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ABSTRACT: 

Bridge inspections are typically expensive and time-consuming, especially in regards of the inspection of difficult-to-reach areas. In 

recent years, unmanned aerial systems (UASs) have gained attention due to their flexible data acquisition. However, UAS inspections 

generate large quantities of image and video data, which are currently analysed manually. Additionally, identified damages are 

currently not assessed accurately in their geometric characteristics and location. In this paper, we propose a time-effective framework 

for a UAS-based bridge inspection methodology that combines 3D information from photogrammetry and machine learning based 

object detection to allow direct measurements in the images. Concretely, we propose the use of a two-step flight planning to accurately 

reconstruct the bridge using limited manual effort. Second, we detect frequently occurring damages such as exposed rebars and concrete 

spalling on the inspection imagery. Finally, we use the spatial location of the imagery to significantly improve the detection results 

and geolocate them. We evaluate our proposed framework on a decommissioned concrete bridge. The trained YOLOv8 models prove 

capable of transfer learning on both our own data and online benchmarks. The photogrammetric reconstruction also proves to be 

sufficiently reliable. Overall, these are the first steps in automating routine bridge inspections and provide crucial evidence to continue 

developing the method. 

1. INTRODUCTION

The importance of bridge inspections cannot be overstated, as the 

health of bridge infrastructure directly affects public 

accessibility, logistics and safety. Despite the crucial role of 

bridge health, governments struggle to conduct the necessary 

timely inspections every 3 to 5 years due the typically cost- and 

time-intensive procedure (Rachmawati and Kim, 2022). To reach 

essential bridge components such as the under deck, inspectors 

need to use rappelling or an under-deck bridge inspection truck. 

These procedures impose significant safety risks for the 

inspector, are time- and equipment-demanding, and can even lead 

to costly traffic impairment. Therefore, inspectors are under 

immense pressure as the inspection process is purely manual. 

Additionally, inspections lack precise damage quantification, as 

inspectors are often unable to measure located damages, which 

can lead to unidentified growth of damages i.e., cracks and 

corrosion. In some cases, insufficient data acquisition and late 

maintenance measures lead to bridge closures or even major 

disasters (Olson et al., 2015; Rania et al., 2019; Baranda 

Sepúlveda, 2021). Addressing these challenges is crucial for both 

public safety and economy, as it helps to avoid the immense costs 

of bridge closures and delayed maintenance measures. 

To overcome these challenges, the use of unmanned aerial 

systems (UASs) for bridge inspections has gained significant 

attention in recent years. These systems provide a cost-effective 

and efficient alternative to traditional inspection methods by 

allowing for the flexible acquisition of high-quality and diverse 

data in hard-to-reach areas. The use of UASs reduces the risk for 

inspectors and minimizes the need for bridge closures and traffic 

disruptions (Kim et al., 2022). Furthermore, advancements such 

as autonomous object avoidance, highly precise geolocation 
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through real-time kinematics (RTK) GNSS, and multi-sensor 

equipment have expanded the usage of UASs, while deep 

learning methods can now be adapted to nearly any task, 

including the detection of bridge damage. Combining these 

technologies can significantly reduce routine inspection efforts 

and free up inspectors for more important follow-up inspections. 

Our vision is to develop an automated pipeline for UAS-assisted 

bridge inspection procedures that improves the data acquisition 

process especially for hard-to-reach areas and the quality of the 

extracted damage data. More specifically, we want to use 

advanced computer vision and machine learning (ML) 

techniques on the UAS images and the resulting 

photogrammetric point clouds to conduct an automatic and 

comprehensive bridge inspection that competes in quality and 

complexity with conventional routine bridge inspection methods. 

In this work, we propose a proof of concept on the overall 

framework for a UAS based bridge inspection, starting with the 

UAS data acquisition and photogrammetric processing procedure 

Figure 1: Overview of the polygonal mesh reconstruction of a 

concrete bridge and the geolocated imagery (red cones) that 

will be used for the damage localisation and filtering. 
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(§3.1) (Fig. 1). Thereafter, we propose an automated damage 

detection framework using state-of-the-art ML architectures 

(§3.2) to both identify potential damage candidates in the images 

and calculate the 3D coordinates of the prediction bounding 

box (§3.3). Finally, we suggest image measurement techniques 

to quantify geometric damage characteristics, i.e., crack width, 

concrete spalling size or corrosion spot diameter (§3.4). The 

proposed framework is evaluated in a case study in section 4. The 

results of the case study are presented in section 5 and the 

3D image measurements and future investigations are discussed 

in section 6. 

