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ABSTRACT: 

 

Automatic audio-visual speech recognition systems (AVSRs) have recently achieved tremendous success, especially in limited 

vocabulary tasks by far surpassing human abilities to recognize speech, especially in acoustically noisy conditions. Automatic speech 

recognition systems based on processing of audio and video information are being actively researched and developed all over the 

world. However, scientific studies aimed at analyzing the influence of the speaker's emotional state (anger, disgust, fear, happy, 

neutral, and sad), and, most importantly, intensity level of emotion (low - LO, medium - MD, high - HI) on automatic lip-reading 

have not been conducted. In this regard, the relevance of this research topic cannot be overestimated and requires detailed study. In 

this paper, we present a novel approach for emotional speech lip-reading, that includes evaluation of a speaker’s emotion and its 

intensity level. The proposed approach uses visual speech data to detect a person’s emotion type and its intensity level and based on 

this information assigns it to one of the trained emotional lip-reading models. This essentially resolves the multi-emotional lip-

reading issue associated with most real-life scenarios. The proposed approach improves the state-of-the-art results due to the 

consideration of the intensity of the pronounced audio-visual speech up to 8.2% in terms of the accuracy. Current research is the first 

step in the creation of emotion-robust speech recognition systems and leaves open a wide field for further research. 

 

1. INTRODUCTION 

Speech changes can be observed both in audio and video 

modalities. For example, with emotions “happy” and “anger”, 

words are pronounced with a more open mouth than with 

emotions “neutral” and “sad”, in addition with the emotion 

"anger" the pauses between words are shorter than with the 

emotion "sadness". All these micro-changes lead to the fact that 

speech is not recognized correctly by modern automatic 

recognition system, although it is often very important for a 

person to be understood in the emotional state by 

devices/medical equipment. 

 

Currently, leading scientific institutions and global industrial 

corporations working in the field of artificial intelligence are 

actively conducting research aimed at creating highly efficient 

visual speech recognition systems. Automatic audio-visual 

speech recognition systems (AVSRs) have recently achieved 

tremendous success, especially in limited vocabulary tasks by 

far surpassing human abilities to recognize speech, especially in 

acoustically noisy conditions (Ivanko et al., 2019). However, 

the efficiency of state-of-the-art AVSRs is significantly 

deteriorating due to a number of factors, one of which is the 

speaker's emotions (Ryumin et al., 2023). Depending on the 

speaker's emotion, changes: timbre, pitch and loudness of the 

voice, duration of sounds, duration of pauses, articulation, etc.  

 

Despite the progress of digital technologies achieved in recent 

years, automatic speech recognition systems are not always able 

to function with high performance (accuracy, recognition 

speed). In the presence of controlled office conditions, a limited 

vocabulary and a controlled grammar of recognized commands, 

the accuracy of modern speech recognition systems in terms of 

audio modality (sounding speech) can approach 100%. 

However, in the case of a complex dynamic acoustic 

environment (external noise, reverberation, interference in the 

microphone channel, etc.), the accuracy of automatic speech 

recognition is significantly reduced. Based on the foregoing, we 

can assume that the acoustic speech signal is the main modality 

in automatic speech recognition systems, but in addition to it, it 

also makes sense to use visual information about speech (the 

movements of the speaker's lips), to make it is possible to 

improve accuracy of speech recognition, especially in 

conditions where the acoustic signal is noisy or unavailable. 

 

Despite the fact that audio signals are generally much more 

informative than video signals, numerous experiments have 

shown that most people use lip reading to better understand the 

interlocutor's speech. However, this often happens 

unconsciously and depends to varying degrees on aspects such 

as the person's auditory abilities or acoustic conditions (for 

example, the visual channel becomes more important in noisy 

environments). In addition, the visual channel is the only source 

of information for people with hearing impairments to 

understand oral speech. 

