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ABSTRACT:

Image registration is widely used in live cell microscopy image analysis to compensate for the cell motion. It is a challenging task
as the cell is not only moving (which causes rotation and translation), but also changes its form in time making the motion non-rigid.
To address this, we propose a CNN-based unsupervised method for non-rigid registration of live cell image sequences. Our network
predicts both the deformation field between a pair of images of the sequence and an affine transformation matrix for the cell motion
compensation. The method can be used alone or in combination with other approaches. The proposed approach was successfully
applied to real live cell microscopy image sequences.We conducted an experimental comparison with existing methods including
contour-based, intensity-based and a deep learning based joint denoising and registration method. In addition, we analyzed different
deformation regularizers and their impact on the alignment results. In combination with contour-based method we outperformed
the existing approaches in average registration accuracy for two metrics on the standard evaluation dataset.

1. INTRODUCTION

The analysis of cell and subnuclear structures motion is very
important in live cell microscopy. It is used to better under-
stand biological processes such as DNA replication, DNA re-
pair, nucleoli assembly, or viral defense. The cell movement is
the composition of its local movement and the global motion
of the nucleus. To compensate for the cell motion and deform-
ation of temporal live cell sequences in biomedical analysis,
image registration is used. Since the cell not only moves but
also changes its form over time, compensating for its motion
is a very challenging task. With the help of image registration,
all images of a temporal sequence are aligned with a reference
time point, which is usually the first image of the sequence.
This way, image registration helps to determine and analyze the
local motion of subcellular particles, which is usually the sub-
ject of the study.

The previous works on biomedical image registration meth-
ods can be divided into two groups: classical and learning-
based approaches. Among the classical methods, there are rigid
intensity-based approaches: in (Wilson and Theriot, 2006) and
(Goobic et al., 2005), authors described correlation-based ap-
proaches for rigid registration. In (van de Giessen et al., 2011),
an estimated photobleaching model is used to compensate for
the linear motion in FLIP sequences. In (Raza et al., 2012),
the authors proposed a block-based method for registration of
color channels in multi-tag fluorescence microscopy images.
In (Ozere et al., 2013), a parametric stabilization method for
global motion and intensity variation estimation was presented.
Other classical methods do not take the intensity into account:
there is a contour-based approach that performs non-rigid re-
gistration (Sorokin et al., 2018); authors used a dynamic elasti-
city model for the forward simulation of nucleus motion and
deformation based on the motion of its contours. In (Matula
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et al., 2006), the authors proposed using the subcellular struc-
tures’ positions for deriving a rigid transform between different
images. In addition, there are optical flow-based methods that
are based on well-founded models of cell motion or other phys-
ical principles and have proved their effectiveness in practical
applications. In (Kim et al., 2010), the authors extended the
Lucas-Kanade optical flow model for deformation field estim-
ation between consecutive frames. Then this work was con-
tinued by (Tektonidis et al., 2015) where the authors added a
multi-frame extension and improved noise robustness. In (Gao
and Rohr, 2019), the authors introduced a global optical flow
model for non-rigid cell image registration.

The group of learning-based biomedical image registration
methods has proved to be very efficient in terms of fast com-
putational time. Their advantage is learning the motion from
the data itself. However, they suffer from the requirement of a
large amount of training data. Also, the supervised approaches
require expert annotation for the training procedure. Initially,
unsupervised deep learning approaches (Balakrishnan et al.,
2019) for non-rigid registration and (De Vos et al., 2019) for
rigid and non-rigid registration were proposed for use in med-
ical imaging (MRI, CT, or ultrasound) and performed better and
faster than traditional iterative optimization methods (Avants et
al., 2008, Avants et al., 2009). Then, (Celikay et al., 2022)
proposed a deep learning approach for temporal live cell im-
age sequence registration. Here, apart from rigid registration,
the authors performed image denoising, which is important for
live cell microscopy images since they are very sensitive to the
noise level. Also, the authors combined their approach with
non-rigid VoxelMorph (Balakrishnan et al., 2019) and outper-
formed state-of-the-art non-rigid registration methods.