 

 

2. RELATED WORK 

In this section, the related work towards automated routine bridge 

inspections is discussed. Concretely, we present the state-of-the-

art in (1) the use of UAS for photogrammetric bridge modelling, 

and (2) inspection methods based on ML. 

 

2.1 Bridge Inspection 

Several challenges still need to be solved to successfully adapt 

UASs in bridge inspection. The first challenge concerns the time-

intensive flight planning and execution for data acquisition. In 

recent research, this challenge has been addressed by the 

automatic generation of flight routes based on 3D models, which 

can be used to facilitate the data acquisition on site (Zhang et al., 

2022). However, the generation of optimal flight routes needs to 

consider the necessary Ground Sampling Distance (GSD) to 

successfully document minute details, such as concrete cracks. In 

Liu et al. (2020), the relation between detectable concrete cracks 

in images and the GSD has been investigated, recommending a 

7 times higher resolution than the expected crack width. 

However, the ideal working distance has still to be researched to 

address capturing and detecting a diversity of bridge damages. 

These vary between the types of bridges and inspected 

components and can include i.e. cracks, spalling, corrosion, 

missing bolts, or unstable masonry blocks, as well as 

imperfections such as the growth of vegetation, graffiti, or water 

stains. Following the data acquisition, the camera positions and 

3D models are generated using structure-from-motion (SfM). 

Toriumi et al. (2021) present an exhaustive review of the state-

of-the-art of creating photogrammetric 3D models of bridges 

using UASs. 

 

A second challenge is the geolocalisation of the close-up 

inspection grade imagery and 3D reconstruction of bridge 

models. The current SfM procedures perform excellent in well-

lit scenes with sufficient texture detailing i.e., masonry bridges or 

concrete supports (Zollini et al., 2020). However, near sparsely 

lighted underdecks, slim railings or reflective steel trusses, 

current SfM methods underperform (Mandirola et al., 2022). 

Moreover, inspecting the interior of box girders presents a 

significant challenge as it poses health risks to inspectors due to 

the presence of hazardous materials like asbestos and lead 

coatings. The precise image alignment and 3D reconstruction of 

the entire bridge is crucial and requires further investigation. This 

includes the necessary amount of ground control points (GCPs) 

and their distribution along the bridge, considering the achievable 

geometric accuracy of the derived bridge models. 

 

2.2 Damage detection 

In the past years, various deep learning architectures have been 

developed to detect damages such as concrete cracks (Hsieh and 

Tsai, 2020; Munawar et al., 2022; Wan et al., 2022; Wan et al., 

2023), steel related damages (Dung et al., 2019; Harweg et al., 

2020) and masonry damages (Dais et al., 2021). An extensive 

overview of available detection models is given in Toriumi et al. 

(2021). However, these methods are not trained specifically on 

bridge damage datasets and underperform in these scenarios. 

Additionally, current methods are very narrowly defined with 

each method only finding 1-5 types of damages. These 

frameworks must be drastically expanded to accommodate the 

wide range of bridge inspection findings, with over 100 different 

classes ranging from graffiti to concrete cracks. Furthermore, 

current approaches only consider pixel information for the 

damage detection. Geometric features must also be considered as 

they are proven to be vital indicators for material degradations in 

point cloud analysis (Mohammadi et al., 2019; Xiu et al., 2020; 

Hake et al., 2022; Momtaz Dargahi et al., 2022). This 

combination of 2D pixel and 3D point information is highly 

innovative and still needs to be adapted for bridge inspections. 

Moreover, the use of other sensors (i.e., infrared (IR), multi-

spectral) needs to be explored in this context.  

 

2.3 Damage characterization 

After the damage detection step, relevant geometric information 

characterising the damages needs to be extracted. With the 

advances in computer vision techniques, multi-class object 

recognition has found its way to bridge inspections. The 

application of various computer vision and ML architectures for 

bridge inspections have been reviewed in Zhang and Yuen 

(2022). Dong and Catbas (2020) give an overview of general 

damage characterization algorithms used in civil engineering and 

conclude a lack of masonry and timber detectors compared to 

concrete and steel. For concrete cracks, the skeleton method can 

be used to extract the length and crack width (Liu et al., 2020). 

This step has not been automated for every damage type. 

