providing a balanced measure of 

overall performance. Additionally, we employed the 

Intersection over Union (IoU) metric, which calculates the ratio 

of the intersection of the predicted and ground truth masks to 

their union. Overall, these metrics provided a comprehensive 

evaluation of the effectiveness of our proposed method for 

blood cell segmentation. The results of the experiment are 

shown in Table 4: 

 

 
a 

 
b 

Figure 4. Accuracy and loss evaluations: a) accuracy results for 

the DEC model, b) losses for the DEC model. 

 

Model Precision Recall F1-score Accuracy 

Mod U-Net 0.94 0.97 0.93 0.93 

DEC 0.84 0.89 0.86 0.81 

Table 4. Average accuracy results of supervised learning (using 

the modified U-Net model) and unsupervised learning (using 

the DEC model). 

 

The experimental results of testing our models using different 

color spaces for blood cell segmentation are summarized in 

Table 5. 

 

The results show that all color spaces are effective in improving 

the accuracy, precision, recall, and F1-score of the CNN models 

for blood cell segmentation. The CMYK color space provides 
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the highest performance in all models, while the RGB color 

space provides the lowest performance. 

 

Model Color 

space 

Precision Recall F1-

score 

Accuracy 

Mod U-Net RGB 0.92 0.91 0.92 0.91 

Mod U-Net Lab 0.95 0.96 0.93 0.92 

Mod U-Net HSV 0.94 0.92 0.92 0.92 

Mod U-Net CMYK 0.96 0.96 0.94 0.94 

DEC RGB 0.82 0.88 0.85 0.82 

DEC Lab 0.80 0.90 0.86 0.80 

DEC HSV 0.80 0.87 0.89 0.81 

DEC CMYK 0.84 0.91 0.87 0.84 

Table 5. Average accuracy results of supervised learning (using 

the Mod U-Net model) and unsupervised learning (using the 

DEC model) depending on color spaces. 

 

The results showed that the use of different color spaces can 

significantly affect the segmentation accuracy of Mod U-Net 

models for microscopic images. The best-performing model and 

color space varied depending on the specific dataset and type of 

the Mod U-Net model used. This suggests that selecting the 

appropriate color space for a given task is crucial for achieving 

accurate segmentation results. 

 

Figure 5 presents the segmentation results for an image taken 

from the CellaVision DM96 dataset and its different color 

components using Mod U-net and DEC models. The B 

component from RGB, the Y component from CMYK, and the 

V component from HSV were used for experimentation with 

different color spaces. The red, yellow and blue colors represent 

RBCs, WBCs, and platelets, respectively. 

 

 
                 a                                b                             c 

Figure 5. Segmentation results in different color spaces (first 

row is the RGB representation, second row is the B component 

from RGB, third row is the Y component from CMYK, fourth 

row is the V component from HSV): a) input image, b) 

segmentation using the Mod U-Net model, c) segmentation 

using the DEC model. 

Our approach was evaluated on three publicly available 

datasets: CellaVision DM96, All-IDB, and Blood Cell 

Detection. The results demonstrated that our proposed method 

outperformed the SOTA methods in terms of accuracy and 

robustness. The U-Net based models achieved an average  

F1-score of 0.94, IoU of 0.88, precision of 0.94, and recall of 

0.95 on the test datasets. 

 

5. CONCLUSIONS 

We presented a modified approach for blood cell segmentation 

using deep learning models. We proposed a U-Net based 

architecture that utilizes residual connections and a combination 

of convolutional and pooling layers for feature extraction and a 

series of up-convolutional layers for segmentation. We also 

experimented with different preprocessing techniques, color 

spaces, and data augmentation methods to improve the 

performance of our models. The use of unsupervised clustering 

algorithms such as K-means for training the encoder and 

clustering layers of the DEC model has not been so effective. 

 

Overall, our findings suggest that deep learning models can 

effectively segment blood cells in digital microscopy images, 

and our proposed approach can achieve high accuracy and 

robustness in different datasets with varying levels of 

complexity. Future work can explore the application of our 

method in other medical imaging tasks and further improve the 

performance by incorporating more advanced techniques such 

as attention mechanisms and adversarial training. 
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