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ABSTRACT:

Automatic sign gesture recognition (GR) plays a critical role in facilitating communication between hearing-impaired individuals and
the rest of society. However, recognizing sign gestures accurately and efficiently remains a challenging task due to the diversity of sign
languages (SLs) and their limited availability of labeled data. This scientific paper proposes a new approach to improving the accuracy
of automatic sign GR using cross-language transfer learning with visual information. Two large-scale multimodal SL corpora are
utilized as the basic SLs for this study: the Ankara University Turkish Sign Language Dataset (AUTSL) and the Thesaurus Russian Sign
Language (TheRusLan). Experimental studies were conducted, resulting in an accuracy of 93.33% for 18 different gestures, including
the Russian target SL gestures. This result exceeds the previous state-of-the-art accuracy by 2.19%, demonstrating the effectiveness
of the proposed approach. The study highlights the potential of the proposed approach to enhance the accuracy and robustness of
machine SL translation, improve the naturalness of human-computer interaction, and facilitate the social adaptation of people with
hearing impairments. This paper proposes a promising direction for future research to explore the application of the proposed approach

to other SLs and to investigate the impact of individual and cultural differences on GR.

1. INTRODUCTION

Human-computer interaction (HCI) has been an area of growing
scientific attention in the last few decades (Guo et al., 2021). Re-
cent advances in artificial intelligence (Al), information technolo-
gies, and cognitive sciences have been the main drivers behind the
growth of HCI (Ahmed et al., 2022). This interdisciplinary inter-
action allows for the design of complex information and technical
spaces, such as digital systems and platforms, which can process
information of various modalities more efficiently (Axyonov et
al., 2021, Dresvyanskiy et al., 2022).

It can be asserted that the current global trend in modern society
is the development of machine learning (ML) and Al technolo-
gies to enable effective, natural, and universal HCI. For instance,
through the use of visual communication modalities, such as hand
gestures (HGs), individuals can interact with intelligent informa-
tion systems at a distance and in noisy environments where acous-
tic speech may be ineffective (Ryumin et al., 2020).

In addition, the total number of people suffering from complete
deafness or hearing problems is increasing every year. That is
why full-fledged automatic machine sign language (SL) transla-
tion systems are needed, which currently do not exist. This is
due to both a number of technical factors (e.g., presence of vi-
sual noise, occlusions, illumination variations), insufficient syn-
tax and semantic description of sign languages (SLs), the ab-
sence of a sufficient number of large-scale SLs corpora suitable
for model training, the imbalance of available corpora by subject
areas (Ryumina and Karpov, 2020), as well as a number of other
factors, that are related directly to humans. Interdisciplinary sci-
entific research in the fields of gender linguistics (Carli et al.,
1995), non-verbal semiotics (Iriskhanova and Cienki, 2018) and
psychology (Carro et al., 2015) indicate that the gender and age
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characteristics of a single person can affect the size of the palms,
the distance of the hands from the body, the distance between ac-
tive and passive hand, and the speed of representation of various
gestures. Along with this, it is well-known that deaf people often
accompany HGs with silent articulation of the lips (Rajalakshmi
et al., 2023, Ryumin et al., 2023). Therefore, automatic recogni-
tion of human gestures is a very actual and complex fundamental
and technical task.

In this paper presents a cross-language transfer learning approach
that uses visual information to improve the recognition accuracy
of a target SL. The main idea of the approach is to combine data
from different basic SLs to train preliminary neural network (NN)
models, which are then adapted to the target SL.

The paper is structured as follows: Section 2. provides a review
of related scientific work and focuses on modern methods for au-
tomatic gesture recognition (GR) in SLs. Section 3. discusses
the corpora used for training, validation, and testing. Section 4.
presents a cross-language transfer learning SL approach. Sec-
tion 5. includes a comparison of the proposed approach with other
state-of-the-art (SOTA) solutions. Section 6. presents the con-
clusions, highlighting the main findings and outlining future re-
search directions.

