
NON-CONVEX HYBRID TOTAL VARIATION FOR RESTORING MEDICAL IMAGE
CORRUPTED BY POISSON NOISE

Thi Thu Thao Tran1, Cong Thang Pham2 ∗, Hoai Phuong Dang2, Andrey Kopylov3, Van Ha Mai2, The Xuan Ly Nguyen2

1The University of Danang-University of Economics, 71 Ngu Hanh Son, Danang, Viet Nam
thaotran@due.udn.vn

2The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang, Viet Nam
(pcthang, dhphuong, mvha, ntxly)@dut.udn.vn

3 Tula State University, 92 Lenin Ave., Tula, Russia And.Kopylov@gmail.com

Commission II, WG II/8

KEY WORDS: Adaptive model, Medical image denoising, Mixed noise, Total variation, Laplacian regularizer, Primal-dual.

ABSTRACT:

In this work, we proposed the hybrid non-convex regularizers for Poisson noise removal on medical images. The model is built by 
a combination of non-convex total variation and non-convex fractional total variation. The proposed model allows for avoiding the 
annoying staircase artifacts and obtaining the reconstruction results with sharp and neat edges during the noise removal process. 
For handling the minimization problem, we employ the alternating minimization method associated with the iteratively reweighted 
l1 algorithm. Numerical experiments illustrate the efficiency of the proposed model and corresponding algorithm.

1. INTRODUCTION

Image is often contaminated by noise during the generation,
transmission, and acquisition processes. In this work, we mainly
focus on the removal of Poisson noise in positron emission
tomography (PET) such as computerized tomography (CT) and
magnetic resonance imaging (MRI), etc. In these systems, im-
ages are generated by photon counting which follows the Pois-
son process. Hence, noise present in images also follows Pois-
son distribution (Hasinoff, 2014, Pham, 2023).

There are many methods proposed for suppressing Poisson noise.
Among them, methods that use the norm of total variation (TV)
as a regularization are commonly adopted (Le et al., 2007). Un-
der the TV framework, the TV-based Poisson noise removal
model has the following form (Le et al., 2007):

X∗ = argmin
X

(∫
B
|∇X| dx+ β

∫
Ω

(X− Y logX)dx,

)
,

(1)

where Y is the observed image,
B ⊂ R2,
X is positive over B,
β is positive regularization parameter.

As is well known, the TV regularization framework allows us to
obtain denoising results with sharp edges. However, TV-based
model (1) often leads to undesired staircase effects and smooth
out image textures (Liu et al. 2013, Kayyar et al. 2018, Pham,
2021a). To overcome the issue, some higher-order TV mod-
els were developed for image denoising with edge-preserving
(Kayyar et al. 2018, Ma et al. 2020, Pham, 2021b).

∗ Corresponding author: pcthang@dut.udn.vn

One successful approach is fractional order TV, which is widely
applied in image restoration. Authors in (Chowdhury et al.,
2020) proposed the fractional-order TV model (FTV) for Pois-
son image denoising as follows:

X∗ = argmin
X

∫
B
|∇αX| dx+ β

∫
B
(X− Y logX)dx, (2)

where β is positive regularization parameter,
∇αu represents for fractional-order total variation.

Unfornatively, methods based on the fractional-order TV may
cause image blurring. Hence, authors (Tran, 2021) proposed
model combining the advantages of two above total variation
regularization models for Poisson noise removal as follows (named
by hybrid total variation regularization model, HTVRM):

X∗ = argmin
X

(
γ1

∫
B
|∇X| dx (3)

+ γ2

∫
B
|∇αX| dx+ β

∫
Ω

(X− Y logX)dx,

)
,

where γ1, γ2 and β are positive parameters.

