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ABSTRACT:  

 

In this article the fractional phase congruency method for iris image key points descriptors is proposed. The fractional phase congruency 

is calculated using fractional wavelet transform through the fractional Fourier transform. Fractional Fourier transform is the 

generalization of the classical Fourier transform. The use of fractional phase congruency can achieve better results compared to the 

use of the classical phase congruency. The comparison between phase congruency and fractional phase congruency for biometric iris 

images is given. The optimal parameters of fractional wavelet transform for iris image key points matching are found. The experimental 

results of the proposed method using the images from CASIA−IrisV4−Interval database are demonstrated.  

 

 

1. INTRODUCTION 

The Fractional Fourier transform is the generalization of the 

classical Fourier transform. (Namias, 1980). The fractional 

Fourier transform (FRFT) can be considered as a signal rotation 

in the time-frequency plane for a given angle. FRFT can be used 

in various signal processing problems (Gomez-Echavarria, 2020, 

Sejdic, 2011) and can also be effectively used in neural networks 

(Zhang, 2021, Sahinuc, 2022). The fractional Fourier image 

transformer can extract both global and local contexts effectively 

(Zhao, 2022). The fractional operations like fractional 

convolution (Mustard, 1998), fractional correlation (Mendlovic, 

1995) can also be considered as a generalization of classical 

operations. Some fractional operations can help to obtain better 

results than classical methods (Protsenko, 2022). 
 

Phase information is used in various signal processing 

algorithms. For example, phase based algorithms can be used for 

image edge (Asghari, 2015) and corner detection (Kovesi, 2003), 

image fusion (Zhu, 2019), image registration (Yu, 2020), image 

segmentation (Belaid, 2010), etc. The phase can be used for 

image quality assessment (Zhang, 2011, Wang, 2003).  Phase 

information is often used in biometrics: in iris recognition 

(Daugman, 2009), face recognition (Chan, 2012), for finger 

knuckle pattern authentication (Hammouche, 2020), gait 

recognition (Rida, 2016), for fake biometric data detection 

(Saratxaga, 2016). The phase information is also used in 

convolutional neural networks as input data (Qi, 2021) or for data 

augmentation (Chen, 2021). 
 

Phase congruency is used in many problems of image processing 

(Pavelyeva, 2018). In phase congruency method the signal 

wavelet transform with different values of scale parameter is 

calculated, and the points of similar phase values over all scales 

are used for image features detection (Kovesi, 2003). Using the 

fractional wavelet transform instead of the classical wavelet 

transform the fractional phase congruency method is obtained. 

The fractional wavelet transform is calculated using FRFT 

(Mendlovic, 1997). Since FRFT contains the information about 

the signal both in spatial and frequency domains the proposed 

fractional phase congruency method can give better results than 

the classical phase congruency method. 

In this article the fractional phase congruency method for iris 

image key points matching is proposed. The iris is one of the 

most reliable human biometrics. Iris images contain a lot of 

unique patterns, and the most informative iris image features can 

be found as iris image key points. The key points are found using 

Hermite functions (Pavelyeva, 2013) and the key points 

descriptors are based on fractional phase congruency. 
 

This paper is arranged as follows: in Section 2 the fractional 

Fourier transform and fractional wavelet transform are described. 

Sections 3 and 4 show the properties of fractional Fourier and 

fractional wavelet transforms phase. In Section 5 the fractional 

phase congruency method is proposed. Section 6 describes the 

iris key points descriptors. The experimental results are shown in 

Section 7. Finally, Section 8 provides some conclusions. 

 

2. FRACTIONAL FOURIER AND WAVELET 

TRANSFORMS 

The Fractional Fourier Transform (Namias, 1980) provides a 

family of linear transforms for each value of 𝑎 ∈ 𝑅. The FRFT of 

order 𝑎 converts the signal 𝑓(𝑥) to the complex signal 𝐹(𝜆): 

𝐹𝑎[𝑓(𝑥)] = 𝐹(𝜆) = ∫ 𝑓(𝑥)𝐾𝑎(𝑥, 𝜆)𝑑𝑥,
∞

−∞

 

𝐾𝑎(𝑥, 𝜆) =

=

{
 
 

 
 1

√2𝜋
√1 − 𝑖𝑐𝑡𝑔𝛼𝑒𝑥 𝑝 (

𝑖(𝑥2 + 𝜆2)

2
𝑐𝑡𝑔𝛼 −

𝑖𝑥𝜆

𝑠𝑖𝑛𝛼
) , 𝛼 ≠ 𝜋𝑛 

𝛿(𝑥 − 𝜆),   𝛼 = 2𝜋𝑛        
𝛿(𝑥 + 𝜆),   𝛼 = 𝜋 + 2𝜋𝑛

 

where α = 𝑎𝜋/2. 
 

