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ABSTRACT:

Personality and affective computing techniques play a significant role for better understanding of human’s behavior and intentions. Such
techniques can be applied in practice in recommendation systems, healthcare, education, and job applicant screening. In this paper, we
propose a novel multimodal approach to personality traits assessment that leverages affective features of human’s voice and face, as well
as recent advances in the deep learning. We present a new mid-level modality fusion strategy that is based on a cross-modal attention
mechanism with summarizing functionals. In contrast to other state-of-the-art approaches, we not only analyze a visual scene, but
specifically process human’s upper body (selfie) and a scene background. Our experiments show that the Extroversion personality trait
is better estimated by fusing visual scene, face, and audio (voice) modalities, while the Conscientiousness and Agreeableness traits are
better assessed by fusing face, selfie, and audio modalities. Furthermore, our results show that utilizing the selfie modality outperforms
the visual scene modality by more than 1% in terms of the Concordance Correlation Coefficient. Additionally, our approach based on
processing three modalities (selfie, face, and audio) is on-par with other known state-of-the-art approaches that employ at least four
modalities on the test set of the ChaLearn First Impressions V2 corpus.

1. INTRODUCTION

Affective Computing (AC) is an emerging field that focuses on
the interaction between humans and machines, with a particular
emphasis on the emotional and affective states of these interac-
tions (Picard, 2000). The goal of AC is to create machines that
can understand, interpret, and respond to human’s emotions.

Personality Computing (PC) is a subfield of AC that deals specif-
ically with the analysis, recognition, and synthesis of personality
traits. Personality traits are enduring patterns of thoughts, feel-
ings, and behaviors that shape an individual’s personality and dis-
tinguish them from others. Therefore, PC combines two scientific
areas, psychology and artificial intelligence, making it a relevant
field of study.

The importance of PC lies in its potential applications in high-
risk tasks such as recommendation systems (Dhelim et al., 2022),
healthcare (Phan and Rauthmann, 2021), education (Ilmini and
Fernando, 2017), and job applicant screening (Hickman et al.,
2022). Today, modern recommendation systems have reached
a new level by utilizing knowledge about human’s personality
traits. Such systems recommend content (goods, services, and
others) based on user groups who have similar human’s person-
ality traits. In healthcare, PC may aid in mental health diagno-
sis and treatment. In education, it can assist in personalizing
the learning trajectory of students. Lastly, automatic personal-
ity traits assessment (PTA) based on multimodal data enables the
selection of the most professionally oriented personnel.

There are several ways to evaluate human’s personality traits:
self-evaluation, familiar-evaluation, third-party evaluation, and
automatic evaluation. The first three ways require individuals
to complete questionnaires. The most commonly used question-
naires for PTA consist of ten, forty-four, and sixty items (Soto and

∗Corresponding author

John, 2017). Answers to the questionnaire items are usually pro-
vided on a five-point Likert scale (strongly agree, agree, neither
agree nor disagree, disagree, and strongly disagree). The more
items that are presented in a questionnaire, the more accurately
human’s personality traits scores can be calculated. However, fill-
ing out long questionnaires is time-consuming and requires a lot
of concentration from the person filling it out. In contrast, auto-
matic PTA completely eliminates the need for human resources.
As a result, the popularity of using automatic PTA approaches in
human-machine interaction systems is growing every year.

State-of-the-art (SOTA) approaches for automatic human’s PTA
have weaknesses in two sensor modalities: audio and video. Hand-
crafted features such as Low-Level Descriptors (Kaya et al., 2017),
spectrograms (Aslan et al., 2021), and pre-trained convolution
neural network (CNN) models (Curto et al., 2021) are mainly
used to extract acoustic features. Although neural network fea-
tures allow for more accurate personality trait scores, not enough
attention is paid to fine-tuning neural network feature extractors.
When dealing with the video modality, SOTA approaches analyze
the face (Li et al., 2020) and scene (Agrawal et al., 2022). How-
ever, the scene conveys general information about (1) an upper
body (selfie) that shows the human’s appearance and body move-
ment and (2) the background that reflects the video recording
conditions. At the same time, trained models may become con-
fused and not understand to which source of information (selfie
or background) they should pay attention. Both sources provide
important information about human’s personality. Therefore, in
this paper, we propose a novel approach that analyzes the hu-
man’s voice and facial characteristics, as well as their selfie and
background, for automatic human’s PTA, eliminating the above-
mentioned weaknesses.