However, the above-mentioned model with convex regularizers
suffers from certain limits, such as overly blurred contours and
edges, or residual noise. To improve the edge-preserving abil-
ity, non-convex regularization is proposed with better sparsity
and robustness on the basis of guaranteeing a better solution
than a convex one (Lian W. et al., 2023). Additionally, non-
convex regularization models can obtains high quality image
with sharp and neat edges (Nikolova, 2010, Tang, 2019)
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Motivated by the previous works, we focus on the model (3) and
propose the non-convex hybrid total variation model for Poisso-
nian image denoising. The main contributions of this work are
the following: we propose a novel model for Poissonian Image
denoising based on the combination of non-convex first-order
TV and non-convex fractional order TV. The proposed model
allows for avoiding annoying staircase artifacts and keeps sharp
contours during the noise removal process. Furthermore, we
combine the iteratively reweighted l1 algorithm and extended
alternating minimization method to handle the corresponding
minimization problem. Experimental results show that the pro-
posed model is effective in edge-preserving and staircase effect
alleviatation in Poisson image denoising. Additionaly, com-
pared with state-of-the-art variational models, the proposed model
outperform other models in terms of PSNR and SSIM values.

2. THE PROPOSED MODEL AND ALGORITHM

2.1 The proposed model

In this paper, we focus on (3) and consider the following model
for restoring Poissonian images:

X∗ = argmin
X

(
γ1

∫
B
G(|∇X|)dx (4)

+ γ2

∫
B
G(|∇αX|)dx+ β

∫
Ω

(X− Y logX)dx,

)
,

where γ1, γ2 and β are positive parameters
G is a nonconvex and nonsmooth function.

In this work, we introduce a non-convex potential function G of
the following stable form:

G(|s|) = (|s|+ δ)r, (5)

where r ∈ (0, 1) is scalar parameter, δ is the small positive, the
operators ∇X and ∇Xα are defined as follows (Aubert, 2006,
Zhang et al. 2012):

∇1Xi,j = Xi+1,j − Xi,j ,

∇2Xi,j = Xi,j+1 − Xi,j ,

∇Xi,j = (∇1Xi,j ,∇2Xi,j),

|∇Xi,j | =
√

(∇1Xi,j)2 + (∇2Xi,j)2.

∇αX = [∇α1 X,∇α2 X],

(∇α1 X)i,j =

K−1∑
k=0

Cαk Xi−k,j ,

(∇α2 X)i,j =

K−1∑
k=0

Cαk Xi,j−k.

From (4), (5), the proposed model has the discrete form as fol-

lows:

min
X

(
γ1(‖∇X‖1 + δ)r + γ2(‖∇αX‖1 + δ)r (6)

+ β〈1,X− Y logX〉
)
,

By using the iteratively reweighted l1 algorithm (Candes et al.,
2008), we approximate the problem (6) as the following surrog-
ate convex optimization problem

min
z,w

(
γ1q

(k)
1 ‖∇X‖1 + γ2q

(k)
2 ‖∇

αX‖1 (7)

+ β〈1,X− Y logX〉
)
,

where q
(k)
1 = r

(δ+‖∇X(k)‖1)1−r

q
(k)
2 = r

(δ+‖∇αX(k)‖1)1−r
.

2.2 The proposed algorithm

Based on the splitting method (Huang et al., 2008, He et al.,
2014, Goldstein, 2009), using three auxiliary variables and take
effective replacements ∇X → Q, ∇αX → Z,X → T, we con-
vert (7) to the constrained problem as follows:

min
ϑ,ω,u

(
γ1q

(k)
1 ‖Q‖1 + γ2q

(k)
2 ‖Z‖1 + β〈1,X− Y logX〉

)
,

(8)

s.t. Q = ∇X,Z = ∇αX,T = X.

For solving (8), we determine the augmented Lagrangian func-
tion as follows:

min
Q,Z,T,ξ1,ξ2

=

(
γ1q

(k)
1 ‖Q‖1 + γ2q

(k)
2 ‖Z‖1 + β〈1,T− Y logT〉

(9)

− 〈η1,Q−∇X〉+ ω

2
‖Q−∇X‖22 − 〈η2,Z−∇αX〉

+
ω

2
‖Z−∇αX‖22 − 〈η3,T− X〉+ ω

2
‖T− X‖22

)
,

where ω1, ω2 - positive parameters,
η2 -Lagrangian multipliers
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The minimization method to solve the problem (9) can be ex-
pressed as follows:

X(k+1) = argmin
X

(
− 〈η(k)

