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ABSTRACT:

Benchmarking of haze removal methods and training related models requires appropriate datasets. The most objective metrics of 
assessment quality of dehazing are shown by reference metrics – i.e. those in which the reconstructed image is compared with the 
reference (ground-truth) image without haze. The dehazing datasets consist of pairs where haze is artificially synthesized on ground-
truth images are not well suited for the assessment of the quality of dehazing methods. Accommodation of the real-world environment 
for take truthful pairs of hazy and haze-free images are difficult, so there are few image dehazing datasets, which consists with the real 
both hazy and haze-free images. The currently researcher’s attention is shifting to dehazing on “more complex” images, including those 
that are obtained in insufficient illumination conditions and with the presence of localized light s ources. It is almost no datasets with 
such pairs of images, which makes it difficult of objective assessment of image dehazing m ethods. In this paper, we present extended 
version of our previously proposed dataset of this kind with more haze density levels and depths of scenes. It consists of images of 2 
scenes at 4 lighting and 8 haze density levels - 64 frames in total. In addition to images in the visible spectrum, for each frame depth 
map and thermal image was captured. An experimental evaluation of state-of-the art haze removal methods was carried out on the 
resulting dataset. The dataset is available for free download at https://data.mendeley.com/datasets/jjpcj7fy6t.

1. INTRODUCTION

Currently, the use of intelligent systems based on video analysis,
such as automatic navigation systems, traffic monitoring, outdoor
video surveillance systems, etc., face a number of obstacles when
operating under real weather conditions. In particular, the pres-
ence of haze, dust, various kinds of suspensions, rain and snow
significantly complicates analysis of scenes and detection of ob-
jects. As a result, haze removal has received increasing attention
from researchers, and many new techniques have been developed.

An objective comparison of haze removal methods and training-
related models requires appropriate datasets for benchmarking.
Different approaches to assessment the quality of haze removal
put forward different requirements for the evaluating datasets.
There are full-reference and non-reference metrics of image qual-
ity assessment. Full-reference metrics require a haze-free (ground
truth) image for each hazy image, which is often impossible to
provide, since the ground truth image is one that was obtained
under constant environmental conditions, similar to those present
in the corresponding hazy image, except for the absence of haze.

In cases where the dataset consists only of hazy images with-
out corresponding haze-free (ground truth) images, benchmark-
ing of dehazing methods can be performed using non-reference
(NR) metrics for image quality assessment (IQA). An example of
such a metric is the one, proposed by (Mittal et al., 2012) which
employs scene statistics of locally normalized luminance coeffi-
cients to measure the loss of ”naturalness” in images caused by
distortions. This approach provides a comprehensive measure of
quality and has low computational complexity, making it suitable
for real-time applications.

∗Corresponding author.

In addition to NR-IQA metrics, in which image quality is eval-
uated using mathematical expressions, there are also machine
learning-based metrics that attempt to evaluate image quality in
the same manner as a person does. For example, (Talebi and Mi-
lanfar, 2018) uses a model based on a convolutional neural net-
work architecture (CNN), which provide the possibility of pre-
diction of both the technical and aesthetic aspects of images. To
achieve higher correlation between human and model estimations
of dehazing quality, rather than simply classifying or regressing
images scores, the model predicts the distribution of ratings as a
histogram.

The most popular and acceptable by community metrics for as-
sessment quality of dehazing are full-reference metrics, such as
PSNR and SSIM (Wang et al., 2004). These methods compare
resulting images of the haze removal method and its ground truth
image, but in different manner: PSNR is based on calculating di-
rect differences between the corresponding pixels of the reference
and tested images, while SSIM takes into account the relationship
between pixels, which allows one to express a change in the struc-
ture of the image, and thus give a quality assessment that is closer
to human perception. In addition, the range of SSIM values lies
in the range [-1,1], where 1 corresponds to a comparison of iden-
tical images, which simplifies the perception and interpretation of
the results.

Thus, a key property that datasets for the image haze removal
task should provide is the inclusion of pairs of images of the
same scene with and without haze, while keeping other exter-
nal conditions unchanged (the location of objects on the scene,
lighting, etc.). Since it is difficult to accommodate the real-world
environment to ensure such property, the vast majority of dehaz-
ing datasets consist of pairs of images in which haze is artificially
synthesized on ground-truth images using known depth maps and
an atmospheric scattering model (usually, the Koschmieder’s clas-
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sical model (Koschmieder, 1924)):

Ic(s) = Jc(s)T (s) +Ac(1–T (s)) (1)

where S = s = (s1, s2) : s1 = 1, ..., N1, s2 = 1, ..., N2 is the
discrete pixels grid, Ic(s) is the hazy image intensity value at the
position sϵS and color channel cϵr, g, b, Jc(s) is the correspond-
ing haze-free image intensity value at the same position, and the
color channel c, Ac is the airlight of the color channel c and T (s)
is the transmission map.