 

Visual speech recognition (lip reading) is a rather difficult skill 

for a person, however, in acoustically noisy conditions and 

when a large number of people are talking, the interlocutors 

themselves begin to pay attention to each other's lips in order to 

better understand the meaning of statements. Human speech 

perception is a multi-modal process, and based on this, in recent 

years, it has been possible to improve the efficiency of 

automatic speech recognition systems, due to the availability of 

representative audio-visual corpora and the improvement of 

neural network architectures. Automatic speech recognition, 

especially in noisy environments, is a rather difficult task. One 

of the most important steps in speech recognition is the correct 

determination of speech boundaries in the incoming audio 

stream. For isolated words, this problem comes down to finding 

the correct boundary between words, but if we are talking about 

continuous speech, then this task is much more difficult, due to 

the fact that it is a continuous stream, usually with a minimum 

pause. 
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In this paper, we present a novel approach for emotional speech 

lip-reading, that includes evaluation of a speaker’s emotion and 

its intensity level. The proposed approach uses visual speech 

data to detect a person’s emotion type and its intensity level and 

based on this information assigns it to one of the trained 

emotional lip-reading models. This essentially resolves the 

multi-emotional lip-reading issue associated with most real-life 

scenarios. 

 

 

2. RELATED WORK 

With recent developments of neural network models, and more 

specifically with the introduction of such deep neural network 

architectures such as VGG (Chung et al., 2017) and ResNet-like 

(Stafylakis et al., 2017) that are able to consume raw data 

without a feature extraction phase, modern emotion speech 

recognition approaches started to shine. For the last five years 

numerous research works have been published, e.g. (Feng et al., 

2020, Martinez et al., 2020, Ivanko et al., 2022b, Ivanko et al., 

2022c). In existing deep learning emotion recognition models 

for recognizing spatial-temporal input, there are three common 

topologies: CNN-RNN (Deng et al., 2020), 3DCNN (Huang et 

al., 2020), and Two-Stream Network (Schoneveld et al., 2023). 

 

Traditionally, automatic lip-reading systems were based on the 

extraction of visual features, classification and modeling of 

speech sequences. Thus, traditional systems mainly consist of 

image preprocessing and feature extraction combined with 

hidden markov models (HMMs) that use concise context 

information to model the temporal dynamics of a signal. The 

first lip-reading systems of the speaker solved simple tasks, 

such as recognizing individual letters or numbers. However, 

over time, researchers gradually moved on to more complex and 

realistic scenarios, which eventually led to the emergence of 

modern systems designed for automatic lip reading of 

continuous speech. To a large extent, these advances were made 

possible by the creation of powerful systems based on deep 

learning architectures, which were rapidly replacing traditional 

systems. 

 

Recognition of audio-visual speech is gradually being replaced 

by an End-to-End integral approach, i.e. cascade of neural 

networks. In the first approximation, the End-to-End approach 

is close to traditional methods: a sequence of mouth images is 

fed into a convolutional neural network to extract features (Xu 

et al., 2022), which are then transferred to an internal model 

(RNN, LSTM, GRU, etc.) to take into account time- 

dependence and classification. The conducted studies 

demonstrate that the features extracted in this way are more 

suitable for automatic lip reading than those calculated by 

traditional methods. 

 

The main advantage of the modern approach is that the entire 

system consists of a single neural network. Thus, the extracted 

features are better related to the data on which the network is 

trained. In (Noda et al., 2014), it was first proposed to use CNN 

to replace the feature extraction block. In turn, in (Hochreiter et 

al., 1997), it was first proposed to use LSTM for the 

classification problem. Later, researchers in (Petridis et al., 

2018) proposed a neural network for extracting acoustic 

features and tried to combine them with video information. 

 

CNN-RNN combines the advantages of both transferred 

knowledge of a pre-trained convolutional network and a 

temporal modeling capability. The input features to the RNN 

are usually abstract and global features represented by higher 

layers. It makes this architecture able to extract larger and more 

sustained changes in facial appearance (macro-motion). The 

3DCNN combines information over both space and time using 

convolutional filters starting from the lowest layers. This 

enables it to capture both macro and micro motions. However, it 

cannot incorporate transferred knowledge as conveniently as 

CNN-RNN. Two-Stream Network contains two parallel 

convolutional networks: a network that processes images and a 

temporal network that processes motions 

 