1 ,Q(k) −∇X〉

+ω
2
‖Q(k) −∇X‖22 − 〈η

(k)
2 ,Z(k) −∇αX〉

+ω
2
‖Z(k) −∇αX‖22 − 〈η

(k)
3 ,T(k) − X〉

+ω
2
‖T(k) − X‖22

)
,

Q(k+1) = argmin
Q

(
γ1q

(k)
1 ‖Q‖1 − 〈η

(k)
1 ,Q−∇X(k+1)〉

+ω
2
‖Q−∇X(k+1)‖22

)
,

Z(k+1) = argmin
Z

(
γ2q

(k)
2 ‖Z‖1 − 〈η

(k)
2 ,Z−∇αX(k+1)〉

+ω
2
‖Z−∇αX(k+1)‖22

)
,

T(k+1) = argmin
T

(
β〈1,T− Y logT〉 − 〈η(k)

3 ,T−∇X(k+1)〉

+ω
2
‖T−∇X(k+1)‖22

)
(10)

with update for η(k+1)
1 , η

(k+1)
2 :

η
(k+1)
1 = η

(k)
1 + µ1(∇X(k+1) −Q(k+1)),

η
(k+1)
2 = η

(k)
2 + µ2(∇αX(k+1) − Z(k+1)),

η
(k+1)
3 = η

(k)
3 + µ3(X(k+1) − T(k+1))

(11)

The X subproblem in (10) is given by:

X(k+1) = argmin
X

(
− 〈η(k)

1 ,Q(k) −∇X〉

+
ω

2
‖∇X−Q(k)‖22 − 〈η

(k)
2 ,Z(k) −∇αX〉

+
ω

2
‖∇αX− Z(k)‖22 − 〈η3,T− X〉

+
ω

2
‖X− T‖22

)

Thus, we get:

∇T η(k)
1 + ω∇T (∇X(k+1) −Q(k)) + (∇α)T η(k)

2

+ ω(∇α)T (∇αX(k+1) − Z(k))

+ η3X + ω(X(k+1) − T(k)) = 0.

We transform the above equation as:

(ω∇T∇+ ω(∇α)T∇α + η
(k)
3 )X(k+1)

= ∇T (ωQ(k) − η(k)
1 ) + (∇α)T (ωZ(k) − η(k)

2 ) + ωT(k)

Based on (Wang, 2008), the subproblem X(k+1) can be effi-
ciently solved via fast Fourier transform as:

X(k+1) = F−1

( F
(

K
)

(
ω∇T (∇+ ω(∇α)T∇α + η

(k)
3

)), (12)

where F and F−1 are Fourier transform operators in the the
forward and inverse directions

K = ∇T (ωQ(k) − η(k)
1 ) + (∇α)T (ωZ(k) − η(k)

2 ) + ωT(k)

The subproblems Q and Z in in (10) are given by:

Q(k+1) = argmin
Q

(
γ1q

(k)
1 ‖Q‖1 − 〈η

(k)
1 ,Q−∇X(k+1)〉

+
ω

2
‖Q−∇X(k+1)‖22

)
,

Z(k+1) = argmin
Z

(
γ2q

(k)
2 ‖Z‖1 − 〈η

(k)
2 ,Z−∇αX(k+1)〉

+
ω

2
‖Z−∇αX(k+1)‖22

)
.

For solving the Q and Z subproblems, we emply the shrinkage
formula (Goldstein, 2009), as follows:

Q(k+1) = Shrink(∇X(k+1) +
η

(k)
1

ω
,
γ1q

(k)
1

ω
). (13)

Z(k+1) = Shrink(∇αX(k+1) +
η

(k)
2

ω
,
γ2q

(k)
2

ω
). (14)

where Shrink(y, ϕ) = y
|y| ·max(|y| − ϕ, 0).

The subproblem T(k+1) in (10) is given by:

T(k+1) = argmin
T

(
β〈1,T− Y logT〉 − 〈η(k)

3 ,T−∇X(k+1)〉

+
ω

2
‖T−∇X(k+1)‖22

)

We have:

β(1− Y
T
)− η(k)

3 + ω(T−∇X(k+1))

Thus, we get:

a(k)(T(k+1))2 + b(k)T(k+1) + c(k) = 0 (15)

where a(k) = ω

b(k) = −(ω∇X(k+1) + η
(k)
3 − β))

c(k) = −βY.

