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ABSTRACT: 
 
Outliers and noise in point cloud data are unavoidable due to intrinsic and/or extrinsic survey factors. Significant errors may result 
from false geometry produced by a collection of anomalies, compounded by sparse structure, irregular densities, and lack of geometric 
cohesion typical of point clouds nature. Thus, filtering techniques on raw data are required to produce accurate point clouds suitable 
for further processing. This objective is pursued in the following study through a comparative analysis between two registered clouds, 
one obtained from TLS, used as reference dataset and the other – to be filtered – from SLAM system. Four steps make up the workflow: 
analysing the comparison models’ geometric attributes, specifically surface density and roughness; constructing statistical tolerance 
limits for the TLS cloud’s roughness distribution; cleaning the SLAM cloud; assessing the filtering outcomes. Our efforts to effectively 
remove and mitigate noise, while preserving the original detail features of the object surface, have been driven by the detailed 
articulation of point cloud denoising approaches that have been introduced in recent years. However, in this wide context, our goal is 
not to provide a review or to explore the details of the various methods; rather, we want to offer a simple yet efficient method for 
obtaining an integrated model with a uniform noise level. This can be especially useful when the data from the survey will later be 
used in source-based modelling. 
 
 

1. INTRODUCTION 

1.1 Background 

The use of 3D point clouds for object representation is becoming 
more common in many research areas (Aldoma et al., 2012; Rusu 
& Cousins, 2011; Saval-Calvo et al., 2015). In contrast to 
polygonal meshes, point clouds does not require the maintenance 
of topological consistency (Kobbelt & Botsch, 2004; Pfister & 
Gross, 2004) and therefore the processing and manipulation of 
this entities can offer higher performance with less effort. 
The rapid spread of new mobile acquisition systems 
integrating profilometers or time-of-flight cameras has 
promoted the use of these products. However, the presence of 
noise contamination and outliers can be found (Xie et al., 
2004), mainly due to the characteristics of the sensor and how 
it is integrated into the overall system. Therefore, to generate 
accurate point clouds, appropriate for additional processing, 
filtering operations must be performed on raw data, almost 
always plagued by problems related to intrinsic and extrinsic 
variables of the instrumentation. 
Based on these needs, several filtering methodologies have 
been proposed in recent years, some of which operate directly 
on the cloud while others require the prior processing of a mesh. 
References in the literature classify them into seven groups 
(Han et al., 2017; Schall et al., 2008): those based on statistics 
(i), which are adapted to point clouds by their nature (Schall et 
al., 2005); those based on neighbourhood (ii), which make use 
of similarity measures between points (Rosli & Ramli, 2014); 
those based on projections (iii), following different strategies 
(Lipman et al., 2007); those involving the nature of the data 
acquisition signal (iv) (Linsen, 2001); those using Partial 
Differential Equations (PDE) (v), widely applied to computer 
vision (Clarenz et al., 2004); those hybrids (vi) (Liu et al., 2012) 
and those that do not fall into the previous groups (vii) (Szeliski 
& Tonnesen, 1992). 

1.2 Goals 

The complex articulation of the available solutions suggests that 
the topic of filtering is central in a vast range of applications. 
However, our objective is not to conduct a review or to delve into 
the specificities of the different approaches but rather to propose a 
robust and easily replicable workflow to produce reality-based 
models deriving from integrated survey operations (Alonso et al., 
2016; Morena et al., 2021; Limongiello et al.,2020). The 
combination of systems and sensors now represents a consolidated 
practice in the field of surveying and this allows us to respond 
effectively and efficiently to the critical issues and singularities of 
specific applications. In fact, there is no technique that dominates 
the others and it is preferable to make up for the limitations of one 
of them by compensating with the strengths of the others. 
Those who work in the field of documentation and return multi-scale 
and multi-resolution models will surely have noticed that the 
homogenization of the geometric properties of data deriving from 
heterogeneous sources is particularly burdensome and there is no 
universally acceptable pipeline to solve the problem. The approaches 
are in fact related to the use of point clouds, which often constitute 
input data for subsequent analyses or for source-based modelling 
(Casillo, Colace, et al., 2022; Casillo, Guida, et al., 2022). 
The proposed methodology aims to obtain homologous models, 
produced with different tools, and returned in the form of point 
clouds, which present optimized noise levels compared to a 
reference dataset. For our application we operate on a cloud 
obtained with a GeoSLAM ZEB Horizon mobile system, 
compared with a Terrestrial Laser Scanning (TLS) model. 
Framing our solution within the framework defined in the 
previous sub-section, we can define it as a hybrid approach 
where, from the roughness distribution of the TLS cloud, we 
construct statistical tolerance intervals to be used for filtering the 
SLAM model via a neighbourhood-based algorithm. This is a 
dispatchable but still accurate approach that allows flexibility in 
filtering a raw cloud. 
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1.3 Case study 