Nowadays there are a lot of corpora containing emotionally-

colored speech data (Ivanko et al., 2022a). At the same time, 

there are a lot of datasets aimed for lip-reading (Kashevnik et 

al., 2021). However, at the moment there are almost no 

combined emotional lip-reading databases suitable for model 

training in the scope of deep learning approaches. Despite the 

variety of existing emotional datasets, there are at least four 

corpora suitable for automatic reading visual speech by lips: 

CREMA-D (Cao et al., 2014), RAVDESS (Livingstone et al., 

2018), and eNTERFACE’05 (Martin et al., 2006). CREMA-D 

is the more promising due to the number of various speakers 

and amount of data available. The authors highlight the 

following problems of automatic recognition of visual speech: 

- stable detection of the area of interest (mouth area); 

- extraction of the most informative features from visual speech; 

- effective modeling and recognition of the speaker's visual 

speech (both isolated words and continuous speech). 

 

A number of recent works (Zhang et al., 2020) are devoted to 

methods for extracting visual features from a previously 

detected area of interest by combining different architectures of 

neural networks with linear classifiers. It should be noted that 

the stage of detecting the speaker's mouth area has a significant 

impact on the final efficiency of visual speech recognition. The 

most common solutions for this problem (basic approaches) 

include methods based on Haar primitives and methods based 

on active appearance models (Viola et al., 2001). 

 

Several training strategies and deep neural networks have been 

recently proposed for lip-reading of isolated words (Shi et al., 

2022). It received a lot of attention due to the availability of 

large publicly available corpora, e.g., LRW and LRS (Chung et 

al., 2017). The majority of state-of-the-art approaches follow 

the similar lip-reading strategy that consists of a visual encoder, 

followed by a temporal model and a classification layer (Ma et 

al., 2022). A visual encoder was initially proposed in (Stafylakis 

et al., 2017), and since then has been widely used and improved 

in following works (Martinez et al., 2020). At the same time, 

the most recent advances include the temporal model and the 

training strategy. Bidirectional (Bi) GRUs and LSTMs, and 

Multi-Scale Temporal Convolution Networks have been the 

most popular temporal models (Vaswani et al., 2017). 
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3. DATASET 

In current research we use the CREMA-D dataset (Cao et al., 

2014). The corpus contains 7440 audio-visual recordings from 

91 speakers, age range 20-60+. The average duration of one 

recording is 2.5 seconds with approximately 75 frames. The 

database contains people of different races and ethnicities 

(African American, Asian, Caucasian, etc.). Speakers uttered 

from a selection of 12 sentences (Table 1). The sentences were 

pronounced using one of six different emotions (Anger, 

Disgust, Fear, Happy, Neutral, and Sad) and with 3 levels of 

intensity of emotions: Low (LO), Medium (MD) and High (HI). 

 

Abbrevia-

tion 

Phrase 

1. IEO 

2. TIE 

It's eleven o'clock 

That is exactly what happened 

3. IOM I'm on my way to the meeting 

4. IWW 

5. TAI 

I wonder what this is about 

The airplane is almost full 

6. MTI Maybe tomorrow it will be cold 

7. IWL I would like a new alarm clock 

8. ITH 

9. DFA 

10. ITS 

11. TSI 

I think I have a doctor's appointment 

Don't forget a jacket 

I think I've seen this before 

The surface is slick 

12. WSI We'll stop in a couple of minutes 

Table 1: Phrases of CREMA-D dataset. 

We split the corpus into training, validation and test sets in the 

ratio of 70, 10 and 20, respectively, considering speaker 

independence, gender and age. 

 

We divide the training set into 6 parts according to emotions. At 

first, we train the model only on records with neutral emotions. 

We do not divide the validation and test sets according to 

emotions. Initially, we trained the model on neutral emotions. 

We fine-tuned the training parameters, such as: sequence 

length, image size, batch size, number of image channels, prior 

to training the model on other emotions 

 

4. METHODOLOGY 

Since there is no out-of-the-box solution to process emotional 

speech, in current research we use the well-known 3D ResNet-

18 to tackle emotional speech recognition. 3D ResNet is a type 

of model for video that employs 3D convolutions. ResNet 

includes 17 3D convolutional layers that make it relatively easy 

to increase accuracy by increasing depth, which is more difficult 

to achieve with other networks.  The input of the CNN is an 

image that passes through the first 3D convolution layer and the 

pooling layer, then 4 residual blocks with 3D convolution layers 

follow, each of which is re-peated 2. The global average 

pooling layer is next, and a fully connected layer of 12 neurons 

completes the CNN. The last fully connected layer determines 

the most probable hypothesis from 12 recognition classes. 