Alternatively, these parameters can be measured manually in the 

image. However, the measurements are in pixels and need to be 

translated into metric units. Finally, the extracted damage data 

needs to be structured and managed. Although building 

information modelling (BIM) has advanced in the past years,  

Zhang et al. (2022) conclude a lack of integration within bridge 

inspections.  

 

 

3. METHODOLOGY 

In this chapter, we propose a framework for UAS based bridge 

inspections. First, we start with the planning and flight execution 

procedure of the UAS data acquisition and the photogrammetric 

reconstruction of the bridge model. Second, we investigate 

image-based ML architectures on their transfer learning 

capabilities to identify bridge related damages. Lastly, we 

propose our strategy to accurately abstract geometric damage 

characteristics and how they can be used to provide asset 

managers with valuable information about structural health of the 

asset.  

 

3.1 Data acquisition and photogrammetric reconstruction 

Current path planning algorithms do not account for the 

appropriate working distances required for different bridge 

components. For instance, certain areas require close inspection 

(e.g., pillars), whereas other areas may have lower significance 

(e.g., deck), or may even need to be avoided entirely (e.g., 

powerlines). As a result, current generated flight paths lead to 

both vast amounts of irrelevant data and insufficient image 

quality for the automated detection of minute damage. For the 

UAS flight, we therefore propose a two-step approach. 
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Concretely, we distinguish between photogrammetric and 

inspection flights. In the photogrammetric flight, the flight path 

is optimized for photogrammetric consistency, working with 

60 - 90% overlap and an intermediate working distance to the 

structure to ensure proper alignment and high reconstruction 

fidelity. Second, we conduct the inspection flight with low 

overlap at the appropriate working distance for the damages that 

will be fed to the detection algorithms. The procurement of both 

flights is kept separate to focus on a single task within each flight. 

A combination of both flights currently would likely overextend 

the battery life of the UAS and foregoes a crucial opportunity for 

the operator to adjust the proposed flight route after an initial 

mapping is conducted. Additionally, if a prior mapping is already 

present, only the new inspection flight has to be conducted which 

significantly lowers the human effort in the field.  

 

For the data processing, we pursue a standalone photogrammetric 

reconstruction. We aim to reconstruct accurate geolocated 

photogrammetric 3D bridge models solely based on partial RTK 

input to drastically lower human effort in the field. First, we 

process the photogrammetric imagery with a sequential SfM 

pipeline. We specifically use a low threshold for the matching to 

align as many images as possible. The reconstruction is scaled 

and optimized through GCPs. In the test case where we did not 

yet have the RTK module, we select the lowest number of GCPs 

to investigate the reconstruction accuracy. 

 

3.2 Machine learning based damage detection 

For the detection, we opt for a coarse detection with high recall 

and filter the results afterwards. For the automated detection, we 

transfer learn YOLOv8 by Ultralytics (Jocher et al., 2023) 

(Fig. 2). In this first test case, parallel object detection models 

were trained to predict a number of bridge damage types, i.e., 

cracks, concrete spalling, exposed rebars, vegetation, graffiti and 

GCPs. For the training process, we collected images from various 

sources. Our project partners provided us with a dataset of 

140 000 images from bridge inspections including various 

damage categories. These images came from previous bridge 

inspections for documentation purposes and therefore contained 

various quality issues. Many images had red arrows or boxes 

drawn in the image to help the documentation process of the 

damages, which makes them impractical for the training process, 

because it would lead the object detection model to look out for 

those artificial markings. However, a selection of the images was 

used for the detection of exposed reinforcement bars and 

vegetation growth on the bridge. For the graffiti and crack 

detection models, we used public datasets (University, 2022) and 

(Zenodo, 2023) respectively. The training images were not 

domain specific for bridge damages, but contained damages from 

various constructions. However, it is important to mention that 

the quality and quantity of training images varied strongly 

between the categories. During the training process, we iterated 

between different image, batch and model sizes. The model sizes 

of YOLOv8 are the nano, medium and large models from 

ultralytics, which were pretrained on the COCO dataset. The 

images were annotated manually and a shear rotation of ± 20 ° 

was applied for data augmentation using Roboflow (2023). We 

validated the models using the validation function of YOLOv8 

and selected the models with the best confusion matrix, i.e. the 

lowest false negative prediction rate (FN). 