The remaining sections of this paper are organized as follows.
Section 2 analyzes the existing corpora and SOTA approaches for
PTA. In Section 3, we provide a detailed description of our pro-
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posed approach. The results of the experiments and their analysis
are presented in Section 4. Finally, in Section 5, we summarize
the findings and discuss future research directions in the field of
PC and AC.

2. RELATED WORK

2.1 Review of Corpora

To date, several multimodal corpora have been collected for PTA.
The ELEA corpus (Sanchez-Cortes et al., 2011) analyzes the emer-
gence of leadership in newly formed groups through the winter
survival task. It contains audio-visual recordings of 148 par-
ticipants, totaling approximately 10 hours. The Hire Me cor-
pus (Nguyen et al., 2014) assesses hireability for a marketing job
through audio-visual recordings of 62 participants, totaling ap-
proximately 11 hours. The Joker corpus (Devillers et al., 2015)
studies human laughter produced during human-robot interaction
through recordings of 37 participants comprising approximately
8 hours of audio-visual recordings with Kinect data. The Dy-
CoDa corpus (Dresvyanskiy et al., 2022) comprises recordings
of 30 participants engaged in intensive online collaborative con-
versations using the winter survival game-task, comprising ap-
proximately 10 hours of audio-visual recordings together with
Kinect data. These corpora were recorded under office conditions
and each participant rated themselves on five personality traits
of the OCEAN model: Openness to experience (OPE), Consci-
entiousness (CON), Extraversion (EXT), Agreeableness (AGR),
and Non-Neuroticism (NNEU).

The MHHRI corpus (Celiktutan et al., 2017) studies personal-
ity and engagement in human-human and human-robot interac-
tions through audio-visual recordings of 18 participants compris-
ing 4 hours. The MULTISIMO corpus (Koutsombogera and Vo-
gel, 2018) comprises collaborative group interactions where two
players provide answers to a quiz and are guided by a facilitator.
It contains recordings of 49 participants comprising 4 hours of
audio-visual recordings together with Kinect data. The UDIVA
corpus (Palmero et al., 2021) contains dyadic interactions of 147
participants from 22 countries, totaling 90.5 hours of audio-visual
data. In contrast to the above-presented corpora, in these corpora,
the evaluation of personality traits was made both ways by self-
and familiar-evaluation. The RoomReader corpus (Reverdy et al.,
2022) also presents the self-evaluation and familiar-evaluation,
however, the conditions for recording the corpus are uncontrolled
(“in the wild” condition). The RoomReader corpus explores mul-
timodal cues of conversational engagement and behavioral as-
pects of collaborative interaction in online environments through
audio-visual recordings of 118 participants from Zoom, compris-
ing approximately 9 hours of data.

The YouTube Vlogs corpus (Biel and Gatica-Perez, 2012) stud-
ies personality impressions from vlogging and comprises audio-
visual recordings of 442 participants, totaling approximately 150
hours of audio-video data. The ChaLearn First Impressions v2
corpus (FI V2) (Escalante et al., 2020) is a widely known mul-
timodal corpus comprising 10,000 predominantly “in-the-wild”
clips (average duration 15s) extracted from YouTube HD videos
of more than 2500 people (with different gender, age, national-
ity, and ethnicity). The last two corpora contain video clips shot
mainly “in the wild” conditions, and the annotation for personal-
ity traits is made by third-party.

Existing corpora differ in: (1) recording conditions (uncontrolled
(“in the wild”) and office); (2) evaluation ways (self, familiar,
third-party); (3) the number of speakers from 18 to 2500; (4) the
duration of hours of clips from 4 to 48.

In our research, we decided to utilize the FI V2 corpus for sev-
eral reasons. Firstly, it is the most widely used corpus for PTA,
having been employed in several competitions co-located with
ECCV 2016 (Ponce-López et al., 2016), ICPR 2016 (Escalante
et al., 2016), and CVPR 2017 (Bekhouche et al., 2017). The
corpus consists of three subsets: Train (6000 audio-video clips),
Valid (2000), and Test (2000), and we retained this subset distri-
bution in order to compare our approach with SOTA. Secondly,
the corpus includes clips gathered via the YouTube video host-
ing platform, with most of the clips having been recorded “in the
wild”. Third, the corpus contains more than 2500 distinct speak-
ers ranging in age from 9 to 62 years old. Finally, the clips were
annotated pairwise, which helps to reduce the possibility of sub-
jective evaluation.