The case study considered to develop this work is an ancient 
luxurious residential complex, Villa A (the so-called “Villa of 
Poppea”) in the Pompeian site of Oplontis, among the most 
significant monumental remains buried following the dramatic 
eruption of 79 AD (Fig. 1). The excavations are in the heart of 
Torre Annunziata, an urban centre close to Naples in the 
Campania Region of Italy. Only the “Tabula Peutingeriana”, a 
mediaeval replica of an old Roman road map of Italy, contains 
references to the name Oplontis, denoting a few buildings 
between Pompeii and Herculaneum. It was being restored at the 
time of the eruption, having been built in the middle of the first 
century BC, and expanded during the imperial era. Its ownership 
is attributed to Poppaea Sabina, the second wife of Emperor 
Nero, or otherwise belonging to the imperial family estate. The 
building has not yet been completely excavated; the area that has 
been revealed corresponds to the eastern part, and the recovery 
of the main entrance and the western area is still pending due to 
the presence of a military building and a modern road. One of the 
most important villas used for otium on the coast of the Gulf of 
Naples, the building had a main entrance oriented towards the 
countryside behind and then developed with a succession of 
rooms and gardens towards the sea. Overall, the plan of the villa 
is very complex and still not fully explored to date. 
 

2. MATERIALS AND METHODS 

2.1 Dataset sources 

The reference model is obtained with a laser scanner of the type 
Continuous Wave - Frequency Modulation (CW-FM) Faro 
FocusS S150 Plus. For the experiment, we consider a single scan 
acquired with a resolution of 12.3 mm at 10 m and 4 
measurements for each point. 
The analysed model, on the other hand, comes from a ZEB 
Horizon mobile GeoSLAM system and from a single path, whose 
data are processed with a proprietary SLAM algorithm, leaving 
the default parameters unchanged. 
The clouds from the two instruments are geolocated 
(UTM/ETRS00 cartographic system) through planar targets 
distributed across the scene and detected with a GNSS system. 
For the SLAM path we also optimise on target coordinates. 
 

2.2 Methodology 

As anticipated, the aim of the proposed methodology is to refine 
the noise level of a SLAM point cloud using a homologous model 
obtained with TLS. The workflow consists of 4 steps: 

• evaluation of the geometric features of the compared 
models, in particular roughness and surface density; 

• construction of statistical tolerance intervals for the 
roughness distribution of the TLS cloud; 

• filtering the SLAM cloud; 
• evaluation of filtering results. 

 
2.2.1 Geometric feature computation: point cloud analyses 
are conducted in the CloudCompare version 2.12.4 environment 
considering the two homologous models. For each point of these 
entities, the roughness value is equal to the oriented distance 
between this point and the best fitting plane computed on its 
nearest neighbours selected by imposing a kernel size, i.e. the 
radius (R) of a sphere centred on each point. The surface density 
is calculated as the number of neighbours N (identified by 
defining the radius R of a sphere) divided by the neighbourhood 
surface. The central point is always used for computing this 
feature. Therefore, the surface density will be equal to N+1/πR2. 
The analysis of the properties just described is strictly related to 
the kernel size and therefore the use of a single neighbourhood is 
incapable of describing the local structure at different scales 
(Brodu & Lague, 2012; De Blasiis et al., 2020; Harshit et al., 
2022). We then conduct a multi-scale assessment to identify the 
most appropriate value of the radius (R), essential for filtering 
operations. The same assessment is performed by extracting a 
substantially flat portion from the two homologous clouds, taking 
care to control what we define as edge effects. 
 