It is commonly accepted to use a constant value of the airlight
Ac over the entire image, a homogeneous distribution of haze
particles, and independence of the scattering coefficient from the
wavelength.

The last two assumptions allow us to express the medium trans-
mission map as follows:

T (s) = e−βd(s) (2)

where d(s) is the scene depth at the position s and β is the scat-
tering coefficient.

Thus, substituting the known depth map in d(s) of (2), as well as
the corresponding haze-free (ground truth) image J(s) in expres-
sion (1), we can obtain the corresponding hazy image.

The advantage of obtaining full-reference datasets for the single
image haze removal task using this method is that non-specialized
datasets can be used, only ground truth images and depth maps
are required. For example, the use of NYU Depth v2 (Nathan
Silberman Derek Hoiem and Fergus, 2012) and Middleburry
(Scharstein et al., 2014) for obtaining reference datasets for per-
forming experiments or training models in the image haze re-
moval task by synthesizing haze on the ground truth images using
known depth map, was previously widespread. Later, to simplify
and standardize the experimental evaluation and models training
for image haze removal tasks, the NYU2, Middlebury, and other
datasets were combined into one set, which included ready-made
images with generated haze. The resulting set was named REalis-
tic Single Image DEhazing (RESIDE) (Li et al., 2018) it contains
subsets of data for both training and validation of models for im-
age haze removal tasks. In total, the dataset has collected about
430,000 images from various sources.

As noted earlier, obtaining a reference dataset consisting of im-
ages with real haze is difficult. This is because it is necessary to
obtain both images (ground truth and hazy) of the scene under un-
changed environmental conditions, except for the presence/absen-
ce of haze. The appearance or dissipation of haze takes time, dur-
ing which the scene often changes, and the second image from
a pair can no longer be considered a reference to the first image.
In this regard, all open sets of this kind have a small volume.
So, the total number of pairs of hazy/ground truth images, where
both images of the pair are captured in the real-world environ-
ment (Ancuti et al., 2018a, Ancuti et al., 2018b, Ancuti et al.,
2019, Ancuti et al., 2020, Khoury et al., 2018), is about 190.

As we have seen, the open datasets available for single image
haze removal tasks, where pairs of hazy/ground-truth images were
obtained by photographing real scenes, have a small volume. In
contrast, datasets where hazy images were synthesized have a
large volume. Generally, the number of pairs with real images
is orders of magnitude lower than those with synthesized ones.

Datasets with synthesized haze are actively employed to train
models in machine learning-based haze removal methods. How-
ever, they are not well suited for the assessment of the quality
of dehazing methods since, most commonly, the depth map has
visible inaccuracies and glitches that affect the generated haze.
Additionally, the physical model of atmospheric scattering does
not fully reflect the complexity of the underlying processes that
occur when light passes through haze. Figure 1 shows exam-
ples of synthesized images with noticeable misses in the overlaid
haze, which occurred due to the inaccurate depth map.

(a) (b)

Figure 1: An example of the image from SOTS (Li et al., 2018)
dataset with synthesized haze (b). (a) is the original (ground
truth) image. At (b) the wrong overlay of haze at the back of
the front (left) chair can be seen.

Another important fact is that modern haze removal methods de-
monstrate high-quality dehazing of images with sufficient (day-
light) illumination, so researchers’ attention is shifting to dehaz-
ing ”more complex” images, including those obtained in insuffi-
cient illumination conditions and with the presence of localized
light sources - i.e., conditions that simulate night-time. Among
the publicly available datasets, we did not find any that consist of
pairs of real images obtained in low light conditions and with the
presence of localized light sources. The proposed dataset has spe-
cific properties and allows for benchmarking of dehazing meth-
ods in terms of performance in night-time conditions.

Section 2 describes the equipment and methodology used for ac-
quiring the dataset. Afterwards, we will present the parameters
of the collected dataset and some examples from it.

Section 3 provides a description of the haze removal methods
used in the experiments, as well as the results of dehazing on the
proposed dataset and some other datasets.

Section 4 draws conclusions about the collected dataset and ex-
perimental results.

2. THE PROPOSED DATASET

Previously (Filin et al., 2022), we proposed the single image haze
removal dataset that consists entirely of real images, including
images taken at low light conditions and with the presence of
localized light sources.

Two scenes were prepared with 4 degrees of illumination and
4 degrees of haze density, 32 frame variations in total. One of
the scenes includes localized light sources. Several shortcomings
were revealed during the analysis of the experimental research
on this dataset including the small depth of scenes, a small num-
ber of haze density levels, and varying camera exposure during
shooting.