 

3.3 Damage localisation and filtering 

Following the detection, the damage candidates are filtered using 

their spatial relation. To this end, we combine the 3D mesh and 

the camera positions from the photogrammetric process with the 

results of the damage detection process to retrieve the 3D location 

of the detected damages. To this end, we utilized the GEOMAPI 

python library (Bassier and Vergauwen, 2020) to first compute 

projection rays. This process uses the information of the camera 

location, orientation and focal length to compute vectors through 

the centre point of each bounding box (Fig. 3). Second, the 

intersection points of each ray with the mesh were calculated. If 

the point can be calculated, it is further investigated which of the 

segmented components is hit, using the segmented bridge 

components if present, retrieving sematic information which is 

added to the damage information. Alternatively, if the damage is 

not part of the bridge model, it may be considered 

inconsequential and therefore excluded from further analysis, 

leading to the erasure of related information. Next, the corner 

points of the bounding boxes are computed accordingly by 

backprojecting the damages onto the reconstructed polygonal 

mesh. The resulting damage information is stored in a RDF graph 

that can be enriched with the characteristics in the below process 

(Fig. 4).  

Figure 4: RDF Graph representation of the detected damages 

including the images it was detected in, the confidence and the 

bridge component. 

Figure 3: Overview of the damage filtering step: Camera 

positions (red) and computed projection rays (black).  

Figure 2: Prediction results with bounding boxes (red) of the 

YOLOv8 concrete spalling model. The result includes one true 

positive and two false positive predictions.  
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3.4 Damage characterization 

After the damage detection, the geometric characterisation of the 

detected damages is extracted. To this end, the properties of the 

damage candidates i.e., concrete spalling area or diameter of GCP 

targets, can be measured using the 3D coordinates. If a pixel-

based segmentation is not available, an initial estimation of the 

geometric characteristics can be conducted manually. First, the 

bounding box area is cut out from the images and imported in a 

CAD software. Afterwards, the diagonal of the cropped image is 

measured in pixel lengths and compared with the actual diagonal 

length, using the 3D points of the bounding box. After scaling the 

image on this reference length, the damage characteristics are 

measured and compared with the hand-measurements (Fig. 5). 

 

 

4. CASE STUDY 

To validate the proposed framework, we conduct a bridge 

inspection using a DJI Mini 3 Pro on a decommissioned concrete 

box girder bridge (Fig. 6). The Gaardeniersbrug was specially 

chosen because it can be easily reached, has no flight restrictions 

and several documented visual damages. The inspected bridge 

section is about 100 m long and included two pillars and the 

abutment. The focus on this case studies lies within the feasibility 

of the flight, the accuracy of the photogrammetric bridge model, 

the damage detection procedure and the evaluation of the 

accuracy of the image-based measurements. 

 

The two-flight approach was conducted as follows (Table 1). 

First, the photogrammetric images from a working distance 

(WD) of approx. 20 m for the initial photogrammetric model. 

After the initial reconstruction, inspection grade images were 

acquired of the entire bridge from close proximity between 5 to 

0.5 m. After the damage detection step, more information deemed 

necessary and additional flights were conducted. Before the 

flights, we applied 9 GCPs on the deck, sides and pillars. 

Additionally, since there were any cracks on this specific bridge, 

we applied print outs of artificial crack patterns on the bridge, 

which were designed in a CAD software with known line 

thicknesses. All images were captured using a commercial DJI 

Mini 3 Pro with 12 MP camera in manual flight mode and manual 

focus.  

 

For the photogrammetric process we used Agisoft Metashape 

(Agisoft, 2023) to register the camera positions and reconstruct 

the 3D model. The initial model was computed using the images 

from the photogrammetric flight and updated with the inspection 

and additional flight images. From the total 3477 images, only 

114 images were not be registered successfully, due to 

insufficient image quality and missing overlap. It is worth 

mentioning that choosing a lower camera alignment setting 

resulted in better models, as this allows for higher thresholds in 

registration uncertainties. Table 2 shows the used settings for the 

photogrammetric processing. To scale the model, 9 GCPs were 

used in a local coordinate system, measured by a terrestrial laser 

scanner (TLS). Thereafter, we validated the geometric accuracy 

of the 3D model in a cloud to mesh comparison using 

CloudCompare (CloudCompare, 2023) (Fig. 7). The resulting 

3D model was exported and post processed in MeshLab 

(MeshLab, 2022), including the clean-up from noise and outliers 

and manual segmentation into the bridge components (Fig. 8). 

After the camera optimisation step in Metashape, the final camera 

positions were exported as .XML file. Figure 9 shows the correct 

registration of images from the inspection flight. 