2.2.2 Construction of tolerance intervals: after having 
identified the most appropriate value of the kernel size we take 
into consideration the roughness distribution of the TLS cloud. 
Our goal is to construct statistical tolerance intervals for this 
property and use their limit values to perform SLAM model 
filtering. These intervals contain a certain percentage of the 
population with a defined confidence level (Natrella, 2013). The 
first step is to verify the nature of the distribution. Having 
calculated the roughness as the oriented distance of a point from 
the local best fitting plane, we start from the hypothesis that the 
distribution is normal and perform the Anderson-Darling test, 
having a sample size greater than 5000 elements. If the 
hypothesis is verified, we proceed to calculate the normal 
tolerance limits. Otherwise, we look for a normalization 
transformation and, if there is an acceptable one, we calculate the 
normal tolerance limits for the transformed data and then 
retransform them for the original ones. If this approach also fails, 
we search for an alternative distribution and, in case of a good fit, 
we calculate the limits on that distribution. It is essential to 
remember that in the case of a parametric approach it is essential 
to verify a posteriori that the sample size is such as to allow the 
fitting of a specific distribution. If all approaches fail, we use a 
non-parametric one, taking care to filter the data beforehand to 
remove outliers (for example by building a box plot). For optimal 
filtering we construct intervals for different population 
percentages and confidence levels, comparing the results. We 
remind you that only in the case of a parametric approach it is 
possible to check both values in advance; otherwise, we will only 
be able to fix one and verify the other a posteriori. 
 
2.2.3 SLAM filtering: for each point of the SLAM cloud, the 
selected algorithm uses a sphere (of which the radius R must be 
defined) to perform the local fitting of a plane; the point is then 
removed if its distance from the plane is greater than a Figure 1. Villa A in the site of Oplontis. 
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predetermined value. For the search radius R we use the value 
resulting from the multi-scale assessment on the geometric features 
of the SLAM cloud. Regarding the threshold value, we instead use 
the tolerance limits calculated for the roughness distribution of the 
TLS cloud, calculated for an appropriate kernel size. 
 
2.2.4 Filtering evaluation: the first features we take as 
reference are certainly the roughness and the surface density of 
the SLAM cloud, checking how they change after filtering. There 
is no reference limit value and this type of analysis must be 
performed in relation to the use of the model (for example 
production of 2D drawings or source-based modelling). A second 
approach examines the distance measures between the reference 
model (TLS) and the analysed one (SLAM). In the literature there 
are many methods to perform this operation, more or less 
sensitive to the different sources of uncertainty that we can 
encounter when comparing point clouds (James et al., 2017; 
Lague et al., 2013). One of the most refined uses the M3C2 
algorithm, which however is poorly suited to the checks we 
performed. In fact, due to its structure, it is not very sensitive to 
noise and outliers that can influence the comparison. For this 
reason, we opt for a direct Cloud-to-Cloud comparison with 
closest point technique (C2C). This method is the simplest and 
fastest direct 3D comparison method of point clouds as it does 
not require gridding or meshing of the data, nor calculation of 
surface normal. Due to its simple nature, especially suitable for 
capturing rapid changes in direction between two entities, it is 
very sensitive to factors such as roughness, outliers, and density, 
which are central to the investigations we are carrying out. So, 
we choose this method, placing the TLS cloud as a reference and 
analyse the SLAM cloud in filtered and unfiltered forms. 
 

3. RESULTS 

3.1 Geometric feature computation 

The multi-scale assessment is performed with a kernel size 
ranging from 0.5 to 50.0 cm, a range consistent with the 
analysis of the textures of architectural elements (Tab. 1). For 
the homologous clouds we extract a surface of approximately 
16 m2, generally flat, avoiding the junction edges of the walls 

