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ABSTRACT: 
3D point clouds feature valuable geometric and, often, radiometric and semantic information to support studies, analyses and 
understanding of the surveyed scene. Due to their generally large size, the use and interpretation of point clouds could be problematic. 
User-friendly and quick approaches for querying these valuable datasets and retrieving information could surely support end-users, in 
particular in the heritage sector. This work presents an ontology-based approach to facilitate the query and use of 3D heritage point 
clouds by means of sets of rules in order to infer properties and characteristics of the surveyed scene. Our approach is focused on 
linking together 3D spatial data and expert knowledge, in a way that the ontology can elaborate, represent, enrich and query a given 
point cloud. Results show how different queries can be set-up and how the procedure can be replicated to various queries and datasets. 
 

a)  b)  c)  d)  e)  
Figure 1: 3D point cloud of a heritage structure (a); 3D classification based on materials: green=brick, blue=marble, red=cement 
(b); ontology-based query’s result for “brick points” (c), “points that present leaching” (d) and “brick points that do not present 
leaching” (e). 

 
1. INTRODUCTION 

The preservation, conservation and restoration of historical 
buildings and monuments require 3D documentation and a 
diagnostic analysis normally carried out by an 
interdisciplinary team (Stylianidis and Remondino, 2016). 
These operations produce a large variety of heterogeneous 
information (3D geometrical data, 2D restitutions, on-site 
sketches, textual material, visible and thermal images, etc.) 
and their integration into a unique information model to 
support operations is still an open issue in the Heritage 
community (Ramos and Remondino, 2015; Lin et al., 2019; 
Adamopoulos and Rinaudo, 2021; Patrucco et al., 2022). 
Considering only 3D data, their processing, understanding and 
visualization is often time-consuming and highly demanding 
in terms of hardware specifications. In the case of Digital 
Heritage, it is particularly important to develop methods 
designed to handle 3D data in an efficient, fast, reliable, and 
easily accessible way. In particular, the improvement of user 
understanding and accessibility is a much-needed step to allow 
specialists in the Heritage field to utilise at its full potentiality 
the (geometric, texture and semantic) information stored inside 
the data.  
Nowadays, a significant amount of data in the Heritage field 
comes in the form of point clouds. These kinds of data have to 
be processed to transform them from raw (geometric) data into 
more useful and meaningful information. The semantic 
enrichment of heritage point clouds is realized segmenting 

them into meaningful classes which are often scene- and 
project-dependent. A substantial number of methods were 
developed to perform 3D heritage classification: supervised 
methods were normally presented (Mazzacca et al. 2022; 
Moyano et al., 2021; Grilli et al. 2020; Matrone et al., 2020; 
Teruggi et al. 2020; Murtiyoso and Grussenmeyer, 2019; Grilli 
and Remondino, 2019; Poux et al., 2017) whereas 
unsupervised methods in 3D heritage are still in primordial 
phase. The usage and query of these semantically enriched 3D 
data is still problematic and the accessibility to these data is 
challenging in the presence of large datasets and many classes. 
An ontology-based approach could help solve these issues, 
leveraging the full value of the semantic enrichment, and more 
in general of the data’s stored information, by linking classes 
and properties to 3D data and deducting their relationships 
with a series of inferential rules (Nicolucci and D’Andrea 
2006; Amico and Felicetti, 2021; Casillo et al., 2023). Existing 
applications of formal ontologies to the heritage field are 
oriented to general knowledge representation or to process 
low-level features to perform semantic classification. In the 
second case, ontologies are used as a tool to link low-level 
features to correspondent classes, explicitly defining the latter 
as an individual’s possession of a certain set of the former, or 
to infer the presence and the type of macro individuals from 
low-level features of the dataset (Hmida et al., 2012). There is 
no usage of ontologies as having single points as individuals 
and as being oriented towards semantic enrichment and 
querying more than recognition and classification.  
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1.1 Paper aims 

In this paper, we aim to implement an ontology to facilitate the 
query of 3D heritage point clouds in a quick and effective 
manner (Figure 1). To do so we embed an ontology with a set 
of rules that, starting from a classified point cloud (classes and 
attributes), can infer transversal characteristics and asses them 
with simple queries in an accessible, fast and user-friendly 
way. We provide such ontology with explicit definitions of 
high-level features (with respect to low-level features) which 
include also the semantic machine learning-driven 
classification results and elaborate properties such as the 
dispositional ones. Besides this nesting operation of high-level 
features, we also provide the ontology with some expert 
knowledge about, for example, materials’ physical-chemical 
properties. This knowledge can stand by geometrical, spatial 
and chromatic information as well as the results of a machine-
learning-driven 3D classification process, in order to nest even 
more complex high-level features. Some works focused more 
on recognition and classification than on semantic enrichment 
and querying. These approaches still differ radically from what 
is presented in this paper, since they never directly manage 
points and they diverge in their very purpose. 
 