2.2 Review of State-of-the-art Approaches

The researchers have proposed many SOTA approaches for PTA
using reviewed corpora. However, we have focused on the ap-
proaches proposed using the FI V2 corpus. These approaches
can be compared because they were carried out using the same
training, validation, and testing protocols.

The authors (Kaya et al., 2017) analyzed three main modalities:
face, scene, and audio. They utilized a CNN pre-trained on the
emotion recognition task and local Gabor binary patterns from
three orthogonal planes (LGBP-TOP) to obtain features from the
aligned facial regions. To extract features from the scene, they
applied a CNN pre-trained on the object recognition task. For the
audio modality, they extracted hand-crafted features using openS-
MILE. The authors fused the modalities at two levels: (1) feature-
level fusion using kernel extreme learning machines (KELM); (2)
score-level fusion using random forests. The authors did not seg-
ment the clips but analyzed the entire clips.

In the paper (Agrawal et al., 2022), the authors introduced a
fourth modality: behavior encoding, in addition to the three main
modalities. They used 3D CNNs to extract features from the face
and scene, and for voice analysis, they employed features ob-
tained using a 2D CNN pre-trained on the audio event recogni-
tion task, with log-Mel spectrograms as input data. To encode
behavior, the authors created their own set of hand-crafted fea-
tures to assess 13 different behaviors. All features were used as
input data for the cross-attention transformer. The authors seg-
mented the clips into 2.5-sec intervals and used downsampling
of the frames. In their subsequent paper (Agrawal et al., 2023),
the authors eliminated behavior encoding, introduced a forced at-
tention (FAt) transformer, and did not use downsampling of the
frames.

In contrast to the papers mentioned above, the authors of (Aslan
et al., 2021) utilized a combination of 2D CNNs and long short-
term memory (LSTM) networks for all three main modalities. In
addition, the authors aligned the facial regions, similar to (Kaya
et al., 2017) and used voice features, as in (Agrawal et al., 2022).
They used a 2D CNN pre-trained on the image classification task
for the face and scene modalities. However, due to the complexity
of their proposed model architecture, the authors only analyzed
the first 6 sec of clips. To combine modalities, the authors used
an attention mechanism.

In the paper (Li et al., 2020), the authors proposed a two-level
approach and the Bell loss function for PTA. At the first level, the
personality traits were classified, while at the second level, a re-
gression task was performed. To represent the faces and scenes,
the authors randomly divided the video into 32 segments and ex-
tracted one frame from each segment. The 2D CNNs were used
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Figure 1: Pipeline of the proposed approach for PTA. Wi denotes audio-visual clip segments, N - the number of 2-sec segments in the
audio-visual clip. MLF – mid-level features, M - the number of features in a set of the MLF

to extract features from all three modalities, while the audio sig-
nal was fed to the network as raw data. The authors employed
extra trees regression for modality fusion.

Overall, the reviewed SOTAs have mainly focused on analyzing
the scene. One exception is the paper (Agrawal et al., 2022),
where the authors proposed hand-crafted features for behavior
encoding. In our paper, we propose to analyze human’s behav-
ior by leveraging neural network features without considering the
background. Furthermore, we conduct a series of experiments us-
ing different modality fusion strategies, including (1) using sum-
marizing functionals, (2) using cross-modal attention, and (3) us-
ing both strategies.

3. PROPOSED APPROACH

The proposed multimodal and multi-tasks approach for automatic
human’s PTA analyzes several modalities: audio, face, selfie, and
background. The pipeline of the proposed approach for PTA us-
ing mid-level feature fusion is shown in Figure 1. Audio-visual
clips from the FI V2 corpus range from 2 to 16 sec. Consistent
with prior researchesr (Agrawal et al., 2022, Aslan et al., 2021,
Li et al., 2020), we also segment audio-visual clips in our ap-
proach. Specifically, we segment them in 2-sec intervals with a
1-sec step. The output of each modality for one segment is a vec-
tor of mid-level features. For the entire clip, we obtain a feature
vector sequence. We then use the sequences of all modalities as
input for the selected fusion strategy. We also downsample the
frames per second (FPS) of clips to 5 frames with an even step
since FPS is not uniform and ranges from 7 to 30.