In this work, we propose a CNN-based unsupervised method
for non-rigid registration of live cell image sequences. The pro-
posed approach uses a neural network that predicts not only
the deformation field, as in (Balakrishnan et al., 2019), but also
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Figure 1. Dataset overview: The horizontal lines present two live cell image sequences. The aim is to align all images in the temporal
sequence with a reference time point, which is usually the first image of the sequence, for subsequent analysis. The digits represent

timesteps.

an affine transformation matrix inspired by (Jaderberg et al.,
2015). Thus, the motion in the temporal live cell image se-
quences is presented as a combination of affine transformation
and deformation fields. The use of the affine transformation
block is optional and can be turned off. Unlike (Celikay et
al., 2022), the proposed approach learns the affine transform-
ation and the non-rigid deformation field in a single end-to-end
model. To cope with data noise, we preprocess the data with
denoising filters. Our method was evaluated on a standard cell
image registration dataset and proved to be effective in combin-
ation with the elasticity-based approach (Sorokin et al., 2018).
We outperformed the existing methods on the inner point and
line features of the evaluation dataset. We used various deform-
ation field regularizers based on deformation elasticity and flow
incompressibility and studied their influence on the registration
result.

The paper is organized as follows. In the next section, we intro-
duce our CNN-based unsupervised registration approach. Then,
we present the experimental results. Finally, we provide a dis-
cussion and conclusion.

2. METHOD

The traditional image registration problem for a given pair of
images Im (called moving image) and If (called fixed image)
is formulated as following. Let Im(x) : R2 7→ R and If (x) :
R2 7→ R be the moving and fixed images respectively. Image
registration aims to estimate a transformation between the fixed
and moving images that consists of affine part Aθ , represented
by a matrix, and non-rigid part, represented by a deformation
field ϕ : R2 7→ R2, that maps the coordinates of If to the
coordinates of Im:

(Im ◦Aθ) ◦ ϕ ≈ If (1)

where Im ◦Aθ represents Im transformed using Aθ , and (Im ◦
Aθ) ◦ ϕ represents the result of the transformation warped by
the deformation field ϕ. The optimization problem is defined
as:

ϕ̂, θ̂ = argmin
ϕ,θ

LR(If , Im ◦Aθ ◦ ϕ) + γLi
S(ϕ) (2)

where LR is a reconstruction loss measuring the dissimilarity
between two images and Li

S is a smoothness regularizing con-
straint for the deformation field (see section 2.3). We chose the
value of γ for every regularizing constraint to match the order
of reconstruction loss function.

The proposed method takes an image pair as an input and
performs affine and non-rigid registration. The output is the
warped moving image, the deformation field and the affine
transformation matrix. We assume the input images to be
single-channel (grayscale).

Preprocessing

Figure 2. Data preprocessing: a pair of images are normalized,
the histograms of the images are matched to the same intensity
domain. An image denoising filter and mask multiplication are

applied.

2.1 Data Preprocessing

The dataset that is used for CNN training consists of temporal
image sequences (Figure 1). On each training iteration, we ran-
domly choose the sequence from the training set and then ran-
domly choose two images. We normalize each image accord-
ing to its minimum and maximum value. As the cell moves
and changes through time, the images can differ in intensity
histograms. We perform standard histogram matching to cope
with this problem and decrease the registration error. The in-
put of the network is 256 × 256, but image sequences in the
dataset have different size. Thus, we pad each image to the
square shape and then resize it to 256 × 256 using bilinear in-
terpolation. For augmentation, we use vertical and horizontal
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Figure 3. Model architecture: the localization network predicts affine matrix parameters, while a U-Net type convolutional neural
network predicts the deformation field. There are two spatial transformer layers to perform warping inside the neural network and

compute the loss between the input and warped output.

flips, small translation, rotation and scaling and random bright-
ness changes. We apply the random augmentation to both im-
ages. To reduce the noise level, we apply the bilateral filter with
σ color = 3.9 and σ space = 4.4. There are also cell masks
available for the temporal sequences, we multiply each image
by the mask to outline cell contours. The result of preprocessing
can be seen in Figure 2.