It can be seen that 𝐹𝑎[𝑓(𝑥)] = 𝐹𝑎+4[𝑓(𝑥)], 𝑎 ∈ 𝑅. FRFT can be 

considered as a signal rotation in the time-frequency plane for a 

given angle 𝛼 (Fig. 1). Consider some special cases of the value 

𝛼. When 𝛼 = 𝜋/2, then 𝑎 = 1, and FRFT becomes classical 

Fourier transform. When α = 0, then 𝑎 = 0 and 𝐹0[𝑓(𝑥)] 
reduces to the identity operator. When 𝛼 = −𝜋/2, then 𝑎 = −1, 

and the FRFT is the inverse Fourier transform. 
 

The different fractional Fourier transform properties, such as the 

rules of multiplication, division, integration, differentiation, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W3-2023 
ISPRS Intl. Workshop “Photogrammetric and computer vision techniques for environmental and infraStructure monitoring, Biometrics and Biomedicine” 

PSBB23, 24–26 April 2023, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W3-2023-201-2023 | © Author(s) 2023. CC BY 4.0 License.

 
201

Publisher's note: Copernicus Publications has not received any payments from Russian or Belarusian institutions for this paper.



 

convolution and the methods for the discrete fractional Fourier 

transform calculation are described in (Saxena, 2005). 
 

 
Figure 1: The illustrarion of fractional Fourier transform. 

 

The fractional Fourier transform can be generalized to the two-

dimensional case (Pei, 1998):  

𝐹𝑎,𝑏[𝑓(𝑥, 𝑦)] = 𝐹(𝜆, 𝜇) = ∫ ∫ 𝑓(𝑥, 𝑦)𝐾𝑎,𝑏(𝑥, 𝑦, 𝜆, 𝜇)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

, 

 

𝐾𝑎,𝑏(𝑥, 𝑦, 𝜆, 𝜇) = 𝐾𝑎(𝑥, 𝜆)𝐾𝑏(𝑦, 𝜇). 
 

The fractional wavelet transform is a generalization of the 

classical wavelet transform (Mendlovic, 1997). The classical 

wavelet transform is calculated by the formula: 

𝑊(𝑠, 𝑝) = ∫ 𝑓(𝑥)𝐺𝑠,𝑝
∗ (𝑥)𝑑𝑥

∞

−∞

, 

where 𝐺𝑠,𝑝(𝑥) =
1

√𝑠
𝐺 (

𝑥−𝑝

𝑠
), and 𝐺(𝑥) is the mother wavelet 

function, 𝑠 ∈ 𝑅+ is the scale parameter, 𝑝 ∈ 𝑅 is the shift 

parameter. 
 

The fractional wavelet transform is defined as 

𝑊𝑎(𝑠, 𝑝) = ∫ ∫ 𝐾𝑎(𝑥, 𝜆)𝑓(𝑥)𝐺𝑠,𝑝
∗ (𝜆)𝑑𝑥𝑑𝜆

∞

−∞

∞

−∞

. 

To calculate the fractional wavelet transform of order 𝑎 in 

practice we perform the classical wavelet transform to the 

fractional Fourier transform of the required order 𝑎 (Mendlovic, 

1997). The fractional wavelet transform 𝑊𝑎,𝑏(𝑠, 𝑝, 𝑞) can be 

generalized to the two-dimensional case (Kaur, 2023). To do this, 

we calculate the two-dimensional fractional Fourier transform 

𝐹𝑎,𝑏[𝑓(𝑥, 𝑦)], and then we calculate the two-dimensional 

wavelet transform for the obtained result. In this article we use 

the parameters 𝑎 = 𝑏, so we denote 𝑊𝑎,𝑎(𝑠, 𝑝, 𝑞) as 𝑊𝑎(𝑠, 𝑝, 𝑞). 
 