3.1 Affective Features of Voice and Face

Previously researches have shown that certain personality traits
are associated with specific affective states (Dauvier et al., 2019,
Kaya et al., 2017). For example, people who are high score for
EXT trait tend to experience more positive affective states such
as happiness, while those who are high score for NEU trait tend
to experience more negative affective states such as sadness.

Since personality traits and affective states are interconnected.
In this paper, in order to achieve a more reliable PTA, we use

affective features for two modalities: audio and facial. In the
paper (Verkholyak et al., 2021), we presented VGG16 model,
which was trained on 3-way escalation prediction in speech: low,
medium and high. The model allows extracting 256 voice fea-
tures. In the paper (Ryumina et al., 2022), we presented a open-
source visual model of Emo-AffectNet, which was trained on the
7-emotion recognition task: angry, sadness, happiness, disgust,
fear, neutral states, surprise. The model allows extracting 512
emotional facial features.

Using VGG16 and Emo-AffectNet models, we extract affective
low-level features form the audio and facial modalities. The com-
plete process of processing these modalities is described below.

3.2 Audio Modality

We extract log-Mel spectrograms using the open-source library
Librosa (McFee et al., 2015). We use 128 Mel filter-banks with a
short-time Fourier transform window length of 2048 and a step
of 512. The resulting feature matrix for a 2-sec segment has
a dimension of 128×173. Next, we resize the spectrograms to
224×224 and use them as input data for a 2D CNN based on
VGG16 (Simonyan and Zisserman, 2015). We add two fully
connected layers (FCLs) of 512 and 256 neurons to the VGG16
model. We fine-tune the VGG16 model for personality trait fea-
ture extraction from voice.

All models in our approach were trained with a learning rate
change via cosine annealing learning schedule (Loshchilov and
Hutter, 2017). Specifically, we trained the VGG16 model with
a learning rate change from 0.00005 to 0.000005 and five restart
cycles over 100 epochs.

3.3 Visual Modalities

In our approach, we analyze several visual modalities: facial,
scene, selfie, and background. For facial modality, we use a neu-
ral network model that is different from other modalities.

3.3.1 Facial Modality: The face regions are detected using
the Face Mesh model from the open-source cross-platform Me-
diaPipe (Grishchenko et al., 2020, Lugaresi et al., 2019), which
has shown promising results in human’s body and face detection
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Figure 2: Modality fusion strategies. CMA denotes cross-modal attention. SF – summarizing functionals. Q, K, V – query, key, and

value, respectively. XA, XF , XS – features of audio, face, selfie

problems (Ryumin et al., 2023) without requiring additional de-
vices (Ryumin and Karpov, 2017). Subsequently, the 512 static
emotional neural network features are extracted from the face re-
gions using the open-source Emo-AffectNet model (Ryumina et
al., 2022). Finally, ten emotional feature vectors for each 2-sec
segment are used as input data for the LSTM layer, which has
1024 neurons.

The LSTM was trained with a learning rate that changed from
0.001 to 0.0001 and five restart cycles over 100 epochs.

3.3.2 Selfie, Scene, Background Modalities: The selfie re-
gions are detected using the Selfie Segmentation detector (Lu-
garesi et al., 2019). We extract the segmented selfie regions from
the scene to eliminate the attention of the models to the back-
ground, enabling us to separate the selfie and background. The
images are resized to 224×224 pixels and filled with average val-
ues to maintain the proportions of the objects in the images. The
background on the selfie images and selfie regions on the back-
ground images are filled with vertical average pixel values. These
images are then formed into sequences and used as input data for
a 2D CNN based on the EfficientNet-B0 model architecture (Tan
and Le, 2019) with bidirectional LSTM (BiLSTM) models. The
2D CNN model was pre-trained on the object recognition task
and exhibited the best performance measures in the task of recog-
nizing affective states (Savchenko, 2022, Ryumina et al., 2021).
We complement this model a FCL of 512 neurons and fine-tune
it for personality trait feature extraction from the selfie, scene,
and background at the frame-level. We use a single-layer BiL-
STM model with 256 neurons for modeling personality traits at
the segment-level (ten feature vectors) extracted from the FCL
layer of the EfficientNet-B0 model. Notably, we trained mod-
els for not only selfie and background modalities but also for the
scene modality. Thus, we have three identical models to reliably
investigate the performance of three different modalities.