2. RELATED WORK

Significant advances have been made in the field of GR in recent
years, with the use of deep learning architectures such as convo-
lutional neural networks (CNNs), deep belief networks (DBN5s),
long short-term memory networks (LSTMs), gated recurrent units
(GRUs), graph NNs (GNNGs), attention-based networks, capsule
networks, and transformer-based networks showing promising
results in analyzing spatio-temporal features of gestures. These
architectures are particularly effective in analyzing the complex
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spatio-temporal features of gestures, as they can capture both the
static and dynamic features of gestures. In addition to deep learn-
ing techniques, hybrid approaches, such as combining deep learn-
ing with rule-based approaches and fuzzy logic, have been pro-
posed to improve the accuracy and interpretability of GR systems.

The papers discussed in this section introduce various SOTA ap-
proaches for enhancing the performance measure of SL recogni-
tion.

In a series of papers by the authors, two computer systems were
proposed for recognizing manual gestures. The first paper (Ryu-
min and Karpov, 2017) proposed a prototype system for recog-
nizing continuous fingerspelling gestures and digit sequences in
Russian and Kazakh SLs. The system used the Kinect version
2.0 sensor to capture visual information and had a gesture vo-
cabulary of 52 fingerspelling gestures. The authors collected a
visual corpus of SL gestures recorded with Kinect version 2.0 to
train and test the recognition system. In contrast, the second pa-
per (Ryumin et al., 2019b) proposed an approach for detecting
and recognizing 3D one-handed gestures for HCI. The paper de-
scribed the logical structure for recording a gestural corpus and
presented models of deep convolutional networks for detecting
faces and hand shapes. Additionally, the paper provided results
of automatic detection of the regions with the face and the shape
of the hand and suggested that this approach could be used in
tasks such as biometrics, computer vision (CV), ML, automatic
systems of face recognition, and SLs.

The paper (Camgoz et al., 2020) focused on a transformer-based
architecture for joint continuous SL recognition and translation
without the need for ground-truth timing information. The pa-
per achieved SOTA results on the RWTH-PHOENIX-Weather-
2014T (Koller et al., 2015) corpus and new baseline results for
several text-to-text SL translation tasks using transformer net-
works. In another paper (Hu et al., 2021), the authors proposed
pre-training the bidirectional encoder representations from Trans-
formers (BERT) architecture on a large-scale SL video corpus to
improve the performance of SL recognition models. The authors
introduced a pre-trained model, SignBERT, and fine-tuned it on
smaller SL corpora. The paper emphasizes the significance of
pre-training and transfer learning for enhancing the accuracy of
SL recognition models. Another paper (Jiang et al., 2021) pro-
posed a skeleton aware multimodal SL recognition framework
(SAM-SLR) that combined RGB, depth, and skeleton informa-
tion to achieve SOTA performance in SL recognition. The frame-
work included an SL graph convolution network (SL-GCN) and a
separable spatio-temporal convolution network (SSTCN) to mo-
del the embedded dynamics and exploit skeleton features, respec-
tively. Another study (Selvaraj et al., 2021) explored a pose-based
pre-trained model for cross-lingual SL recognition was proposed,
which employed a pose estimation model to extract skeletal fea-
tures from SL videos and then used a pre-trained transformer
model for sequence modeling. The paper achieved SOTA re-
sults on various SL corpora, including Indian, American, and
Brazilian SLs. In (Coster et al., 2021), a multimodal approach
to isolated sign recognition using the video transformer network
(VTN) architecture was proposed, which involved pre-extracting
information from SL videos to capture body movement and hand
shapes. The authors evaluated their approach on an unnamed cor-
pus and achieved significantly higher accuracy compared to the
VTN architecture without hand crops and pose flow. In (Saunders
et al., 2021), a progressive transformer architecture for end-to-
end translation from spoken language sentences to continuous 3D
multi-channel sign pose sequences was presented. The authors
introduced counter decoding, data augmentation techniques, and
an adversarial training regime to produce realistic and expressive

sign pose sequences. Also in this paper presented benchmark
quantitative results on the PHOENIX14T (Camgoz et al., 2018)
corpus and a user evaluation of the SL production model.

