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ABSTRACT: Edge detection is supported by extensive research and is part of different photogrammetric and computer vision tasks 
across numerous application areas. While 2D edge detection may achieve high accuracy results from several automated methods, the 
automation of edge detection in 3D space remains a challenge. Existing methods are often computationally demanding and heavily 
parameterized, leading to a lack of adaptability. In real-world applications 3D edges, representing the object boundaries and break 
lines, are crucial, particularly in fields such as computer vision, robotics and architecture.  In this context, we present a method that 
automates 3D edge detection in 3D point clouds exploiting the normal vectors’ direction differences to detect finite edges, which are 
further pruned and grouped to edge segments and fitted to indicate the presence of a 3D edge. 
 

 
Figure 1 . The five stage workflow of the proposed method for 3D edge detection. 
 

1. INTRODUCTION 

Edge detection in 2D images is a well-investigated topic in the 
photogrammetric and computer vision communities. Line 
features from images are extracted with a variety of methods, 
either exploiting classical pipelines or deep neural networks that 
have recently emerged. (e.g. Abdellali et al., 2021, Zhang et al., 
2021). 3D edge extraction has attracted increasing interest over 
the last few years. More specifically, the analysis of 3D data and 
the extraction of line segments can be used in multiple tasks, such 
as 3D building documentation, construction, restoration, 
Structure from Motion (SfM) which has many applications in 
augmented reality, visual localization and mapping, etc. All the 
aforementioned applications require high-accuracy 3D line 
vectors, which are usually extracted by delineating break lines in 
3D mesh models and point clouds. Nowadays, this process is 
performed manually and is time-consuming. However, the 
research community still finds it challenging to provide a 
computationally efficient and geometrically accurate approach 
for automated 3D edge detection and vectorization in point 
clouds and 3D mesh models.  

This paper proposes a method that exploits the normal vectors’ 
direction differences to identify edges in unorganised 3D point 
clouds. It follows by further grouping and merging the detected 
finite edges into 3D edges. The results of this method have also 
been assessed qualitatively to test the efficiency and accuracy of 
the method. 

2. RELATED WORK 

Numerous 2D or 3D edge detection algorithms have been 
proposed in the recent past to speed up the process of delineating 
3D line features in 3D models or 3D dense point clouds or 
modelling surface discontinuities by matching edge features in 
2D images (Pateraki and Baltsavias, 2004). This is also highly 
relevant for generating 3D vector drawings, for which the state-
of-the-art process is time consuming, laborious and requires 
specialists from several scientific fields. The detection may be 
performed in two ways. Firstly, detect the edges on the 2D 
images and project them into 3D models or point clouds. 2D edge 
detection is a fundamental computer vision problem and various 
traditional edge detection operators proposed in the literature 
exploit the gradient magnitude to detect pixels that may lie on an 
edge, while further search and aggregate those pixels sharing a 
similar gradient angle to a 2D edge.  

The most notable handcrafted 2D line detectors are LSD 
(Grompone et al, 2008), EDLines (Akinlar and Topal, 2011) and 
several extensions such as ELSED (Suarez et al, 2022). These 
methods are in general fast but lack robustness in challenging 
imaging conditions producing noisy lines. 

Recently, a few methods proposed deep learning architectures to 
detect 2D edges (Poma et al., 2020; Su et al., 2021, Pautrat et al., 
2023). Several efforts have been reported, which are based on 
image segmentation (Dhankhar & Sahu, 2013, Lu et al., 2019, 
Xie et al., 2020), which aim to cluster the pixels or points into 
groups with similar geometric or spectral characteristics without 
considering semantic meaning. Furthermore, 3D edge detection 
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may be realized by detecting the edges directly in the 3D 
environment, mainly the point clouds. Several techniques have 
been proposed, e.g., model fitting, analytical geometry, 
semantically enriched images, etc. Certain researchers 
(Rodríguez Miranda et al. 2008, Canciani et al. 2013,) have tried 
to produce vectors, i.e. linear features, directly from the point 
clouds either manually or semi-automatically. However, this 
procedure is time consuming and extremely strenuous and 
demands loads of computer power. Consequently, the solution 
lies in the automation of vector detection directly in the point 
cloud (Briese & Pfeifer, 2008). Nguatem et al. (2014) used 
predefined templates of windows and doors to detect their 3D 
boundaries exploiting plane intersection. Mitropoulou and 
Georgopoulos (2019) first segmented 3D point clouds into planes 
and then detected the 3D edge points by applying plane 
intersection. Liakopoulou (2022) performed plane intersection 
based on planes defined by edges on images and their exterior 
orientation parameters. Bazazian et al. (2015) first find the 
nearest neighbours of 3D points and then for each group of 3D 
points, the covariance matrix is calculated. Finally, the 
eigenvalues and eigenvectors of each matrix are examined to 
detect the sharp 3D edges by deciding whether the point belongs 
to a plane or to an edge. Lu et al. (2019) also exploit the 
eigenvalues and eigenvectors of the calculated covariance matrix 
of the points’ neighbourhood. The 3D point cloud is segmented 
into planes, using the region growing and merging method. 
Afterwards, the 3D points of each fitted plane are projected onto 
it, to create images. Finally, a 2D contour detection algorithm is 
applied and the detected 2D contours are projected back into 3D 
space. Additionally, Dolapsaki and Georgopoulos (2021), 
proposed a 3D edge detection method, which exploits the 
relationships of analytical geometry and the properties of planes 
in combination with digital images. These planes are defined by 
edges detected on images and the exterior orientation elements of 
the images. Finally, the detected 3D edge points inevitably lie on 
these planes. 