Easily, we realize that T(k+1) is the positive solution of (15):

T(k+1) =
−b(k) +

√
(b(k))2 − 4a(k)c(k)

2a(k)
(16)

The proposed algorithm is presented in Algorithm (1).
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Algorithm 1 Non-convex hybrid total variation for Pois-
son noise removal

1: Initialize: X(0) = T(0) = Y, Q(0) = ∇X(0),
Z(0) = ∇αX(0);
k = 1

2: while ( ‖X
(k)−X(k−1)‖2
‖X(k)‖2

> ε) do
3: Compute X(k+1) according to (12)
4: Compute Q(k+1) according to (13)
5: Compute Z(k+1) according to (14)
6: Compute T(k+1)according to (16)
7: Compute Z(k+1) by (14)
8: Update η1, η2, η3 according to (11)
9: k = k + 1

10: end while
11: return X

3. EXPERIMENTAL RESULTS

In this section we show some reconstruction results to illustrates
the effectiveness of the proposed method. Image denoising
quality is measured by the peak signal-to-noise ratio (PSNR)
and the structure similarity index measure (SSIM) (Wang et
al. 2004). We compare our denoising results with the results
of HTVRM in (3). We tested algorithms with empirically de-
termined parameters: ε = 0.0001,α = 1.6, γ1 = γ2 = 0.5,
ω = 0.01. All experiments were carried out on a system run-
ning Windows 10 64-bit with MATLAB version R2018b with
Intel(R) Core(TM) i3-10110U CPU @ 2.10GHz, 2.50 GHz,
12GB RAM. Noisy observation is generated by Poisson noise
using MATLAB command poissrnd(X/Imax)× Imax, where
Imax is noise level.

Firstly, we show in Figure (1) the reconstruction results of com-
pared methods with noisy level Imax = 2. The original image
‘Knee’1 (sized by 216× 201 pixels) shown in Figure (1)a, while
the noisy image is shown in (1)b. In second row (1)c,(1)d, we
show the reconstructions via HTVRM and ours model respect-
ively. In Figures (1)g–(1)h, we also enlarge some details of the
images mentioned above.

Secondly, we show the reconstruction results for image ‘Brain’2

(sized by 230 × 265 pixels) and its zoomed details in Figures
(2)a and (2)e. The noisy image with noise level Imax = 4
and its details are shown in (2)b, (2)f. The denoising results of
compared methods are shown in (2)c, (2)d. The locally enlarged
of these images are presented in (1)g,–(2)h.

In Tables (1), (2),we show the SSIM and PSNR measurements
to quantitatively compare the results of the different methods.

Image PSNR SSIM
Noisy HTVRM Ours Noisy HTVRM Ours

Brain 28.3151 30.0918 32.7677 0.7510 0.9094 0.9113
Knee 17.5244 25.4948 25.9863 0.6530 0.8166 0.8270

Table 1. PSNR and SSIM values for image denoising with
Imax = 2

From the figures and tables we see that our proposed method
gives better visual results than HTVRM. Furthermore, the res-
ults in Tables 1-2 show that the proposed method significantly
improves the quality in terms of PSNR and SSIM quantification
compared with the pre-existing method.
1 Knee MRI scan,https://www.medserena.co.uk/mri-scans.
2 Normal-brain-mri,https://radiopaedia.org/cases/
normal-brain-mri-6.

Figure 1. Image ‘Knee’. Recovered results by compared
methods with noise level Imax = 2

Image PSNR SSIM
Noisy HTVRM Ours Noisy HTVRM Ours

Brain 25.4301 28.7532 30.1458 0.6464 0.8645 0.8750
Knee 14.2870 24.1209 25.3109 0.5443 0.7760 0.7830

Table 2. PSNR and SSIM values for image denoising with
Imax = 4

4. CONCLUSION

In this paper, we have proposed a novel model based on the
combination of non–convex first order total variation and non–
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Figure 2. Image ‘Brain’. Recovered results by compared
methods with noise level Imax = 4

convex fractional total variation. The proposed model allows
for good image quality improvement with sharp and neat edges.
We used the efficient alternating minimization algorithm to find
optimal solution. Some experimental results have been given to
prove the effectiveness of the proposed method.
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