In paper (Song and Xiang, 2022), introduced the SL graph time
transformer (SLGTformer), which is an approach that utilizes de-
coupled graph and temporal self-attention with graph relative po-
sitional encodings to guide spatial self-attention. This approach
achieved SOTA performance on the WLASL (Li et al., 2019)
corpus. In another paper (Bohdek and Hriz, 2022), the authors
proposed a word-level SL recognition system based on the trans-
former model, using 2D landmark locations to estimate human
body pose. The authors of the paper also introduced a robust pose
normalization scheme and several augmentations of the body pose
to improve accuracy. Another paper (Amangeldy et al., 2022) de-
scribed an automatic SL interpretation system based on GR tech-
nology, emphasizing the importance of such systems for people
with hearing impairments. The authors introduced a palm defini-
tion model and linear models to recognize the shapes of numbers
and letters in Kazakh SL, achieving an advantage in fully recog-
nizing letters. In yet another paper (Rajalakshmi et al., 2022),
the authors proposed a hybrid NN approach for both static and
dynamic isolated SL recognition in Indian and Russian SLs, ex-
tracting spatio-temporal features and combining them using a NN
architecture. In a different paper (Ryumin et al., 2023), the au-
thors introduced a deep NN-based model architecture for GR
that included a unique set of spatio-temporal features, includ-
ing lip articulation information, achieving high accuracy on the
Ankara University Turkish Sign Language (AUTSL) (Sincan and
Keles, 2020) corpus. In another paper (Bohdek and Hriz, 2023),
the authors proposed a few-shot learning approach that used on-
line text-to-video dictionaries to train NN models and achieved
SOTA results on multiple SL corpus. Additionally, in another
paper (Novopoltsev et al., 2023), the authors investigated fine-
tuning on corpora from other SLs to improve recognition quality
and whether real-time sign recognition without graphics process-
ing unit was possible, achieving promising results on three difter-
ent language corpora. Finally, in a separate paper (Rajalakshmi
et al., 2023), the authors proposed a novel vision-based hybrid
deep NN methodology for recognizing Indian and Russian sign
gestures, which used a 3D deep NN with atrous convolutions for
spatial feature extraction, attention-based Bi-LSTM for tempo-
ral and sequential feature extraction, modified autoencoders for
distinguished abstract feature extraction, and a hybrid attention
module for discriminative feature extraction. This methodology
yielded better results than other SOTA frameworks on a novel
multi-signer Indo-Russian SL corpus.

All of the research studies mentioned in this section share the
common goal of developing effective approaches for the auto-
matic recognition of SL by analyzing human body movements.
However, it is worth noting that separating the digital scene (vi-
sual information) from the dynamic behavior of an individual,
including SL, remains a challenging task. Currently, there are no
fully automatic NN models or ML approaches for SL recognition
systems. Developing such comprehensive NN models requires
extensive intellectual analysis and improvements in feature ex-
traction techniques, not only for spatial but also for temporal fea-
tures, from localized regions of an individual.

3. RESEARCH CORPORA

In the field of GR, having a vast and diverse amount of data is
crucial to training NN models that can perform well in cross-
language transfer learning. However, obtaining such corpora can
be challenging, especially for SL recognition. This is because
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SLs are complex and require capturing both spatial and temporal
information about the signer’s movements. Moreover, SLs have
a significant variety of dialects and accents (Karpov and Zelezny,
2012, Li et al., 2020, Kagirov et al., 2020b), making it challeng-
ing to capture the full range of SL gestures, even within a specific
SL.

Therefore, collecting and annotating large-scale SL corpora that
provide a broad range of gestures, expressions, and dialects is
necessary. Additionally, gathering data from signers of different
ages, genders, and cultural backgrounds can contribute to creat-
ing a more comprehensive corpus. Technological advancements
in recent years have made it possible to capture SL data more ef-
ficiently, using tools such as motion capture sensors, depth cam-
eras, and smartphones. However, annotating SL data is still a
time-consuming process that requires specialized knowledge and
skills.