2.2 Model

The architecture (Figure 3) of the proposed convolutional
neural network consists of two parts: a localization network
for affine transform estimation and a U-Net type network (Ron-
neberger et al., 2015) for the deformation field estimation. The
convolutional blocks of the U-Net type network contain two
convolutional layers, each followed by batch normalization and
ReLU activation. Then, there is a maxpooling layer with a ker-
nel size of 2. In the decoding path, transposed convolutions
are used for upsampling. The localization network consists of
two convolutional layers followed by maxpooling layers with
ReLU activation and two fully connected layers. The output of
the localization network is the affine transformation matrix of
size 2× 3.

Initially, the input pair is given to the localization network.
Then, inspired by the idea from (Jaderberg et al., 2015), we
use a spatial transformer module that explicitly allows the spa-
tial manipulation with data within the network. We apply an
affine transform to the moving image:(

x
′
i

y
′
i

)
= Aθ

 xi

yi
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

] xi

yi
1


(3)

where (x
′
i, y

′
i) are the coordinates of the transformed regular

grid in the moving image, (xi, yi) are the initial coordinates in
the moving image that define the sample points, and Aθ is the
affine transformation matrix. We skip this step if we do not
want to use affine registration.

Next, we construct a new pair of input fixed image and affine
warped moving image and put it into the convolutional network
described earlier. The output is the deformation field ϕ. We use
a differentiable spatial transformer layer from (Balakrishnan et
al., 2019) to compute Im ◦ Aθ ◦ ϕ. For each pixel, the corres-
ponding subpixel location is computed as p′ = p+ ϕ(p), using
bilinear interpolation.

Im ◦ ϕ(p) =
∑

q∈Z(p′)

Im(q)
∏

d∈{x,y}

(
1−

∣∣p′
d − qd

∣∣) (4)

where Z (p′) is the set of pixel neighbours and d iterates over
dimensions of image domain Ω.

2.3 Deformation Smoothness Regularizers

To make the deformation field smooth and prevent overfitting,
we tested different deformation regularizations:

1. Smoothness constraint (Wahba, 1990):

L1
S(ϕ)=

∫
Ω

(
∂2ϕ

∂x2

)2

+

(
∂2ϕ

∂y2

)2

+2

(
∂2ϕ

∂xy

)2

dxdy (5)

2. Elasticity constraint (Gao et al., 2021):

L2
S(ϕ, µ, λ) = exp

{
−1

2
µs

}
· exp

{
−1

2
(λ+ µ)t

}
(6)

where

s = ∥Dxu∥2 + ∥Dyu∥2 + ∥Dxv∥2 + ∥Dyv∥2 ,

t = ∥Dxu+Dyv∥2
(7)

µ and λ are Lamé coefficients; u ∈ RN and v ∈ RN are
the x- and y-components of ϕ, respectively; Dx and Dy

are the matrices used to compute the first-order partial de-
rivatives of u and v in the x- and y-directions, respectively;
and ∥·∥ is the l2 norm.

3. Deformation incompressibility constraint:
Let Im(x, y) be the density function dependent on time,
Im = I(x, y, t), where the pixel density equals its intens-
ity. Let I(x, y, 0) = Im(x, y) be the moving image, and
I(x, y, 1) = Im(x, y) ◦ ϕ be the registered image. Then
the total derivative with respect to time is:

dI(x, y, t)

dt
=

∂I(x, y, t)

∂t
+

+ u(x, y)
∂I(x, y, t)

∂x
+ v(x, y)

∂I(x, y, t)

∂y
(8)

describes the rate of change of density along the traject-
ory of image motion. The flow is incompressible when
dI(x,y,t)

dt
= 0. Then, using the condition of flow incom-

pressibility and the continuity equation:

∂I

∂t
+ div(I · ϕ) = 0 ⇐⇒ dI

dt
+ I · div(ϕ) = 0 (9)
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Inner points Boundary points Lines
Sequence B1 B2 B3 B4 Average B1 B2 B3 B4 Average B1 B2 B3 B4 Average
Unregistered 11.3 5.71 8 6.79 7.95 18.15 6.4 9.3 8.13 10.49 22.79 11.37 12.34 11.82 14.58
Contour based 7.92 5.22 2.76 3.04 4.74 3.69 2.02 2.17 2.43 2.58 9.61 7.69 5.23 6.83 7.34
Optical flow based 6.71 4.99 2.35 2.85 4.23 3.36 1.42 1.82 1.86 2.12 N/A
DenoiseReg 7.46 5.39 2.94 3.18 4.74 4.76 3.07 3.05 2.05 3.23 N/A
DenoiseReg + VM 6.77 4.74 2.37 3.02 4.23 2.87 1.85 1.77 1.52 2.00 N/A
Proposed (with L1

S) 9.13 5.28 5.04 3.92 5.84 3.39 1.7 1.71 2.61 2.35 11.61 8.11 6.2 7.84 8.44
Proposed (with L2

S) 8.23 6.44 3.31 3.34 5.33 3.98 3.29 1.79 1.99 2.76 10.01 8.47 4.62 7.93 7.76
Proposed (with L3

S) 10.61 5.26 4.52 3.91 6.06 6.76 3.13 2.52 2.96 3.84 12.2 8.37 6.47 7.36 8.6
Proposed + Contour based (with L1

S) 6.79 4.24 2.36 2.72 4.03 3.45 1.88 1.75 2.64 2.43 8.61 7.11 4.24 6.67 6.66
Proposed + Contour based (with L2

S) 7.23 4.23 2.43 2.77 4.17 3.51 2.02 1.85 2.55 2.48 8.9 7.13 4.45 6.65 6.78
Proposed + Contour based (with L3

S) 7.88 4.73 2.81 3.09 4.63 3.63 1.95 2.02 2.41 2.50 9.32 7.46 4.99 6.89 7.17

Table 1. Experimental results and comparison with other methods: for each sequence, we computed the registration accuracy for
boundary, inner, and line features, and averaged it across all features for every image in the sequence.

we obtain the deformation incompressibility condition:

L3
S(ϕ) =

1

|Ω|
∑

x,y∈Ω

∥ div(ϕ(x, y))∥2, (10)

where ∥·∥ is the l2 norm.

We also attempted to use an isotropic total variation regulariza-
tion term, as introduced in (Sandkühler et al., 2018). However,
this term did not perform well with our network.

3. EXPERIMENTAL RESULTS

To evaluate the quality of our proposed approach, we used tem-
poral microscopy image sequences of live cells. The dataset
allowed us to compute the registration accuracy of our method
and provide a quantitative comparison with other approaches,
including the dynamic elasticity contour-based approach (Sor-
okin et al., 2018), optical flow-based method (Gao and Rohr,
2019), joint registration and denoising method (Celikay et al.,
2022) and its composition with VoxelMorph (Balakrishnan et
al., 2019). We also compared our approach to its combination
with the contour-based method (Sorokin et al., 2018).

Seq. B2 Seq. B4

Figure 4. Evaluation dataset: boundary features with red, inner
cell features indicated with yellow, and line cell features

indicated with magenta. All images in the all sequences in the
dataset has annotations for all features.

3.1 Evaluation Dataset

We used a dataset consisting of four live cell microscopy im-
age sequences with laser-induced lines forming a grid on the
cell (Sorokin et al., 2014) (see Figure 4). These lines are part
of the cell structure, and their motion is caused by the mo-
tion of the cell itself. Several features are defined based on

these structures, including boundary- and inner-point features
and line features, which enable the evaluation of cell image re-
gistration methods by computing the residual error (Sorokin et
al., 2018).