In this work, we have approximately doubled the depth of the
scene. The number of variations of haze density levels was in-
creased from 4 to 8, and 4 illumination levels were adjusted evenly
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such that objects on the scene were visible both with maximum
and minimum illumination without changing the camera’s set-
tings.

We keep here the same principles of dataset collection as before:
• The most straightforward way to achieve a hazy environment is
by using a smoke machine. It generates particles, closed by its
size to the particles of atmospheric haze.
• A fan can be used to speed up a homogeneous distribution of
haze particles. But it should be turned off for a few minutes be-
fore capturing images to make the particles slow down.
• ColorChecker should be placed in front of the camera so it will
fully fit the image. Optionally, other camera calibration and sup-
port tools can be placed similarly.
• The camera parameters (aperture, shutter speed, ISO) should be
controlled.

In this study, as in the previous work, 2 scenes were set up with
objects of varying sizes, shapes, materials, and the presence or
absence of localized light sources. Equipment for setting up cam-
era settings and post-processing images, such as SpyderLensCal
for precise focusing, Datacolor SpyderCube for color correction,
and ISO 12233 test chart, were also placed in front of the camera.

For each scene, 32 frames were captured - with 4 degrees of illu-
mination and 8 degrees of haze density. The illumination was ad-
justed by regulating the number of lighting lamps. The minimum
illumination was set so that the objects in the scene remained vis-
ible without changing camera settings, such as ISO, aperture, and
shutter speed. The accepted settings were ISO = 800, aperture =
f/5, and shutter speed = 1/30s.

To generate haze, a haze machine Involight FM900 was used.
After placing the objects and setting up the equipment, 4 shots
were taken with varying degrees of illumination to all available
equipment one by one, which took about 10 seconds in total for
each cycle.

After the ground truth images were taken, the haze was generated
for 15 minutes, and the fan was turned on to distribute it evenly.
Then, the fan and hazer were then turned off, and a waiting pe-
riod of 30 seconds was made for the haze particles slowed down.
After the waiting period, a series of shots were taken with varying
degrees of illumination, using all available equipment.

To obtain varying degrees of haze intensity, a waiting period of 3
minutes was made for the haze to dissipate before the next level
of haze intensity was captured in a series of four shots. 6 more
similar cycles were carried out to obtain a total of 8 degrees of
haze variation for each scene, including one haze-free (ground
truth) and 7 hazy images with varying intensity.

After capturing images for all combinations of illumination and
haze intensity for the first scene, the remaining haze dissipated,
and the next scene was formed. The same process of capturing
images with varying degrees of illumination and haze intensity
was repeated for the second scene.

A total of 64 frames were obtained - 2 scenes with 4 light and 8
haze density levels (1 ground-truth and 7 with haze). Each frame
was shot with the camera (both on Canon 2000d and Intel Re-
alSense d435i), the depth camera (Intel RealSense d435i), and
the thermal imager (Flir C2).

Figure 2 shows examples of images in the visible spectrum with
changes in illumination and haze densities. Figure 3 shows ex-
amples of depth maps. Figure 4 shows examples of images taken
with a thermal imager.

Figure 2: Examples of images from the proposed dataset. Shown
changing illumination and haze density levels.

(a) (b)

Figure 3: Examples of depth maps from the proposed dataset for
scenes 1 (a) and 2 (b).

(a) (b)

Figure 4: Infrared images from the proposed dataset for scenes 1
(a) and 2 (b).

3. EXPERIMENTAL RESEARCH

Experimental research was performed using several state of the
art image haze removal methods. Some methods attempt to re-
move haze from images by evaluating the transmission map and
atmospheric light and applying them in an atmospheric scattering
model. He et al. (He et al., 2011) has formulated a widely used
dark channel prior method that allows direct haze quantification
for reconstruction of the haze-free image. The method is based
on the discovered pattern that in local areas where there is no
haze, at least one channel in the RGB color space contains pixels
with low intensity. Later, Berman et al. (Berman et al., 2016)
discovered that the colors of an image without haze can be well
approximated by several hundred different colors that form dense
clusters in RGB space. In a hazy image, each color cluster forms
a line in RGB space that can be used to reconstruct the image.
Zhu et al. (Zhu et al., 2015) proposed a linear model for depth es-
timation in a hazy image using a method based on the attenuation
color prior effect. The model parameters were obtained by su-
pervised learning. The method proposed by Dhara et al. (Dhara
et al., 2020) separates hazy images into those with some hue and
those without it based on an estimate of the range of color tones in
the image pixels. Color correction is then performed using a non-
linear transformation, followed by tone-dependent atmospheric
lighting refinement.