 

2.  THE ONTOLOGY CONCEPT 

2.1 Ontology definition 

In computer science, ontologies are means to explicitly specify 
certain concepts. Therefore, an ontology can be seen as a 
common denomination and formal definition of properties and 
interrelations of characteristics that exist for a particular 
domain (Doerr et al., 2003). Formal ontology was born as a 
branch of analytic philosophy but has soon found its applied 
role within the project of the semantic web and as a useful tool 
for organizing data with a knowledge-based approach (Grimm, 
2009). A formal ontology, whose language standard is 
RDF/XML, contains specifications about hierarchy-organized 
classes and properties, accompanied by a set of defined 
inferential rules (Hmida et al, 2012) whose purpose is to allow 
deductions about the properties and the classes related to the 
individuals contained in the ontology. The individuals are, 
within the ontology, the singular instances of the classes and 
the actual bearers of the properties. The more elaborated are 
the class hierarchical tree and the interlacing of the properties 
performed by the rules, the more expert and useful is the 
knowledge base contained in the ontology. Properties, for their 
part, are not conceived as Python-like attributes, specifically 
related to a certain class, but are instead represented as 
independent entities that can apply transversally to individuals 
of more than one class. The core concepts behind the 
usefulness of formal ontologies are 
• the high human readability and controllability of such 

organized data: each property and each class are explicitly 
defined, the inferential reasoner that performs rule-driven 
deduction can return justifications to its inferences and each 
rule is explicitly defined in the form of a logic conditional, 
with a set of premises that, if true, lead to a certain 
conclusion; 

• the highly expert knowledge that can be represented within 
the ontology: high-level features can be embedded in lower-
level ones by means of dedicated rules and can also be 

bounded to certain classes so that individuals can easily 
inherit the properties of the classes they belong to;  

• the high conceptual richness that can be expressed in the 
queries: while consulting an ontology, the user can rely both 
on a dedicated and highly expressive language (SPARQL) 
and on all the high-level properties specified in the ontology 
and assigned to the individuals just by means of inferential 
rules - as further specified in Section 3.2. 

 
2.2 Ontology for 3D heritage data 

Traditionally, ontologies have been understood as solutions to 
model a certain knowledge domain. Thus, they have often been 
linked to general abstract knowledge, not directly ascribed to 
an actual individual with spatial consistency. This approach 
made ontologies very oriented toward aspects of 
interoperability, exchanging of information and concepts’ 
mapping, but generally using 2D data (Pattuelli, 2011; 
Cornevilli et al., 2020; Ranigar, 2022). This is quite evident in 
the fact that usually ontologies consider “individuals” the 
concepts situated at the end of the hierarchical tree. In such a 
conception, for example, “materials” can be a class and 
“marble” an individual contained in that class. Note that this 
approach excludes the possibility of a direct elaboration and 
representation of the 3D data based on the ontology itself.  
Ontologies were also used to support the conservation and 
management of cultural heritage. One of the first ontology 
usage applied to 3D heritage is presented in Nicolucci and 
D’Andrea (2006) where the original ontologies’ spirit is used, 
aiming at a purely conceptual semantic mapping. Files 
containing 3D models are taken as individuals without any 
representation of their contents, leading to a lack of spatial 
consistency, querying possibilities or geometrical or point-
level semantic enrichment.  
Inspired by Messaoudi et al. (2017), Figure 2 shows a clean 
and easy representation of the state-of-the-art of ontology-
based information systems for heritage monitoring. It is 
composed on four main components: 
1. an automated reality-based 3D digitization pipeline 

(Remondino et al., 2013);  
2. a hybrid (2D/3D) semantic enrichment process (Grilli and 