 

We used the Mediapipe open-source library to detect lips areas. 

To train the models, a window size of 30/60 frames with a step 

two times smaller than the specified window size was used. 

Frames were selected sequentially from the video with-out 

thinning. 

 

We apply an pre-processing pipeline similar that includes: (1) 

video downsampling to five frames per seconds (FPS) to ensure 

the same processing conditions for recurrent neural networks in 

terms of temporality; (2) channel normalization of the image; 

(3) resizing the image to 224×224 pixels. Lip-reading pre-

processing includes detection of a mouth region-of-interest with 

the same approach (MediaPipe) on each frame and cropping it. 

We resized the mouth image to 88×88×3. In order to maintain 

mouth proportions, we pad the image to the desired size with 

the average pixel value along the vertical of the image itself. We 

then use a linear normalization technique. We do not apply any 

FPS downsampling at this stage. 

 

As a performance indicator we used Recall, which is calculated 

as the proportion of correctly predicted phrases to the total 

number of phrases, related, for example, to phrases reproduced 

with an emotion of anger with high intensity. 

 

 

 

Figure 1: Proposed lip-reading architecture 
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We use the 3DCNN and BiLSTM to tackle emotional speech 

lip-reading. 3DCNN is a type of model for video that employs 

3D residual blocks. We show the general architecture and layers 

dimensions of the model in Figure 1. 3DCNN includes 

seventeen 3D convolutional layers that makes it relatively easy 

to increase accuracy by increasing depth, which is more difficult 

to achieve with other networks. The BiLSTM network consists 

of two BiLSTM layers with 512 consecutive neurons in each 

layer. 3DCNN inputs an image that passes through the first 3D 

convolution layer and the pooling layer, then four residual 

blocks with 3D convolution layers follow, each of which is 

repeated twice. The average and global pooling layers are next, 

two LSTM layers, and a fully connected layer of twelve neurons 

completes the 3DCNN-BiLSTM network. The last fully 

connected layer determines the most probable hypothesis from 

twelve recognition classes. 

 

5. EXPERIMENTAL EVALUATION 

To analyze the recognition accuracy of the phrase "IEO": "It's 

eleven o'clock" within three intensities LO - Low, MD - 

Medium, HI - High. And for the neutral state, the intensity of 

XX is Unspecified. There are 144 IEO phrases in the validation 

set. Phrases reproduced with intensity XX (for the neutral state) 

- 9, LO - 45, MD - 45, HI - 45. 

 

In Tables 2 and 3, the performance indicator is Recall, which is 

calculated as the proportion of correctly predicted phrases (IEO) 

to the total number of phrases (IEO), related, for example, to 

phrases reproduced with an emotion of anger intensity LO, etc.  

 

The training was carried out on 100 epochs, the learning rate is 

0.001 and it is constant throughout the training process; the 

optimizer is SGD. Training stops if UAR does not increase 

during 6 epochs on validation. We chose the unweighted 

average recall (UAR) metric because it is better suited for 

unbalanced classes, e.g. we have IEO class three times larger 

than the others 

 

The results of the mean Recall experiments (vertical) show that 

when learning on phrases reproduced with the emotion of anger, 

the maximum value of mean Recall is 84. This is well explained 

by the fact that in a state of anger a person wants to be 

understood as best as possible, therefore articulation and speech 

become clearer. Whereas the minimum value of mean Recall 

equal to 24 is achieved when training on phrases reproduced in 

the neutral state. This is well explained by the fact that when 

training on phrases in the neutral state, there is no intensity, 

which means that the amount of training data for the IEO phrase 

is halved and it is more difficult to recognize them. 

 

The results of the mean Recall experiments (horizontal) show 

that the IEO phrase is best recognized at LO and HI intensities 

and with sad emotion. Phrase recognition IEO at MD intensity 

is best recognized with emotions of anger and disgust.  