Presently, only a few large-scale corpora (Li et al., 2019, Sincan
and Keles, 2020, Kagirov et al., 2020a) are available that contain
a significant amount of gesture data, particularly SL data, which
is crucial for pre-training NN models for cross-language transfer
learning.

In this study, we used two large-scale multimodal SL corpora as
the basic SLs, namely: Turkish SL (the Ankara University Turk-
ish Sign Language Dataset (AUTSL (Sincan and Keles, 2020),
publicly available) and the Russian SL (the Thesaurus Russian
Sign Language (TheRusLan (Kagirov et al., 2020a), available
upon request). The hull data was chosen because it contains mul-
timodal data recorded using the Kinect version 2.0 sensor (al-
though the version 2.0 of the Kinect sensor is no longer available
at the moment). The target SL is Russian SL, which includes
various HGs, as well as some gestures (Ryumin et al., 2019a)
specifically designed for interaction with the prototype of an aux-
iliary mobile information robot in a noisy acoustic environment
or for use by people with certain speech disorders or deaf individ-
uals. The prototype of the mobile information robot-assistant is a
mobile autonomous robotic platform that consists of a basic de-
vice for moving small-sized cargoes of compact dimensions and
additional actuators for intelligent visual analysis (Ryumin et al.,
2020). Also it is important to note that there can be multiple basic
and target languages.

3.1 AUTSL corpus

The AUTSL (Sincan and Keles, 2020) is a large-scale multi-
modal corpus of Turkish SL recordings, created by researchers
at Ankara University in Turkey to facilitate research in SL recog-
nition and understanding.

The corpus comprises video recordings and depth data captured
using a Kinect version 2.0 sensor. The video recordings show the
signer’s entire body or upper body and hands, while the depth
data provides 3D spatial information about their hand and body
movements. It includes 226 different gestures demonstrated by
43 signers, with a total of 38 336 video examples of gestures. As
can be seen from Figure 1, the videos feature various dynamic
backgrounds, indicating recordings in the wild conditions.

The corpus features a variety of signers of different ages (from
19 to 50 years), genders (10 male and 33 female), and signing
experience levels, resulting in a diverse range of SL gestures and
expressions. Furthermore, the corpus is annotated using glosses
and gloss-aligned translations, making it suitable for SL recogni-
tion and machine translation research.

Figure 1: Examples of video frames demonstrating Turkish SL
gestures in RGB format from the multimodal corpus AUTSL.

3.2 TheRusLan corpus

The TheRusLan (Kagirov et al., 2020a) is a multimodal corpus of
Russian SL elements created by researchers from the Speech and
Multimodal Interfaces Laboratory at the St. Petersburg Federal
Research Center of the Russian Academy of Sciences. As de-
picted in Figure 2, the TheRusLan (Kagirov et al., 2020a) corpus
comprises video recordings of Russian SL gestures in RGB for-
mat, depth map mode, and infrared, making it the only large-scale
multimodal resource of its kind for Russian SL.

g
(RS

Figure 2: Examples of video frames demonstrating Russian SL
gestures in RGB format (top row), depth map mode (middle
row), and infrared range (bottom row) from the multimodal cor-
pus TheRuSLan.

The TheRusLan is a multimodal corpus of 13 signers recorded
using a Kinect sensor version 2.0 during their studies at a spe-
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Figure 3: Pipeline of the proposed a cross-language transfer learning approach using visual information for automatic sign gesture

recognition.

cial center for people with hearing impairments. The participants
included 11 deaf students (two men and nine women) and two
teachers. Most of the SL students had only passive knowledge
of the standard norm of Russian SL, so translations were stan-
dardized by experts from the center, including teachers. The cor-
pus focuses on gestures related to “interaction with a robotic cart
while shopping in a supermarket”, and contains recordings of 164
individual words and phrases from Russian SL. Each signer re-
peated each gesture at least five times, resulting in 10 660 video
examples of gestures. The recordings were made at a distance of
1.5-2 meters from the signers, with an average video length of
approximately 36 minutes per signer.