Remondino, 2019; Matrone et al., 2020) 
3. a domain ontology describing knowledge related to 

degradation phenomena; 
4. a query engine. 
Cacciotti et al. (2014) focus on step 3, offering a causally 
oriented ontology of heritage degradations comprising events 
or processes that can cause the former. Their work lacks spatial 
consistency for the individuals, since they are thought as the 
single damage instances. Therefore, it loses the possibility to 
query for points and to manage a 3D model of the dataset. 
Nespeca et al. (2016) is focused on steps 1 and 2. In their work, 
the semantic information is mainly regarding geometrical mid-
level features, focusing on a few geometrical properties and 
their attribution, never directing to complex nested properties 
nor to a seriously query-oriented task (point 4). Regardless, 
their understanding of ontologies is very similar to the 
presented work in terms of individuals’ conception. Their 
ontology, just like ours, directly manages points as individuals, 
allowing spatial consistency in the organized domain.  
In Messaoudi et al. (2017) an ontology is used to link 
spatialized regions of a point cloud to high-level semantic 
features and to build a semantic data structure about expert 
knowledge. The approach is more oriented towards in situ data 
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acquisitions management than for large point clouds’ 
elaboration, representation, enrichment and querying. Yet, the 
approach requires an expert actor’s intervention to manually 
create the individuals related to the chosen spatial regions. 
Such a model, even if it takes a huge step forward in the usage 
of ontologies to keep together spatially consistent point clouds 
and rich semantic knowledge, depends very much on the direct 
intervention of the human actor and it can hardly be upscaled. 
Acierno et al. (2017) presented an information model aimed at 
supporting the representation and management of knowledge 
for the architectural heritage conservation processes (step 3). 
The knowledge base has been connected with a building 
information modelling environment, providing an effective 
integration between geometrical and non-geometrical 
information. 
Recently Peng et al. (2023) presented OpenScene3D, a 3D 
scene understanding tool with open vocabulary. OpenScene 
does not actually rely on an ontology at all, but it shares with 
our work the semantically rich query task. Here, the semantic 
is built with a text/image-embedding process that associates to 
every word a certain vector in a vector space, in which the 
closest the distance between two vectors, the closest the 
semantic distance between the associated words. OpenScene 
relies not only on a point cloud but also on associated 2D 
images from various perspectives. It seems that this aspect 
could constitute a problem when it comes to dealing with an 
effective upscaling. Even if the open vocabulary feature is 
definitely impressive, the approach lacks explicit definitions of 
the relationships between properties, an implementation of an 
expert knowledge base and the possibility to structure complex 
queries with SPARQL (2024). Furthermore, query results 
differ on the fact that OpenScene returns for each point a 
certain value of a “matching index”, thus not returning boolean 
answers like the work hereafter presented.  
 

 

Figure 2: Graphical representation of the four 
steps/components taken as a general scheme and the relative 
dedicated tools that operates (or will operate) in our work. 

 

3. METHODOLOGY 

3.1 Ontology preparation 

An important aspect of formal ontologies is their strong 
context dependence. If, on the one hand, this feature makes this 
tool very specific and deficient of versatility, on the other 
hand, it allows an accurate and exhaustive mapping of the 
expert knowledge related to the specified context. For this 

reason, the very first step for preparing an ontology is the study 
of the knowledge that must be represented in it. Once done, the 
class hierarchical tree must be created, considering all the 
classes needed and their subclass, superclass and sibling class 
relations. Protegé Ontology Editor (2024) is a very useful tool 
to do this without manually modifying the ontology file, 
relying on a highly user-friendly interface.  
The second step is the definition of properties, which requires 
the specification of their domain (the classes whose 
individuals can be bearers of the considered properties) and 
their range (the types of values that the property can assume or 
the classes whose individuals can be the second term of the 
relation). The definition of the properties is usually extrinsic 
and specified during the third step, i.e., the writing of the 
inferential rules. Properties are assigned to the individuals by 
means of premises-conclusion structured rules so that a 
property’s “meaning” can be seen as defined by the set of 
premises that leads to a conclusion of a “P(x,v)” form, where 
P(x) is the predication of the “v” value of the “P” property to 
the “x” individual. As far as the classes’ meaning concerns, the 
matter is slightly different. The user can choose between a 
rule-based definition (analogous to the one just described for 
the properties) and a class expression-based one, in which the 
classes are intrinsically defined with the same premises-
conclusion structure. Once the structure is so completed, the 
ontology can be populated with individuals. Some of their low-
level properties should be asserted from the outside so that the 
inferential reasoner can perform its deductions, split the 
individuals into the pertaining classes, and assign values to the 
deducted higher-level properties. 
 