and floors which would contaminate the analysis. Another 
critical aspect taken into consideration is represented by the so-
called edge effects. In the boundary areas of the extracted cloud 
portions, the neighbour-search sphere partly falls outside the 
analysed region and the number of points that will be fitted on 
a plane decrease as you approach the edge. For this reason, after 
computing the geometric features, we exclude an area with a 
width of 50 cm starting from the boundary, corresponding to 
the maximum kernel size.  
After these premises we move on to observing the graphs. In the 
case of SLAM, the roughness and density values depend on the 
choice of kernel size, especially when the search radius R takes 
on small values (Fig. 2). For roughness, whose distribution is 
normal with a mean essentially zero or normalized, we study the 
link between the standard deviation (σ) and the kernel size. For 
the surface density, a positive definite quantity, we make no 
assumptions about the distribution and take into consideration 
its mean value as R varies. To interpret the data, we use a 
piecewise polynomial approximation (Fig. 3). In the graphs of 
both features, a branch with a linear trend is identified, for the 
smallest values of the radius, and another which can be 
approximated by a second-degree polynomial. It is worth 
remembering that the data fitting was evaluated through a 
coefficient. In the linear case it is the coefficient of 
determination while in, the polynomial, case it is an adapted 
version, known as the pseudo-coefficient. The latter certainly 
has limitations compared to its linear counterpart but can still 
provide a fairly accurate evaluation. We identify the breakpoint, 
where there is a strong variation in slope, as the intersection of 
the functions that approximate the two branches. Precisely at 
this point we read the reference value of the kernel size; 5.1 cm 
for roughness and 4.8 cm for density. We believe it is legitimate 
to assume 5 cm as a reference value for all investigations. 
For the TLS cloud we observe feature values that are essentially 
constant as the radius varies. In the case of roughness, we observe 
a slight increase as R increases, since in the calculation surfaces 
are approximated as flat which are not. Anomalous values are 
then observed when R is very small and this is because we work 
with values lower than the spatial resolution of the scans. To a 
lesser extent the same phenomenon can also be observed for 
SLAM. In conclusion, we also use a radius of 5 cm for the TLS. 
 
3.2 Construction of tolerance intervals 

After having identified the reference value for the kernel size, we 
proceed with the analysis of the TLS roughness distribution. We 
first verify that the normal distribution hypothesis is valid using 
the Anderson-Darling test. Receiving a positive result, we 
calculate the two-sided tolerance limits. Starting from the mean 
(m) and standard deviation (σ) of the sample, we can use an 
interval of the form m ± Kσ. Since both m and σ will vary from 
sample to sample it is impossible to determine K so that the limits 
m ± Kσ will always include a specified proportion P of the 
underlying normal distribution. It is, however, possible to 
determine K so that in a long series of samples from the same or 
different normal distributions a definite proportion γ of the 
intervals m ± Kσ will include P or more of the underlying 
distribution. In our case the mean value is zero. Table 2 reports 
the tolerance limits for a confidence value γ = 0.99 and for three 
different percentages of the population P. 

 Roughness 
(σ) 

Surface density 
(mean) 

Radius 
(cm) 

TLS 
(cm) 

SLAM 
(cm) 

TLS 
(pnt/m2) 

SLAM 
(pnt/m2) 

0.5  0.1 38598 19600 
1.0 0.2 0.3 13617 16409 
1.5 0.1 0.3 27891 20046 
2.0 0.1 0.4 25674 23817 
2.5 0.1 0.6 26973 26825 
3.0 0.1 0.7 26541 29097 
3.5 0.1 0.8 26781 30806 
4.0 0.1 0.9 26679 32082 
4.5 0.1 0.9 26715 33038 
5.0 0.1 0.9 26682 33784 
10.0 0.1 1.0 26658 36163 
15.0 0.1 1.1 26655 36548 
20.0 0.1 1.1 26649 36613 
25.0 0.1 1.1 26640 36571 
30.0 0.1 1.1 26634 36474 
35.0 0.1 1.1 26628 36341 
40.0 0.2 1.1 26622 36181 
45.0 0.2 1.1 26616 35993 
50.0 0.2 1.1 26610 35782 

Table 1. Feature evaluation versus kernel size. 

 γ = 0.99 
P 0.70 0.95 0.999 
K 1.150 1.960 3.291 

Kσ (cm) ≃ 0.1 ≃ 0.2 ≃ 0.3 
Table 2. Tolerance limits for population percentages. 
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3.3 SLAM filtering 

Once the tolerance limits have been calculated we can establish 
the threshold values for filtering. Having also defined the 
reference kernel size, we can then apply the algorithm described 
in the methodology paragraph. 
 