4. PROPOSED APPROACH

The pipeline of the proposed a cross-language transfer learning
approach using visual information for automatic sign GR is shown
in Figure 3.

Our approach divides into two main stages, as shown in Fig-
ure 3. In the first stage, we train a model to recognize gestures on
the basic corpora: Turkish (AUTSL) and Russian (TheRusLan)
sign languages. In the second stage, we fine-tune the pre-trained
model on the target corpus, specifically the shorted the TheRus-
Lan corpus, by transferring knowledge from the weights of the
pre-trained model. Next, we provide a detailed description of the
data pre-processing and feature extraction steps used in our ap-
proach.

The initial step in our proposed approach is to precisely locate
the skeletal and facial landmarks in the input 2D video. This step
is critical, as it forms the basis for subsequent processes such
as gender and age determination, feature extraction, and GR. To
achieve this, we utilize the SOTA holistic landmark detector from
the MediaPipe open-source framework (Bazarevsky et al., 2020).
This detector employs multiple NN models that work in real-time
to determine 543 2D landmarks of a person’s face, hands, and
body. Once the landmarks are accurately localized, we extract
the 2D graphic regions of the signer’s hands and face (as shown
in Figure 4) to isolate regions of interest and extract the most
informative features for the GR task. Thus, the accuracy and reli-
ability of this initial step is critical for the success of our proposed
approach.

After localizing the skeletal and facial landmarks in the input 2D
frames, the next step is to determine the gender and age of the

Figure 4: Example of a video frame showing the 2D graphics
regions of the signer’s hands and face.

signer. Gender and age are important characteristics that can pro-
vide valuable visual information for GR and interpretation. To
accomplish this task, we use a pre-trained NN from the Deep-
face open-source software library (Serengil and Ozpinar, 2021).
This network is specifically designed to extract facial features
that can accurately predict the gender and age of a person. It
analyzes the localized regions of the face obtained in the previ-
ous step and extracts the appropriate visual features needed for
gender and age determination. Estimating a person’s age from
a single video frame is a complex task. However, the Deepface
NN utilizes SOTA techniques such as hyperparameter tuning and
deep learning to accurately estimate the age of a person. This
NN has been trained on a large corpus of facial images, allowing
it to generalize well to new and unfamiliar faces. The estimated
age of the signer, ranging from 1 to 100 years, provides valu-
able visual information for understanding their behavior and in-
terpreting their gestures. For example, different age groups may
use different gestures or have different meanings associated with
their gestures.
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The next step in the proposed approach involves extracting NN
features from both hands using a trained 3D-CNN model. One
advantage of using 3D-CNNss is that they can process video data
directly, making them well-suited for analyzing temporal fea-
tures. In contrast, 2D-CNNs require multiple frames to be pro-
cessed independently, which can lead to a loss of temporal infor-
mation. Another advantage of 3D-CNNs is that they can learn
more complex spatio-temporal features in the visual data, which
is especially important for tasks such as GR or SL recognition.
While the Video Swin Transformer (Liu et al., 2022) has shown
promise in recognizing HGs, we found that the sizes of our se-
lected research corpora is insufficient to convergence of this trans-
former. Therefore, we use the 3D-CNN model (Axyonov et al.,
2022a), which has already demonstrated promising results in rec-
ognizing and interpreting SL gestures. By leveraging the tempo-
ral and spatial features of gestures, our approach can accurately
recognize a wide range of SL gestures, even in challenging set-
tings.

The next important step in our proposed approach is the use of a
dimensionality reduction technique (DRT), which allows extract-
ing the most informative features from the hand regions. This
technique reduces the number of deep features of the hands while
retaining the most important information, thus improving the ac-
curacy and efficiency of our approach. There are several DRTs
available, such as principal component analysis (PCA) (Abdi and
Williams, 2010), linear discriminant analysis (LDA) (Izenman,
2013), and t-distributed stochastic neighbor embedding (t-SNE)
(Belkina et al., 2019), among others. In our previous research
(Ryumin et al., 2023), we demonstrated that LDA is more effec-
tive than other techniques for this task. Therefore, we also use it
into our novel approach for this paper.