Recently, considerable research attention has been directed to
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machine learning-based haze removal methods. In (Gui et al.,
2022) an extensive review of such methods is given. According to
this article, the Qin method (Qin et al., 2020) shows a leading po-
sition in the quality of haze removal in terms of PSNR and SSIM
metrics. This method employs the attention-based deep neural
network architecture, which was improved by passing shallow
layers’ information into deep layers – it is assumed that high and
low-level features will allow the core network to find more pat-
terns in the data, which will improve the quality of dehazing.

In this research, to perform experiments with the Qin method on
the indoor and outdoor datasets, we used corresponding trained
models, available at the following link: https://github.com
/zhilin007/FFA-Net/tree/master/net/trained_model

s.

The experimental research was performed on several datasets, in-
cluding images with synthesized haze (Li et al., 2018); images
with real haze (Ancuti et al., 2018a, Ancuti et al., 2018b), and
the proposed dataset. As full-reference metrics was used PSNR
and SSIM. Quantitative dehazing results are shown in Table 1.
Examples of dehazing results are show in Figure 5.

Databases Berman
et al.

Dhara
et al.

He
et al.

Qin
et al.

Zhu
et al.

PS
N

R

i-haze+o-haze 15.76 14.85 13.51 15.16 16.58
SOTS-ITS 17.28 19.61 16.56 29.58 19.05
SOTS-OTS 17.96 16.62 14.40 19.48 22.05
night-haze 15.76 18.59 17.42 19.37 17.65
night-haze-ext 14.60 19.28 17.39 18.99 19.74

SS
IM

i-haze+o-haze 0.74 0.67 0.62 0.65 0.70
SOTS-ITS 0.78 0.86 0.80 0.97 0.81
SOTS-OTS 0.83 0.81 0.75 0.84 0.89
night-haze 0.73 0.71 0.49 0.74 0.62
night-haze-ext 0.56 0.63 0.60 0.63 0.69

Table 1: Quantitative experimental results of the proposed and
some other datasets.

As can be seen from the quantitative results from Table 1, the
PSNR metric shows a greater variety of results depending on the
dataset, which complicates their interpretation. The SSIM metric
is more stable - it can be seen that on most methods the value of
the metrics is lower on datasets consisting of images with real
haze. In addition, on the presented dataset, the SSIM metric
shows the lowest value on most methods. For the rest, the low-
est metrics were obtained on the night-haze dataset (Filin et al.,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 5: Examples of experimental results utilizing image de-
hazing methods on the images from the proposed dataset (night-
haze-ext) captured at the 4th level of haze density and the 2nd
level of lighting. The left column shows images from the first
scene, the right column displays images from the second scene.
Input hazy images (a, b), dehazing results by methods Berman et
al. (Berman et al., 2016) (c,d), Dhara et al. (Dhara et al., 2020) (e,
f), He et al. (He et al., 2011) (g, h), Qin et al. (Qin et al., 2020) (i,
j) and Zhu et al. (Zhu et al., 2015) (k, l), and also ground truth im-
ages (m, n) for scenes are provided at the corresponding columns.

2022), which is similar to the one presented. Such results were
obtained because of the peculiarities of calculating the metrics,
which can be explained by the results of the He et al. method.
Probably, this method demonstrates high PSNR results on the
night-haze and night-haze-ext (proposed) datasets, because they
contain images obtained in low light conditions and with the pres-
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ence of localized light sources. The method He et al. is not de-
signed to work with such images because localized light sources
are mistaken for bright atmospheric illumination, which leads to
an overall darkening of the resulting image. Since the original im-
age was obtained in low light conditions, the difference between
the corresponding pixels of the resulting image and its ground
truth will not be large, which will lead to a high PSNR metric.
The value of the SSIM metric for such images will be small be-
cause the overall structure of the image has changed a lot as a
result of such darkening.

4. CONCLUSIONS

This paper presents a dataset that has features that allow a more
objective assessment of single image haze removal methods rel-
ative to real-life conditions because it contains images obtained
in low light conditions and with the presence of localized light
sources.

The experimental results show noticeably better values of PSNR
and SSIM metrics on datasets in which image have synthesized
haze than on datasets that consist of images with real haze. This
may indicate that the atmospheric scattering model that was used
to generate haze also underlies the methods used in the experi-
ment, so the haze removal quality metrics obtained on sets con-
sisting of real images are more objective.

In addition to images in the visible spectrum, the resulting dataset
also includes infrared images and depth maps of scenes. The
presence of additional modalities allows for the expansion of the
scope of the dataset - for example, the presence of a depth map
makes it possible to evaluate the accuracy of the calculated depth
map and investigate transmission map and depth map relations.
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