3.2 Query procedure 

Query procedures rely on a highly expressive language named 
SPARQL (2024). It allows to express and combine all the basic 
first-order logic operators, to refer to any class, property or 
individual defined in the ontology and to perform 
comparisons, filtering and similar operations on the property’s 
values. This possibility, combined with the semantic and 
conceptual enrichment performed by the ontology on the raw 
input data, allows complex queries that were not possible 
before this processing. This feature can be proficiently 
illustrated by means of an example. A point cloud (las) file 
contains a certain number of fields, including, besides spatial 
coordinates and RGB values, information about materials (e.g. 
bricks, marble, etc.), building techniques (e.g. plaster, opus 
latericium, etc.) and some different kinds of degradations (e.g. 
efflorescence, black crust, etc.). Queries performed directly on 
this file could just refer to this information (“find points 
classified as marble”). A possible way to enrich queries 
functionalities could be to add additional columns to the (las) 
file, but: 
(i) it would require new inferences for the data; 
(ii) the high-level feature obtained in such a way wouldn’t be 
inferentially expressed on the basis of explicitly defined and 
easily modifiable rules, leading to a loss in terms of 
controllability both in the justification and in  of controllability 
both in the justification and in the modification aspects;  
(iii) the obtained (las) file would have a highly increased size 
due to more stored information.   
On the other hand, within the proposed ontology-based 
approach, the input point cloud can contain just the low-level 
features, while the higher-level ones are generated “on-the-fly” 
within the ontology once the query is performed. Note that the 
ontology file is never meant to be sharing-oriented, since the  
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Figure 3: Graphical representation of the process to query 3D heritage point clouds using an ontology. 

 
 
output of the query, if the user needs to share it, can be a (las) 
file containing just the needed information, with the possibility 
to exclude all the ones used for the query.  
Imagine a scenario in which every material-related class bears 
properties about its physical and chemical features. A possible 
query could aim to look for the points that “present an x value 
of porosity, where x is greater than y”. Within the ontology, 
every material could be associated with a certain value of 
porosity, so that the query could return an accurate result, but 
neither the input (las) file nor the possible output one would 
have to sustain the informational burden of containing such 
data for each point.  
In the present study, the query system is associated with a 3D 
visualization tool - relying on the Vedo python module (Vedo, 
2024). In this way, the analysed point cloud is visualized with 
its RGB colours and the overlapped query results to emphasize 
the user accessibility aspect to which the formal ontology itself 
is devoted. 
 
 

4. EXPERIMENTS AND RESULTS 

The application of the developed ontology framework for 
querying heritage point clouds is based on the following steps: 
1. read the point cloud, importing geometric/radiometric 

information and other attributes (“classes”) into the 
ontology; 

2. run the Pellet reasoner (Sirin et al., 2007) to draw all 
inferences; 

3. plot the point cloud using the Vedo 3D scene; 
4. asks the user for a query in SPARQL; 
5. highlight the results of the query in the Vedo 3D scene; 
6. allows the user to export the query result as a separate point 

cloud. 
Steps 4,5,6 can be executed multiple times with different 
queries without points 1,2,3 having to be repeated. 
Given the created ontology procedure and a semantic enriched 
point cloud, specific queries can be performed e.g., to visualize 
where a class is located. 
Figure 4 reports shows a point cloud of a portico (Remondino 
et al., 2016; Grilli and Remondino, 2019) semantically 
segmented in Materials, Building techniques and 
Degradations. Materials’ classes can be queried and visualized 
(Figure 4c-f). 
Starting from these visualization capabilities and the 
covariance features (Weinmann et al., 2013; Farella et al., 
2019) extracted for the classification process, high-level 
features’ inferring possibilities can be added by: 
1. writing inferential rules to compute a certain value (from a 

defining, into the ontology data, properties representing 
materials’ physical-chemical properties (e.g. porosity of 
materials, solubility of their chemical components, etc.); 

2. scale to one to five) of each property for every point, with 
respect to their material class; 
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a)  b)  c)  d)  e)  f)  

Figure 4: Point cloud of a portico (a) and its semantic segmentation in four materials’classes (b); query results to visualize bricks 
(c), plaster (d), stone (e) and metal (f). 

a)  b)  c)  d)  

Figure 5: The portico’s cloud visualized with its leaching points (a); query results using high-level features and properties of all 
materials, resulting in (non-cumulative) LRI = 0 (b), LRI = 2 (c), LRI = 4 (d). 
 

3. defining a set of high-level features, computed “on-the-
fly” exploiting covariance features (e.g. verticality, 
planarity, etc.) representing characteristics useful for 
restoration or preservation purposes. 

As an example, let’s consider the “degree of risk for a surface 
of being affected by leaching” (on a scale from zero to five): 
to be computed, surface points’ values of porosity, solubility 
and verticality, are used and a leaching risk index (LRI) is 
derived (Figure 5). 
 

 
Figure 6: Results of the query asking for brick points with 
a LRI >3 (i.e. not yet but potentially affected). 

 
The inferential rule can be made far more complex, 
considering more materials and variables, and mapping more 
complex information. Figure 6 shows the fruitful aspect of a 
potential combination of high-level properties’ semantic 
definitions and SPARQL’s syntactic richness, where the 
structured grammar of the latter can dispose of the rich 
vocabulary of the former.  