3. FRACTIONAL FOURIER TRANSFORM PHASE 

The phase of Fourier transform contains information about the 

edges of image. For the fractional Fourier transform, a different 

amount of information about the edges can contain both the phase 

and the magnitude, depending on the value of the parameter 𝑎. It 

can be shown by FRFT phase and FRFT magnitude synthesis 

(Protsenko, 2022).  
 

Let us take two images Lena and Baboon (Fig. 2) and combine 

the FRFT phase from one image and FRFT magnitude from 

another image (Fig. 3).  

 

         
Figure 2: Lena and Baboon original images. 

         
𝑎 = 0.9 

         
𝑎 = 0.5 

         
𝑎 = 0.1 

Figure 3: Synthesis of the FRFT phase and FRFT magnitude of 

different images. Left column images contain FRFT phase of 

Lena image and FRFT magnitude of Baboon image, and the right 

column, vice versa, FRFT phase of Baboon image and FRFT 

magnitude of Lena image. 
 

If |𝑎| is close to 1, then FRFT phase contains more information 

about the image than the FRFT magnitude. When 𝑎 is close to 0 

the phase contains less information about the image, but the most 

high frequency information about the image edges remains. The 

obtained synthesis results show that FRFT contains the 

information about the image edges both in the phase and 

magnitude. 

 

4. FRACTIONAL WAVELET TRANSFORM PHASE 

The phase values of wavelet transform have a small difference 

over all scales 𝑠 at feature points of the signal (Kovesi, 2003), 

that can be demonstrated using the phase scalogram. The phase 

scalogram shows the phase values for various values of the scale 

parameter s, the phase is mapped from 0-360 degrees to 0-255 

gray levels for visualization. 
 

We calculate the fractional wavelet transforms with different 

values of order 𝑎 for different scale values 𝑠. Fig. 4 shows the 

example of a signal and its fractional wavelet transform phase 

scalograms: equal phase values are shown by equal colours; the 

vertical axis is the s-axis (directed down). The Gabor mother 

wavelet was used for the results in Fig. 4 and Fig. 5. Note that for 

𝑎 = 0 the result corresponds to the classical wavelet transform 

phase scalogram. We can see that if the signal has a feature point, 

then the phase of wavelet transform is invariant to the scale 

changes s at this point. This property is preserved using small 𝑎 

values, however, as 𝑎 increases, the scalogram becomes less 

informative and this property disappears. 
 

For the next example we consider the input signal with noise and 

its fractional wavelet transform phase scalograms (Fig. 5). The 

localization of noisy signals features can also be determined from 

the scalogram for the parameter 𝑎 close to zero. 
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Input signal. 

 
𝑎 = 0 

 
𝑎 = 0.1 

 
𝑎 = 0.2 

 
𝑎 = 0.5 

 
𝑎 = 0.8 

Figure 4: Phase scalograms of input signal with different values 

of order 𝑎. 
 

 
Noisy input signal. 

 
𝑎 = 0 

 
𝑎 = 0.01 

 
𝑎 = 0.01 

 
𝑎 = 0.1 

 
𝑎 = 0.2 

 
𝑎 = 0.5 

Figure 5: Phase scalograms of input signal with different values 

of order 𝑎. 

 

 

5. FRACTIONAL PHASE CONGRUENCY 

The phase congruency can measure the image features 

significance. Phase congruency provides a measure that is 

independent overall signal magnitude. So it is invariant to 

variations in image illumination and contrast (Kovesi, 2003). 

The fractional phase congruency value at a point 𝑝 we define in 

the analogy of classical phase congruency: 

𝑃𝐶𝑎(𝑝) =
|∑ 𝑊𝑎(𝑠, 𝑝)𝑠 |

∑ |𝑊𝑎(𝑠, 𝑝)|𝑠 + 𝜀
, 

𝜀 is incorporated to avoid division by zero. 
 

Let 𝑊𝑎(𝑠, 𝑝, 𝑞) = 𝑊𝑎,𝑎(𝑠, 𝑝, 𝑞) be the two-dimensional fractional 

wavelet transform. For two-dimensional case the log-Gabor 

wavelet function is used, and the two-dimensional wavelet 

transform is calculated using the convolution theorem. The taken 

parameters of log-Gabor function are described in (Protsenko, 

2019). Six orientations and four scales of log-Gabor functions are 

taken. The two-dimensional fractional phase congruency value at 

a point (𝑝, 𝑞) is defined as 

𝑃𝐶𝑎(𝑝, 𝑞) =
∑ |∑ 𝑊𝑎(𝑠, 𝑝, 𝑞)𝑠 |𝜃

∑ ∑ |𝑊𝑎(𝑠, 𝑝, 𝑞)|𝑠𝜃 + 𝜀
. 