 

For the ML based damage detection, we trained several YOLOv8 

object detection models. In total, 7 models were created of which 

the training datasets are described in Table 3. Since the spalling 

on the chosen bridge for this study did not show an exposed bar, 

we collected a dataset not containing an exposed bar from various 

sources, including Google images and our own. For the artificial 

crack and the GCP model, we took several images of A4 

printouts. To assure the generality of the models, we did not use 

any images from our data acquisition for the training and 

validation process. For each detection model, several versions 

Figure 5: Cropped out damage with bounding box (left), 

hand-measurement width (middle) and length of concrete 

spalling (right). 

Table 1: UAS data acquisition metrics 

Flight scenario WD [m] Images  Time [h] 

1 Photogrammetric flight 20 - 30 356 1.5 

2 Inspection flight 0.5 - 5 2880 2.5 

3 Additional flight 0.5 - 5 241 0.5 

 

Figure 6: Gaardeniersbrug, Ghent, Belgium. Typical UAS 

Image of the initial photogrammetric flight. 

 

 

Table 2: Photogrammetric processing metric 

Photogrammetric process Setting  Time [h] 

1 Camera Alignment Low 7 

2 Camera optimisation - 0.25 

3 Build dense cloud Low, mild 12 

4 Build mesh Low 4 

5 Texturing 8192 x 16 16 
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were trained with iterating batch, image and model sizes. 

However, all the models with the lowest rate of false negative 

predictions were trained on a batch size of 16 images and an 

image size of 640 pixels, while the maximal training time did not 

exceed 300 epochs throughout the process. The largest difference 

in the model size was observed for concrete spalling, reducing 

the false negative rate from 0.58 to 0.04.  

 

For the spatial filtering, we back-projected the damages by 

computing the 3D coordinates of the detected pixels and 

computing the raycasting intersections with the mesh. For the 

neighbourhood selection, we used 1 m for the grouping of the 

damage candidates. For the geometric damage characterization 

and measurements, we cropped out the bounding box regions 

from the damage detection process and compared the 

measurements with the hand measurements. All measurements 

were conducted manually in the image and the calculated metric 

values were added to the RFD data management. 

 

 

5. RESULTS 

In this case study, we conducted a UAS based bridge inspection 

on a case study to validate our proposed framework. From the 

total 3477 images, only 114 images were not registered in the 

camera alignment. This shows, that the general flight procedure 

was successful and can be improved by using automatic flights 

with more sophisticated flight control settings, ensuring a stable 

overlap between the images and flight paths. 

 

The photogrammetric 3D model was successfully reconstructed 

and included a high-quality texture, allowing to visualize 

detected damages in the 3D context (Fig. 9). The cloud 

comparison with the TLS shows an overall high geometric 

accuracy. While the histogram shows a mean difference of 1.8 

mm, some handpicked points show a difference of approximately 

± 20 mm. The largest differences were detected towards the ends 

of the survey area, which is explained by the lack of images for 

these regions and furthest distance to the GCPs. The evaluation 

of the photogrammetric processing showed that highly accurate 

models can be reconstructed even with less than 9 GCPs per 

100 m bridge length. Even if no GCPs were applied in the 

photogrammetric process, the resulting models could be scaled in 

a post processing step using only 3 GCPs, while still achieving 

an overall accuracy of approximately ± 35 mm. However, the 

photogrammetric model did not include accurate railings and 

powerlines, which were cleaned up in the postprocessing. 

Additionally, the bearings on top of the pillars were showed less 

accurate results and can include errors of up to 8 cm (Fig. 10). 

 

The results of the training process of the damage detection 

models showed a high initial detection rate, even for small 

training datasets. At the same time, only in the vegetation model 

a higher false negative prediction rate was observed within the 

validation data. While the training on larger pretrained model 

sizes improved the prediction accuracy for the concrete spalling 

and GCP models, this was not observed for the vegetation and 

graffiti detection models. From the inspection report, we 

identified crucial damages and manually selected images of those 

areas. The trained object detection models were used to predict 

the damages in this selection of 41 images. The results of the 

object prediction were saved as .txt file per image, containing the 

damage type and bounding box information such as centre point 

values for x and y, width and height of the box in the YOLOv8 

format. Each image included multiple detections including false 

positive predictions. It is worth mentioning that unlike the test 

images, the validation images were of similar quality as the 

training data. Therefore, the models produced more false positive 

predictions on real world data, resulting in 149 damage 

predictions in 41 images, leading to 98 false positive predictions. 

Figure 8: Segmented mesh in bridge components, 

including the abutment (yellow), middle pillar (green), 

north pillar (light blue), underdeck (purple), upper deck 

(orange) and ground environment (red). 