Thus, five types of spatio-temporal features are formed, includ-
ing (1) gender, (2) age, (3) features of the left hand, (4) features
of the right hand, and (5) normalized skeletal landmarks. These
features are combined into one vector, which is normalized us-
ing Z-normalization and fed to the GR model. In this study, an
LSTM model with an attention layer is used as the GR model.
This is because attention mechanisms have been shown to be ef-
fective in improving the performance of sequence-based mod-
els by allowing them to focus on relevant parts of the input se-
quence (Ryumina et al., 2022). Our LSTM model consists of two
LSTM layers of 64 and 32 neurons with an attention layer (Yang
etal., 2016) in between. By using an attention layer in our LSTM
model, we can enhance the model’s ability to distinguish between
different gestures and extract more informative features from the
spatio-temporal data. The resulting model can better capture the
nuances and complexities of SL gestures, leading to more accu-
rate recognition. The basic NN model is designed to recognize
a total of 388 gestures, including 224 Turkish and 164 Russian
gestures, and is completed by a fully connected layer.

All these described steps allow combining data from the basic and
target SLs with a total of 388 gestures for preliminary training of
the basic NN model. Then, the weights of pre-trained NN model
are used to re-train the target SL, which includes only 18 Russian
gestures from the TheRusLan corpus.

Unlike the first stage, in the second stage training models can
lead to their re-training. Therefore, we have applied several tech-
niques to prevent this. Firstly, we utilized the MixUp (Zhang et
al., 2017, Liang et al., 2018) data augmentation process to min-
imize the possible risk of re-training the NN model to extract
the most informative features from the hand regions. MixUp is a
powerful data augmentation technique that creates virtual training
examples by interpolating between pairs of real examples, which

encourages the model to learn more robust and generalizable fea-
tures. Secondly, we used warm restarts with cosine annealing as
the learning rate scheduler for all NN models (Axyonov et al.,
2022b). Warm restarts are an adaptive learning rate schedule that
periodically resets the learning rate to a higher value and then
decays it gradually, which helps the model to escape from local
minima and find better solutions. Cosine annealing further im-
proves this approach by introducing a cosine-shaped decay pat-
tern, which smoothens the learning rate schedule and improves
the model’s convergence. By using these techniques, we can ef-
fectively train the NN models to recognize the target SL gestures
with high accuracy.

5. EXPERIMENTAL RESULTS

The basic NN model was trained on 200 epochs, with the SGD
optimizer at a learning rate of 0.001. We used recognition rate r
as a performance measure of model for SLs recognition. Recog-
nition rate is calculated as:

N
1
r= > fbito), )
i=1
1 ) i — Ui,y
o {5 42

where N is the total number of samples, p; is the predicted label
for the 4" sample, ¢; is the true label for the i** sample.

The recognition rates of the basic model trained on the research
corpora in two SLs are presented in Table 1.

Corpus Number of gestures | Recognition rate, %
AUTSL 224 93.38
TheRusLan 164 66.34

Table 1: Recognition rate results of the first stage of the proposed
approach in the context of the research corpora.

As shown in Table 1, the recognition rate for gesture recognition
on the AUTSL corpus outperforms the recognition rate for ges-
ture recognition on the TheRusLan corpus by 27.04%. This can
be explained by the fact that the training set of the AUTSL corpus
contains more examples for each gesture demonstrated by signers
compared to the TheRusLan corpus. The results of comparing the
recognition rates of our approach with the SOTA for the AUTSL
corpus are presented in Table 2.