We take 𝜀 = 0.001 in the experiments. The fractional phase 

congruency visualization for different values of  parameter 𝑎 for 

square image is shown in Fig. 6. Note that for 𝑎 = 0 the result 

corresponds to the classical phase congruency method. 

 

       
       Original image                 𝑎 = 0                    𝑎 = 0.01 

 

       
           𝑎 = 0.02                    𝑎 = 0.03                  𝑎 = 0.1 

Figure 6: Phase congruency for the square image. 

 

We can see that the fractional phase congruency with the 

parameter 𝑎 close to zero contains the information about edges 

and corners of the original image. Moreover, the fractional phase 

congruency maps with 𝑎 = 0.01 and 𝑎 = 0.02 have more bright 

edges than the fractional phase congruency map with 𝑎 = 0. If 

the parameter 𝑎 is not close to zero and increases the edges 

disappear. The images in Fig. 6 show that the fractional phase 

congruence measure can find the image features of the original 

image with the parameter 𝑎 close to zero. 

 

6. IRIS KEY POINTS DESCRIPTORS 

For iris image key points matching based on fractional phase 

congruency the iris images from CASIA−IrisV4−Interval 

database (CASIA, 2010) are used. After iris localization the 

images are normalized to a rectangular image size 512 × 64 

(Fig. 7). In this work only 3 5⁄   part of the height of the initial 

normalized image (closer to the iris pupil) is taken as the 

normalized iris image  since the areas around iris pupil have more 

sharp iris texture in the taken iris image database. The iris areas 
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free from the eyelashes, eyelids and glares are found (Tikhonova, 

2020). Then the image contrast enhancement is applied. 

 

 
 

 
Figure 7: The iris image, iris segmentation and iris 

normalization results. 

 

Fig. 8 shows the examples of iris image fractional phase 

congruency with different values of parameter 𝑎.  
 

 
The normalized iris image. 

 
𝑎 = 0 

 
𝑎 = 0.01 

 
𝑎 = 0.02 

 
𝑎 = 0.03 

 
𝑎 = 0.1 

 
𝑎 = 0.3  

  
𝑎 = 0.5 

 
𝑎 = 0.8 

Figure 8: Iris image factional phase congruency measures. 

 

We see again that the values of parameter 𝑎 close to zero can give 

us the information about iris image features so further we will use 

𝑎 ∈ {0, 0.01, 0.02, 0.03}. 
 

For the normalized iris image the iris key points are found using 

the Hermite functions (Pavelyeva, 2013, Protsenko, 2019).   Then 

we construct the iris key points descriptors using the fractional 

phase congruency. The descriptor is a feature vector that contains 

25 fractional phase congruency values. One from key point and 

next 24 from the points located on two concentric circles with the 

radiuses 𝑟 and 2𝑟 around the key point, where 𝑟 = 3.   
 

If (𝑥0, 𝑦0) are the key point coordinates, then the points where 

we need to calculate the fractional phase congruency values have 

the following coordinates: 
𝑥1 = 𝑥, 𝑦1 = 𝑦 

𝑥𝑖 = 𝑥 + 𝑟𝑐𝑜𝑠 (
𝑗𝜋

4
) , 𝑦𝑖 = 𝑦 + 𝑟𝑠𝑖𝑛 (

𝑗𝜋

4
) , 𝑗 = 0. .7, 𝑖 = 𝑗 + 2 

𝑥𝑖 = 𝑥 + 2𝑟𝑐𝑜𝑠 (
𝑗𝜋

8
) , 𝑦𝑖 = 𝑦 + 2𝑟𝑠𝑖𝑛 (

𝑗𝜋

8
) , 𝑗 = 0. .15, 𝑖 = 𝑗 + 10 

The taken points are shown in Fig. 9. For better view only a part 

of normalized iris image is shown. 
 

 
Figure 9: Some iris image key points (blue crosses) and points 

around them that are used to calculate the iris image key point 

descriptor. 
 