Figure 7: Mesh-to-cloud comparison in CloudCompare using 

9 GCPs. The histogram and point measurements indicate a 

geometric accuracy of about ± 20 mm compared to the TLS. 

Figure 9: High textureised 3D photogrammetric model, 

including artificial cracks with line thicknesses ranging 

between 1.1 to 2.0 mm. 

 

Table 3: Trained YOLOv8 models for different damages 

Class Train 

Image 

R mAP50 Model 

size 

TP FN 

Cracks 4108 0.783 0.813 Medium 0.84 0.16 

Spalling 149 0.998 1 Medium 0.96 0.04 

Exposed  
Bar 

161 0.677 0.721 Medium 0.9 0.1 

Vegetation 107 0.628 0.661 Nano 0.73 0.27 

Graffiti 569 0.61 0.694 Nano 0.7 0.3 

GCP 180 0.86 0.866 Large 0.9 0.1 

Artificial  

Crack 
141 0.792 0.84 Medium 0.9 0.1 
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However, the proposed raycasting method was able to 

automatically reduce those false predictions in 49 cases. The 

remaining damage candidates were grouped to damage nodes, 

containing multiple images from the same damage. This resulted 

in 36 final damage nodes, which can be accessed and reviewed 

by bridge inspectors, significantly reducing time effort in the 

inspection process. Concluding, the models were able to 

successfully predict all damage instances on the bridge. All 

damage prediction annotations were automatically combined and 

stored in the RDF graph for further processing. 

 

Finally, we applied the proposed image measurement method to 

measure 24 distances in 13 images. Table 4 shows a selection of 

these images, the measured damage characteristic, the computed 

camera distance, the image-based measurement (S1) and the 

ground truth measured with a ruler (S2). The mean measurement 

accuracy off all measurements ranges between 4.0 to 30.5 mm, if 

the vegetation damage is considered an outlier and excluded. For 

these measurements, the camera distance to the damage was 

about 10 - 12 m, which is one reason for the low measurement 

accuracy and high absolute a error. Next to the working distance, 

the accuracy of the image-based measurements depends on 

several factors i.e., the angle between damage and camera 

position, the precision of the bounding box, and the geometric 

accuracy of the bridge model. For larger bounding boxes, 

especially in complex geometries, this method is not able to 

deliver accurate measurements. However, for close-up images 

orthogonal to the damage plane, the results show highly accurate 

measurements.  

 

6. DISCUSSION 

The proposed overall framework was successfully validated in 

the conducted case study. The results show the great potential of 

the method to effectively capture high quality images from 

usually hard to reach areas of bridges, automatically detect bridge 

damage and extract precise measurements. However, the overall 

process still allows for further improvements in each of the steps 

from data acquisition to measurement.  

 

In the data acquisition, the overall image quality will greatly 

benefit from using more sophisticated UAS compared to the 

deployed DJI Mini 3 Pro, considering the use of automatic flights 

to ensure a stable overlap between images and fight paths, while 

further reducing time effort at the same time. Furthermore, 

different sensors will be investigated in future research. For the 

ML process, the results show great potential to train damage 

detection models. However, it is necessary to improve the overall 

quality and quantity of training data. To this end, we will 

investigate the use of weakly supervised learning on large 

datasets from previous bridge inspections. Lastly, the results of 

the image-based measurements suggest high potential. The 

identified influencing factors on the measurement accuracy need 

to be investigated more profoundly and the extraction will be 

automated in future research. Overall, the proposed method has 

great potential to improve current bridge inspection procedures, 

offering a flexible, time and cost-efficient alternative to the 

conventional bridge inspection procedure in the future. 

 

 

7. CONCLUSION 

In this paper, we propose a UAS based bridge inspection 

framework to capture high quality image data, automatically 

detect and locate potential bridge damage using machine learning 

and allow for accurate measurements directly in the digital 

imagery. Furthermore, the pipeline allows to filter out false 

positive damage predictions, extract semantic data about the 

bridge components, and group detections of multiple damage 

candidates into one damage node per damage, allowing for a 

streamlined data management system. The framework was 

validated in a case study, successfully detecting an exposed bar, 

concrete spalling, GCPs, vegetation on the bridge deck and 

graffiti.  The results show great potential of the proposed method, 

which allowed for millimetre precise measurements of geometric 

damage characteristics such as crack width, and the automated 

filtering of the false positive damage predictions. 
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