The EfficientNet-B0 models were trained with a learning rate that
changed from 0.001 to 0.0001 over five restart cycles and 100
epochs. The BiLSTM models were trained with a learning rate
that changed from 0.0001 to 0.00001 over 200 epochs without
restart cycles.

3.4 Modality Fusion Strategies

All models are equipped with multi-task regression layers for pre-
dicting five intermediate personality trait scores (five scores for
each segment of one clip). The average duration of clips in the
FI V2 corpus is 15 sec. A 15-sec clip is divided into 16 seg-
ments using a 2-sec window with a 1-sec step. We extract the
mid-level features (features before the predictive layers) obtained
using each trained model for each segment. To fuse modalities
at the feature-level, we employ three different strategies, are pre-
sented in Figure 2.

3.4.1 Cross-modal Attention Strategy: We apply cross-modal
attention based on the dot-product attention (Vaswani et al., 2017),
which is calculated by the formula:

Attention(Q,K, V ) = softmax(QKT )V (1)

where Q means the query vector, K - the key vector, V - the
value vector. The idea behind dot-product attention is to suppress
less important features in the V vector while amplifying more
important features. The dimensions of features can vary while
performing the dot product of two vectors. For instance, voice
features have a dimension of 16×256, whereas facial features
have a dimension of 16×1024. Thus, we concatenate multiple
vectors of smaller dimensions to obtain the required dimension.
This approach yields better results compared to using FSLs with
an equal number of neurons in them before the dot-product atten-
tion layer.

The attention layer outputs sequences of feature vectors. To flat-
ten the several vectors of one sequence to one vector, we apply a
summarizing functional layer that aggregates the mean and stan-
dard deviation values. We use the final summarizing vector as
input data for an FSL with 5 neurons. We use this algorithm for
feature-level fusion of two modalities. When fusing three or more
modalities, we concatenate the predicted scores from all the fu-
sion of two modalities into one vector and feed it to the last FCL
layer to obtain the final predictions.

3.4.2 Summarizing Functionals Strategy: Previous studies
on PTA have shown that summarizing functionals are effective
for fusing several modalities and can improve performance mea-
sures (Kaya et al., 2017). Therefore, we also apply summarizing
functionals for fusing multiple modalities. We first calculate the
summarizing functionals for the feature vectors of each modal-
ity, and then concatenate the resulting summarizing vectors from
two different modalities. The subsequent steps are similar to the
previous strategy.

3.4.3 Cross-Modal Attention with Summarizing Function-
als Strategy: As part of the last fusion strategy, we calculate
summarizing functionals from the raw feature vectors and after
applying the attention layer. Then, we concatenate the summa-
rizing vectors obtained from the raw data of the two modalities
and their summarizing vectors obtained after the attention layer.
We use the concatenated vectors as input data for an FSL with 5
neurons, one for each vector. For the fusion of three modalities,
we concatenate the intermediate predicted scores from the three
vectors into one vector to obtain the final predicted scores.

We compare three proposed fusion strategies by combining dif-
ferent modalities. All three fusion strategies were trained for 200
epochs with a learning rate starting at 0.1 and decreasing to 0.01
with 15 restart cycles.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed models for PTA,
we used two measures: accuracy (ACC) (Escalante et al., 2020),
and concordance correlation coefficient (CCC) (Lawrence and
Lin, 1989). While ACC reflects the error between predicted and
ground truth scores, CCC indicates a correlation between them.
Measures are calculated according to the formulas:

ACC = 1− 1

R

R∑
k=1

|tk − pk| (2)

CCC =
2 · σt,p

σ2
t + σ2

p + (µt − µp)2
, (3)

where t and p denote the ground truth and predicted scores for a
clip k, respectively; µt and µp – the averaged ground truth and
predicted scores for all test clips; σt and σp – the respective stan-
dard deviations; σt,p – the covariance between t and p.

Performance measures for the unimodal approaches are presented
in Table 1. Since each modality predicts several scores per clip,
we simply averaged these predicted scores to evaluate the perfor-
mance of the models. We don’t fuse scene modality with back-
ground modality and scene modality with selfie modality because
selfie and scene modalities are already included in scene modal-
ity. Table 1 shows that the performance measures are the lowest
for the audio modality. The performance measure ACC shows
that the face is the best information source for PTA, while CCC,
on the contrary, shows that selfie is more informative. Addi-
tionally, it can be seen that the audio modality is inferior to the
selfie and facial modalities by almost 12%. Moreover, the results
demonstrate that selfie outperforms scene by almost 1% in terms
of CCC. This suggests that while training the model on the whole
frame, the model has more information to analyze, which leads
to confusion.