To compare the key points, Euclidean metric between the feature 

vectors is calculated. Points outside the image have zero values, 

and these points are not used in Euclidean metric. To obtain the 

final result we divide the derived distance to the number of the 

used values. Thus the distance between two comparable key 

points 𝑃1.and 𝑃2 with the feature vectors 𝑎 = (𝑎1, … , 𝑎25)  and 

𝑏 = (𝑏1, … , 𝑏25)  is 

𝑑𝑖𝑠𝑡(𝑃1, 𝑃2) =
∑ (𝑎𝑖 − 𝑏𝑖)

2
𝑖∈𝐼

|𝐼|
 

where 𝐼 = {𝑖 ∈ {1. .25}: 𝑎𝑖 ∙ 𝑏𝑖 ≠ 0}. 
 

If the distance between the key points of two iris images is less 

than a given threshold, then these key points are considered as 

belonging to the same iris texture area. We assume that the spatial 

shift between the comparable key points may correspond to the 

angle of eye rotation no more than ~20 degrees. So only key 

points 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2) where the distance 

between 𝑥1 and 𝑥2 is no more than 30 pixels (taking into account 

the cyclic shift of the normalized iris image) and |𝑦1 − 𝑦2| ≤ 5 

can be matched. Then we find the most frequent horizontal shift 

between the matched key points – this shift determines the global 

shift between normalized iris images and the rotation angle 

between the eyes. Knowing the global shift between normalized 

iris images we then allow the final horizontal shift between the 

key points no more than global shift plus or minus 5 pixels. 

 

7. EXPERIMENTS RESULTS 

The proposed method of iris image key points matching based on 

fractional phase correlation was tested with a part of 

CASIA−IrisV4−Interval database. The different values of order 

𝑎 were taken. 
 

The distance between the iris images is equal to the number of 

matched iris key points. The distribution of genuine and impostor 

scores for different 𝑎 is demonstrated in Fig. 10. Green lines 

correspond to genuine pairs comparison and red lines correspond 

to impostor pairs. The horizontal axis shows the number of 

matched pairs. The vertical axis shows the percentage of images 

for which a given number of matches were obtained. 
 

We can see that the results for 𝑎 = 0.01 and  𝑎 = 0.02 are better 

than for 𝑎 = 0. The distributions for 𝑎 = 0.02 are the most 

separated. It means that the fractional phase congruency in iris 

key points descriptor based on classical phase congruency (𝑎 =
0) can be improved by using fractional phase congruency with 

𝑎 = 0.02. 
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                    𝑎 = 0              𝑎 = 0.01 

  
                  𝑎 = 0.02        𝑎 = 0.03 

Figure 10: The genuine (green line) and impostor (red line) 

distribution scores for different values of order 𝑎. 
 

The examples of iris key points extraction and key points 

matching for two images of one eye for different values of order 

𝑎 are shown in Fig. 11, Fig. 12 and Fig. 13. The red lines connect 

the matching key points. Blue dots show the iris image key 

points. Fig. 12 and Fig. 13 show the examples where small 

numbers of matched key points were found with 𝑎 = 0 but the 

algorithm found more corresponding key points for 𝑎 = 0.02 and 

𝑎 = 0.03. The example of iris key points matching for two 

images of different eyes is shown in Fig. 14. 
 

 
𝑎 = 0 

 
𝑎 = 0.01 

 
𝑎 = 0.02 

 
𝑎 = 0.03 

Figure 11: The examples of key points matching for two iris 

images of one eye.  

 

 
𝑎 = 0 

 
𝑎 = 0.01 

 
𝑎 = 0.02 

 
𝑎 = 0.03 

Figure 12: The examples of key points matching for two iris 

images of one eye.  

 

 
𝑎 = 0 

 
𝑎 = 0.01 

 
𝑎 = 0.02 

 
𝑎 = 0.03 

Figure 13: The examples of key points matching for two iris 

images of one eye.  
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𝑎 = 0 

 
𝑎 = 0.01 and 𝑎 = 0.02 

 
𝑎 = 0.03 

Figure 14: The example of key points matching for two iris 

images of different eyes. 

 

8. CONCLUSION 

In this article the iris image key points matching method based 

on fractional phase congruency is proposed. The iris image key 

points are calculated using the Hermite functions. The fractional 

wavelet transform in iris key points is calculated to obtain the iris 

image key points descriptors. The fractional phase congruency is 

compared to the classical phase congruency for iris image key 

points matching. The selection of optimal parameter for 

fractional phase congruency function is proposed. The results 

show that the use of fractional phase congruency method can be 

promising in image analysis and biometrics. 
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