 

According to the results of experiments on the selection of 

training parameters for the neural network, it was revealed that 

the highest UAR value for recognizing 12 phrases is achieved 

when: 1) the image size is 88×88×3, where 3 is the number of 

channels; 2) sequence length equal to 60; 3) batch size - 2. 

 

If we look at mean UAR metrics, it turns out that it is best to 

train on phrases played with the Fear emotion (FEA). And worst 

of all, they learn from phrases played with the Disgust emote 

(DIS). At the same time, if we look at mean UAR, we will see 

that no matter what emotion the phrases are reproduced in the 

Emo-

tion 

 

ANG DIS FEA HAP SAD NEU 

 

mean 

Recall 

 
LO MD HI LO MD HI LO MD HI LO MD HI LO MD HI 

NEU 0 11 0 33 11 22 0 11 11 22 11 33 44 44 55 77 24 

ANG 88 100 100 77 100 88 66 66 100 55 66 66 100 66 100 100 84 

DIS 22 66 44 66 66 55 22 22 22 44 66 66 55 55 66 88 52 

FEA 44 88 77 55 77 77 55 100 100 55 44 88 100 77 100 100 77 

HAP 11 44 11 44 55 55 22 11 11 66 66 77 22 22 33 55 38 

SAD 55 55 22 66 66 55 66 77 55 77 66 66 100 77 100 100 69 

mean 

Recall 

37 61 42 57 62 59 38 48 50 53 53 66 70 57 75 87 - 

ALL 10

0 

100 100 77 100 100 100 88 100 100 88 100 100 100 100 100 - 

 

Table 2: IEO phrase recognition results in terms of intensities for the validation set. 

 

Emo

-tion 

 

ANG DIS FEA HAP SAD NEU 

 

mean 

Recall LO MD HI LO MD HI LO MD HI LO MD HI LO MD HI 

NEU 26 31 0 42 21 26 42 42 36 26 5 15 57 47 42 47 31 

ANG 94 89 94 47 52 73 84 84 89 68 57 68 84 68 78 89 76 

DIS 63 52 36 47 42 57 42 52 63 73 68 68 57 57 68 63 57 

FEA 68 68 63 47 68 73 73 63 84 73 57 63 73 78 78 68 69 

HAP 42 57 57 57 57 57 52 42 42 63 84 78 68 31 52 36 55 

SAD 84 84 63 63 78 78 78 78 57 63 57 57 100 78 73 89 74 

mean 

Recall 

63 64 52 50 53 61 62 60 62 61 55 58 73 60 65 65 - 

ALL 100 100 100 89 100 94 94 100 94 100 94 94 89 98 84 100 - 
 

Table 3: IEO phrase recognition results in terms of intensities for the test set. 
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training sample, then for the test sample, the accuracy is higher 

for phrases reproduced with the emotion of Anger, least of all - 

with the emotion of Disgust. For the validation set, the highest 

is in the neutral state, and the least is in the Happiness emotion. 

 

In the test set, the number of IEO phrases equals to 304. Phrases 

reproduced with intensity XX (for the neutral state) are 19, LO 

are 95, MD are 95, and HI are 95. The results of the mean 

Recall experiments (vertical) show that when training on 

phrases reproduced with the emotion of anger, the maximum 

value of mean Recall is 76. Whereas the minimum value of 

mean Recall equal to 31 is achieved when learning on phrases 

reproduced in the neutral state. The results of the mean Recall 

experiments (horizontal) show that the IEO phrase is best 

recognized at LO and HI intensities and with sad emotion. IEO 

phrase recognition at MD intensity is best recognized with 

anger emotions. 

 

6. CONCLUSIONS  

We presented and studied the novel approach for automatic lip-

reading based on the evaluation of the intensity level of the 

speaker’s emotion and compared the results with the classical 

approaches. We conducted experimental investigations that 

demonstrated how different classes of emotions and the 

intensity of emotions affect automatic lip-reading. The proposed 

approach improves the state-of-the-art results due to the 

consideration of the intensity of the pronounced audio-visual 

speech up to 8.2% in terms of the accuracy. Current research is 

the first step in the creation of emotion-robust speech 

recognition systems and leaves open a wide field for further 

research. 
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