Modality CCC ACC
Audio (A) .523 .906
Face (F) .647 .913
Scene (S) .638 .912
Selfie (S̄) .649 .912
Background (B) .600 .907

Table 1: Comparison of the performance measures in terms
modalities

Performance measures for the modality fusion strategies are pre-
sented in Table 2. The experimental results demonstrate that, ir-
respective of the two modalities used for fusion, the cross-modal
attention strategy (CMA) yields lower performance on average by
more than 4% in terms of the CCC measure. Moreover, the sum-
marizing functionals strategy (SF) exhibits lower performance
than the general strategy (CMA+SF) average by almost 1% for
the same measure. Fusing three or four modalities reduces the
gap in performance by almost half.

The results demonstrate that the maximum measure values of
ACC=.916 and CCC=.672 were achieved by fusion of the two
modalities for the CMA+SF strategy. We also observed that while
the audio modality is weaker than the scene and selfie modalities,
fusion of these three modalities with the facial modality yields
similar performance measures. This suggests that voice features
are significantly different from other modality features, which
positively impacts performance measures. Moreover, fusion of
the audio and facial modalities with the selfie modality is more
efficient than fusion of them with the scene. However, adding

Fusion
CMA SF CMA+SF

CCC ACC CCC ACC CCC ACC
Bimodal fusion

A+F .611 .913 .654 .916 .664 .916
A+S .613 .912 .636 .914 .642 .914
A+S̄ .621 .912 .641 .914 .652 .914
A+B .570 .907 .603 .911 .622 .912
F+S .628 .913 .661 .917 .667 .916
F+S̄ .607 .913 .673 .917 .672 .916
F+B .613 .913 .646 .915 .656 .915
S̄+B .614 .912 .626 .913 .644 .913
Average .610 .912 .643 .915 .652 .915

Multimodal fusion
A+F+S .675 .916 .691 .918 .694 .918
A+F+S̄ .679 .917 .695 .918 .697 .918
A+F+S̄+B .677 .917 .691 .918 .696 .918
Average .677 .917 .692 .918 .696 .918

Table 2: Comparison of the performance measures in terms
modality fusion strategies

the background modality to other modalities decreases the CCC
measure. Overall, we achieved an increase in performance mea-
sures of .2% for ACC (.916 vs. .918) and 2.5% for CCC (.672 vs.
.697) by fusion of three and four modalities.

The comparison of trait-wise measures and their average val-
ues obtained by our approach and the SOTA is presented in Ta-
ble 3. Our experiments demonstrated that the obtained results
in terms of ACC measure outperform other SOTA results for the
audio, video (face), and video (scene, behavior encoding) modal-
ities. We also report that our approach has the same efficiency
as SOTA approaches that analyze four modalities: audio, video
(face), video (scene, behavior encoding), and text. However, our
approach is significantly inferior to approaches that use trans-
formers and five modalities: audio, video (face), video (scene,
behavior encoding), text, and metadata.

Approach OPE CON EXT AGR NNEU Avg.
Trait-wise CCC measure

A+F+S .650 .746 .724 .534 .676 .666
A+F+S̄ .653 .752 .716 .543 .675 .668
A+F+S̄+B .652 .751 .720 .548 .678 .670

Trait-wise ACC measure
A+F+S .917 .923 .921 .915 .914 .918
A+F+S̄ .916 .923 .922 .915 .915 .918
A+F+S̄+B .916 .923 .921 .916 .915 .918

Face, audio, scene, behavior encoding modalities
(Kaya et al., 2017) .917 .920 .921 .914 .915 .917
(Aslan et al., 2021) – – – – – .917
(Agrawal et al., 2022) .901 .899 .899 .904 .900 .901

Plus text modality
(Aslan et al., 2021) .916 .922 .920 .916 .915 .918
(Li et al., 2020) .920 .922 .920 .918 .915 .919

Plus metadata modality
(Agrawal et al., 2022) .929 .926 .927 .929 .921 .926
(Agrawal et al., 2023) .942 .951 .955 .949 .959 .951

Table 3: Comparison of the performance measures of our ap-
proach with SOTA

It is worth noting that the CCC measure for the approach with the
fusion of four modalities (audio, face, selfie, background) out-
performs the approach with the fusion of three modalities (audio,
face, selfie/scene) in the trait-wise-level evaluation. This sug-
gests that the background modality is also significant for auto-
matic PTA. Our experiments also show that EXT trait is better
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Figure 3: Heat maps for scene, selfie, and background modalities

estimated by fusing facial, audio and scene modalities. While
CON and AGR traits are better assessed by fusing facial, audio
and selfie modalities.