3.2 Evaluation Metrics

For each annotated inner and boundary point, we computed the
registration error as the Euclidean distance between the current
point in the registered image and the first image of the sequence:

eki =
∥∥∥pk

i − p1
i

∥∥∥ (11)

where pk
i is the coordinate of the i-th point in the k-th image of

the sequence. For the line features, we computed the Fréchet
distance between the line feature in the k-th registered image
and the first image of the sequence:

F(Ak, A1) = inf
α,β

max
t∈[0,1]

{∥Ak(α(t))−A1(β(t))∥} (12)

where Ak represents the set of current line points in the k-th
image of the sequence, α and β are all reparameterizations of
[0, 1] of the maximum over all t ∈ [0, 1]. We used bilinear
interpolation of the deformation field and performed forward
warping for each feature point.

3.3 Results

The registration error emean averaged over all time points and
all line features for Seq. B1–B4 is shown in Table 1. For the
methods (Gao and Rohr, 2019, Celikay et al., 2022), we used
the metric values reported in the papers only as the source code
for these approaches is not publicly available. Thus, we do not
provide the values for the line features in Table 1 for these meth-
ods, as well as we do not provide visual comparison to these
approaches in Fig. 5.

Based on the registration results, it can be concluded that our
proposed method, in combination with a contour-based ap-
proach, outperforms current state-of-the-art methods in terms
of inner-point and line feature registration accuracy. For
boundary-point features, our approach improves the results of
the contour-based approach. Although, on average, our method
performs worse than the DenoiseReg+VM and optical flow-
based methods for boundary-point features, it still outperforms
these methods on the B2 and B3 sequences. We assume that
more robust data denoising is needed to decrease the error of
our approach for boundary point features.
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a) b) c) d) e)

Figure 5. Method comparison for sequence B1: a) First image, b) Unregistered 37-th image, c) Registered by the contour based
method 37-th image, d) Registered by the proposed method 37-th image, e) Registered by the combination of the contour based and

proposed methods 37-th image. Blue lines represent the current image cell contour overlay, while green lines represent the first image
cell contour overlay. Blue arrows indicate places where registration is improved, and orange arrows indicate places where registration

is worse compared to other methods. A red arrow shows an error in cell shape prediction.

In the regularization analysis, the deformation smoothness con-
straint yielded the best results on average across most of the fea-
tures and sequences in the experiments. Although the elasticity
constraint produced better results than the deformation smooth-
ness constraint for some features in sequences B2 and B4 for
inner points and lines, the difference was only up to 0.02. The
deformation incompressibility constraint performed the worst,
except for the boundary points of the B4 sequence. We assume
that this outlier behavior is caused by the distinct motion of this
cell compared to the others.

4. DISCUSSION

The proposed CNN-based unsupervised registration method
was applied to four live cell image sequences. For training,
we used random pairs created from two different images of
the same sequence. Initially, we trained the model on two se-
quences (B2 and B4) and additional live cell sequences that did
not have feature annotation. We used sequence B1 for valida-
tion and tested the model on sequence B3. However, we found
that it was difficult for the trained models to generalize well to
fully unseen test image sequences. To solve this problem, we
added a portion of the sequence into the training process and
left the remaining images for testing and validation.

In (Celikay et al., 2022), the authors reported that they ran-
domly split the dataset into 80% training, 10% validation, and
10% evaluation for the B dataset, and used all images for train-
ing in another additional dataset. However, evaluating the meth-
ods consistently (including previously proposed non-learning
based methods) requires computation of the metrics on the en-
tire image sequences, including the training portion of the data-
set, which means that the methods are evaluated on data that
they have already seen.

In this work, we ended up adopting a similar approach and fi-
nally used all images of the sequences to train the model to be
consistent with the other methods. We did not consider it an
overfitting problem because different cell sequences result in
domain shift, where the trained model performs worse for regis-
tration. We considered the training process as a self-supervised
optimization task, inspired from (Zhu et al., 2021), to improve
the generalization accuracy of live cell registration.

5. CONCLUSION

We proposed a CNN-based unsupervised registration method
for time-lapse microscopy image sequences, which combines
deep affine and deformable registration. The experimental res-
ults showed the efficacy of this method, particularly when used
in combination with contour-based methods. The preliminary
results look promising. In future work, we plan to extend the
approach to a multiframe scheme.
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