3.4 Filtering evaluation 

The first evaluation examines the roughness and surface density. 
Having set the reference kernel size equal to 5.0 cm, we recalculate 
this feature for the SLAM cloud after performing the filtering for 
different values of tolerance limits, taking care to control the edge 
effects described in subparagraph 3.1. Table 3 shows the results. 
The second check involves calculating the C2C distance between 
the SLAM cloud, in unfiltered and filtered forms, and the TLS 

cloud used as a reference. For our application we impose a 
maximum search distance equal to 15 cm, an octree level equal 
to 7, and do not use any local modelling of the reference, the TLS 
cloud being sufficiently dense. To evaluate the effectiveness of 
filtering, we refer to the histograms of the distances obtained for 
the three tolerance limits (Fig.4). We also report three slices (2.0 
cm) of the relevant models for visual verification, especially at 
the intersecting edges of architectural elements, the places where 
incorrect setting of filtering parameters is most likely to produce 
data loss. 
 

4. DISCUSSIONS AND CONCLUSIONS 

In this paper we investigate the challenges of denoising 
techniques in unorganized point clouds. Although there are a few 
existing research on point cloud filtering, it is believed that 
filtering on the raw point cloud, being as a crucial step of point 
cloud processing pipeline, remains a challenging task. 
Our work has the specific objective of outlining a workflow to 
homogenize the roughness of homologous models obtained with 
different techniques and technologies. It appears clear, from the 
literature itself, that there is no univocal procedure and that the 
operations are related to the objectives and the same features of 
the analysed data. In our application we limit the investigation to 
an integrated survey that combines the TLS technique with a 
more recent mobile system based on the SLAM approach.

TLS SLAM 
Filtered 
SLAM 

P = 0.70 

Filtered 
SLAM 

P = 0.95 

Filtered 
SLAM 

P = 0.999 

Roughness (σ, cm) 
0.1 0.9 0.1 0.2 0.2 

Surface density (mean, pnt/m2) 
26682 33784 3806 7386 10774 

Table 3. Filtering results. 

Figure 3. Piecewise polynomial approximation for geometric features of the SLAM cloud. 

Figure 2. Multi-scale evaluation for roughness and surface density of SLAM and TLS clouds. 
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We believe that in a filtering operation it is important to monitor 
the change in the geometric features of the model to deem the 
results of the procedure acceptable or not. It is equally true that 
the procedure itself can be influenced by these aspects, in turn 
related to the distinctive characteristics of the survey technique, 
the acquisition project and other factors. 
For this reason, we attribute great importance to the preliminary 
study of the features and how these can influence the parameters 
that govern the procedure. Since many algorithms proposed by 
us are neighbourhood-based, we search for the most appropriate 
kernel size for the SLAM cloud, identifying the reference value 
of 5 cm which guarantees results not contaminated by the local 
properties of the cloud itself.  
Regarding the filtering threshold, we study the tolerance limits of 
the roughness distribution for the TLS cloud. We believe this is 
an effective approach if the goal is to homogenize the noise levels 
of homologous models. In detail, once the confidence value is 
fixed, we construct intervals for different percentages of the 
population. At the same time, we monitor the geometric features 

to identify the most appropriate values. Although we cannot 
unequivocally identify the best solution, we can make some 
considerations. Looking at the results of the three experiments 
conducted (Fig. 5), we can conclude that the tolerance limits for 
P = 0.999 generate the best compromise between cloud size 
(density) and roughness level. A population percentage P = 0.7, 
in fact, improves the noise level but excessively reduces the 
number of points, while P = 0.95 does not offer consistent 
improvements compared to P = 0.999. These are general 
considerations that are independent of the specific use of the 
model. In the case of source-based modelling, for example, it 
might be useful to start from a lighter reality-based model. In this 
case, once the surface density level is fixed, our study allows us 
to quickly check the surface roughness and evaluate whether the 
noise level is compatible with the processing. Unfortunately, the 
results achieved cannot be automatically extended to all relevant 
campaigns that use our same tools. The properties of the models, 
in fact, strongly depend on the individual acquisition campaign. 
This is particularly valid for mobile systems; in fact, in addition to

Figure 4. Variations of C2C absolute distance for different tolerance limits. 
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the distance between the object and the operator, we must 
consider the speed of travel, the orientation of the instrument and 
other factors. Despite this, the proposed workflow is not 
particularly expensive in terms of time and computational 
resources and can be easily adapted to specific applications. 
Future developments will focus on extending the results achieved 
to the treatment of outliers. 
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