Approach Recognition rate, %
(Sincan and Keles, 2020) 49.22
(Coster et al., 2021) 92.92

96.15
(Sincan et al., 2021) 96.55

97.62
(Jiang et al., 2021) 98.42
(Ryumin et al., 2023) 98.56
Our 93.38

Table 2: Comparison of the recognition rate results of our ap-
proach with SOTA on the AUTSL corpus.

Table 2 shows that, to date, we achieved results using our ap-
proach on-par with SOTA approaches on the AUTSL corpus. For
the TheRusLan corpus with 164 gestures, we provide the first
baseline result.

The target NN model was trained for 200 epochs using the Adam
optimizer and a learning rate that decreased from 0.0001 to 0.00001
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with 5 restart cycles. The learning rate scheduler used was co-
sine annealing. The recognition rates of the target model trained
on the TheRusLan corpus with 18 gestures are presented in Ta-
ble 3. The experimental results demonstrate that our approach
using transfer learning achieved an absolute increase of 2.59% in
recognition rate (93.33% vs. 90.74%) compared to our approach
without the first stage.

Transfer leaning
Without
With

Recognition rate, %
90.74
93.33

Table 3: Recognition rate results of the second stage of our pro-
posed approach on the TheRusLan corpus with 18 gestures.

The results of comparing the recognition rates of our approach
with the SOTA for the TheRusLan corpus with 18 gestures are
presented in Table 4.

Approach Recognition rate, %
53.07
68.23
69.74
73.54
74.28
77.43
79.98
84.67
87.38
88.92

(Axyonov et al., 2022a) 91.14

Our 93.33

Table 4: Comparison of the recognition rate results of our ap-
proach with SOTA on the TheRusLan corpus with 18 gestures.

(Axyonov et al., 2021)

The conducted experiments indicate that the proposed approach
is highly promising for improving GR in SL, as demonstrated by
achieving an accuracy of 93.33% for 18 different gestures, in-
cluding Russian SL gestures from the TheRusLan corpus, which
is a significant improvement over the previous SOTA accuracy
results (exceeding them by an absolute value of 2.19%). This
indicates that the proposed approach is highly effective in recog-
nizing SL gestures, particularly for the target SL.

The proposed approach of cross-language transfer learning us-
ing visual information to improve the recognition accuracy of the
target SL has significant innovative potential. It allows for in-
creasing the accuracy and robustness of machine SL translation,
as well as improving the naturalness of HCI in general. Addition-
ally, it has the potential to enhance the social adaptation of people
with hearing impairments.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel approach for SL recognition
that utilizes transfer learning to improve recognition rates on a
target SL corpus. Our approach consists of two stages: (1) train-
ing model for simultaneous recognition of gestures on basic cor-
pora of Turkish (AUTSL) and Russian (TheRusLan) SLs, and (2)
fine-tuning pre-trained model on the target corpus using transfer
learning. We showed that our approach achieved SOTA results on
the AUTSL corpus and provided the first baseline result for the
TheRusLan corpus with 164 individual words and phrases from
Russian SL.

Experimental results on the TheRusLan corpus with 18 gestures
demonstrated an absolute increase in recognition rate of 2.59%

using our approach with transfer learning compared to our ap-
proach without transfer learning. Additionally, we compared our
approach with SOTA approaches on the TheRusLan corpus with
18 gestures, and the results showed that our approach achieved
competitive recognition rates.

In the future, the proposed approach will be extended to other
SLs, and the effectiveness of other data augmentation techniques
and learning rate scheduling methods will be explored. The pos-
sibility of incorporating additional sensory modalities will also be
investigated, and the proposed approach will be deployed on mo-
bile devices to enable real-time GR and translation, which will
greatly benefit people with hearing impairments in their daily
lives.

Moreover, the impact of cultural and individual differences on the
accuracy of GR in different SLs will be investigated, and the pro-
posed approach will be extended to the domain of SL generation.
The system could be trained to generate SL gestures from text or
speech input, which will be beneficial for people who are learn-
ing SL. Finally, the integration of the proposed approach with
other assistive technologies will be explored to provide a more
comprehensive and effective solution for people with hearing im-
pairments.
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