We also used the GradCAM (Selvaraju et al., 2017) technique
to assess the attention of feature maps for scene, selfie, and back-
ground modalities. GradCAM allows drawing gradient heat maps
for each modality and analyzing which informative region is more
important when making decisions about the traits scores. We vi-
sualized heat maps using the latest convolutional layers of the
EfficientNet-B0 models for CON and EXT traits, which are pre-
dicted scores with largest performance measures. Heat maps for
three modalities are visualized in Figure 3.

The attention of the models, represented by the bright yellow and
red pixels in the images, varies depending on the analyzed per-
son and personality trait. For instance, when analyzing images of
a girl, the scene model primarily focuses on the face region for
the CON trait, while for the EXT trait, it looks at both the face
and the recording conditions. On the other hand, for images of a
guy, the scene model focuses on the recording conditions for both
traits, but for the EXT trait, it gives more attention to the lower
part of the face. As for the selfie modality, regardless of the per-
son, the selfie model predominantly looks at the region above the
lower eyelid for the CON trait, and at the region below the lower
eyelid for the EXT trait. The attention of the background model
also varies depending on the traits. For example, this model ana-
lyzes more information on both sides of the person for EXT trait,
whereas only on one side of the person – for CON trait.

In general, heat maps show that the scene model draws atten-
tion to the upper part of the face and the background in all four
images. Whereas the selfie model pays attention to active mus-
cles of the face and the appearance of the person. At the same
time, the attention of the background model coincides with the
attention of the scene model, while attention also extends to re-
gions where the person is absent, which probably contributes to
a decrease in the performance measure of this model. Moreover,
complex background conditions that vary based on the person’s
location can negatively impact background modality, as they may
not accurately represent the human’s personality.

In conclusion, separating the scene into its selfie and background
components is a more efficient solution than analyzing the whole
scene. This is due to the fact that by separating these two sources
of information, each model analyzes a specific region of interest

in the image, which has a positive effect on the performance mea-
sures of the PTA approaches. Moreover, to achieve better mea-
sures in PTA, it is essential to analyze not only the audio, facial,
and selfie modalities, but also the text and metadata modalities.

5. CONCLUSIONS

In this paper, we presented the novel approach for multimodal
personality and affective computing. This approach has been de-
signed for PTA and it is able to analyze four human’s modalities:
audio, face, selfie, and background. The advantage of our ap-
proach is that it is based on affective facial and voice features. For
the facial modality, we extract low-level emotional features using
the open-source Emo-AffectMet model, which are then used as
input data for the LSTM model to extract mid-level features. We
apply fine-tuned EfficientNet models and BiLSTM models to ex-
tract mid-level features from the scene, selfie, and background
information. From the audio modality we extract log-Mel spec-
trograms, which are then fed into the VGG16 model trained on
the speech escalation prediction task to extract mid-level features.
The audio-visual features are extracted at the segment-level of
each multimodal clip. Finally, we fuse the mid-level features
at the clip-level by the cross-modal attention with summarizing
functionals.

Our experiments demonstrate that dividing a visual scene into
selfie and background modalities is more efficient than analyzing
the entire scene, as each modality can analyze a specific graphi-
cal region of interest that positively affects the performance mea-
sures. On the test subset of the ChaLearn First Impressions V2
corpus, the proposed approach outperforms other systems that
use both audio and video (face, scene, and behavior encoding)
modalities in terms of CCC and ACC measures. Furthermore,
we also demonstrate that our approach is efficient as SOTA ap-
proaches that analyze at least four human’s modalities: audio,
video, scene, behavior encoding, and text.

Thus, our approach is a promising component for enhancing ex-
isting solutions for automatic human’s PTA in such tasks as rec-
ommendation systems, healthcare, education, and job applicant
screening. In the future, we plan to combine the proposed ap-
proach with transformer-based models for an end-to-end multi-
modal analysis.
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