Besides querying and visualizing high-level features, the 
proposed approach can inquiry “on-the-fly” other 
characteristics, e.g. the extension of surface retrieved by a 
query. In Table 1 some results are provided.  
 

ASSOCIATED FIGURE SURFACE [m2] 

4.a (entire cloud) 112,72 

4.c (query result) 64,37 

4.d (query result) 28,73 

4.e (query result) 16,1 

4.f (query result) 3,53 

5.b (query result) 10,17 

5.c (query result) 3,63 

5.d (query result) 22,33 

6 (query result) 59,58 

Table 1: Surface values (areas) derived through the 
ontology-based process 

 
In the example given in Figure 7 the retrieval of the SELECT 
command is a value that represents the extension of the surface 
calculated based on the number of points that satisfy the 
conditions expressed in the WHERE section. This is possible 
since we know the average distance of the points in the point 
cloud from their neighbours. In this way, we can query for 
spatial features without defining concepts like “surface” inside 
the ontology, though this could have been another viable 
option. In the provided example, the value of the surface is 
obtained by multiplying the number of the points for an 
empirical “unity surface value” factor, resulting from 
operations on a simulated triangular mesh.  
 

 
Figure 7: Code example to perform a query to retrieve how 
much surface is “affected” by a particular characteristic 
(Table 1). 
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(a)

 

(b) 

 

(c)

 

(d) 

 
Figure 7: Original RGB point cloud of the archaeological wall (a); covariance feature “surface variation” useful for 3D classification 
and ontology-based queries (b); semantic segmentation of surface materials (c) and building techniques (d). 

a)  b)  c)  

Figure 8: Query’s results of “Restored Opus Latericium” points (a); Surfaces without lacunae (b); Surfaces presenting lacunae (c). 
 

A very similar approach is presented Nespeca et al. (2016). The 
idea of calculating the value without generating a mesh, but just 
multiplying the number of the points for the “unity surface 
value”, is basically the same between the two works.   
Another example is presented in Figure 7 and Figure 8. Using the 
available semantic classification (materials, building techniques 
and degradations) and covariance features (Figure 7), high-level 
features and indexes (e.g. Lacuna, meaning missing parts that 
compromise the integrity of an architectural surface) can be 
derived as visualized in Figure 8. 
 
 

5. CONCLUSIONS  

We have presented the general features of the developed 
ontology-based framework to query classified point clouds and 
visualize the results. To sum up, the core strengths of the 
proposed method are: 
1. The high human readability of data and the high 

controllability of high-level features’ definitions; 
2. The highly expert knowledge that can be ingested within the 

ontology to perform complex queries; 
3. The high conceptual richness that can be expressed in the 

queries; 
4. The strong spatial consistency of our ontology’s individuals. 
Ontologies can answer the complexity of point clouds by 
organizing, enriching and querying them in a human-friendly 
way, basically following the common idea that the more richness 
of information we want to capture, the more syntactically 
structured and semantically rich our language needs to be and the 
more the need of ontological order in our referential domain 
increases. The aforementioned semantic richness is mapped on 
expert knowledge of the specific field so that queries can be 
performed as reflecting the actual, practical, and specifical needs 
of the user. 
This user-friendly aspect is further enhanced by a visualization 
tool, to make the user intuitively understand the results of the 
queries. The proposed framework can keep together the 3D 
spatial consistency of a point cloud and the conceptual semantic 
richness of the traditional ontology usage.  
In the present work, our efforts were mainly focused on a point-
based approach to the application of formal ontologies to point 
clouds. This approach is useful as it allows very accurate query 
results and surface-oriented or material-oriented queries. At the 
same time, our approach is also very intuitive, given that what we 
are working on are actual point clouds.  
In the future we want to move towards an object-based approach 
since it allows to work in the ontology with macro-object. 
Therefore, the benefit is the possibility to perform queries not on 

points but on objects. The most intuitive feature is the possibility 
to count them, while the most potentially fruitful one is the 
opportunity to express all sorts of relations between objects and 
to query them. An object-based approach could benefit from the 
work of Cacciotti et al. (2014), especially regarding the causal 
modelization.  
Another future direction concerns the interoperability features of 
formal ontologies. Ontologies are often used to map concepts in 
an easily shareable way and, even if we didn’t focus on this 
feature until now, we think that our work can be further enhanced 
in this direction. To stress the interoperability features we won’t 
create a domain ontology from scratch, but we will consider 
importing one or more already existing and standard ontologies. 
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