Detecting edges in 3D space can also be performed by using 2.5D 
data e.g., range images, and depth images. Bao et al. (2015) 
proposed an approach which first creates range images from a 
given point cloud, then applies the Canny operator (Canny, 1983) 
on them and finally projects the 2D edges into 3D space. 
Recently, Betsas & Georgopoulos (2022) have proposed a 
method which uses semantically enriched images to detect 
straight edges after an SfM/MVS process of these images. 

3. METHODOLOGY 

The following subsections provide brief overviews of key 
concepts that are of central importance for the development of 
the proposed method in Section 4  
 
3.1 3D surface representation  

A triangulated mesh is generated from the unorganised point 
cloud data, which serves as a 3D surface representation. To 
achieve this, the Ball Pivoting Algorithm (BPA) (Bernardini et 
al. 1999) is exploited as it can handle datasets consisting of 
millions of points with short execution times and has shown good 
performance on noisy point clouds acquired from laser scanning. 
The BPA, as the name suggests, uses a ball of ρ-radius that 
interpolates the point cloud to create the triangular mesh. 
However, during this process, some gaps may be formed on the 
surface. Therefore, the BPA allows the use of different user-
specified radii to avoid these gaps on the surface. The algorithm 
starts with the smallest radius and the process is repeated 
sequentially with the larger  radii to fill the gaps. The  BPA is 

provided as a built-in function in the OPEN3D library   
(https://www.open3d.org). To generate the geometric mesh 
representation, we calculate the mean distance from 30 
neighbouring points within the sphere of a predefined radius 
using OPEN3D’s built-in function. Then, this distance is 
multiplied by one, two, four and eight to determine the radii 
which are used in the BPA algorithm. 
 
3.2 Edge Detection in 3D Point Clouds 

The normal vector is computed for every triangle of the mesh, 
and the angle between the normal vectors of two adjacent 
triangles is subsequently calculated. This value, representing the 
inclination differences of adjacent planes, is then assigned to the 
common edge of the two triangles. More specifically, a small 
angle between adjacent triangles indicates small plane inclination 
differences, which means that the triangles possibly belong to the 
same plane, while larger angles may indicate the presence of a 
3D discontinuity, i.e., an edge. 

3.3 Graph Generation  

In brief, a graph is a data structure that consists of nodes and 
edges. Understanding the relations among the elements of 
unordered data i.e., which do not lie on a regular grid, like 3D 
point clouds, is complicated. Transforming the unordered data to 
a graph  provides a way to understand the relations among them, 
by using primarily the edges of it. The triangulated network 
which was created in the previous step consists of points and 
edges. Thus, it could be treated as a graph. Each edge of the 
triangulated network belongs to at most two -adjacent- triangles. 
To enhance the information carried by the edges, the inclination 
differences between the normals of their adjacent triangles is 
inherited to them. Hereafter, the valuable information of the 
inclination angles could be used throughout the workflow, 
diversely as a property of each edge.   

Using these data an undirected cartesian graph (G)  was 
generated. The constructed graph (G) contains all the edges of the 
triangulated network. However, the goal is to extract only the 3D 
edges of the object, which is a subset of the graph’s edges. To 
achieve this, the calculated angles between the adjacent triangles, 
which were previously inherited to each edge of the graph, are 
exploited. Firstly, a lower θ1 and an upper θ2, threshold values 
are defined. The edges that do not satisfy the above threshold are 
eliminated from the graph (G) resulting in a first estimation of 
objects’ 3D edges in the form of 3D finite edges. During this 
effort the threshold values θ1, θ2 are defined as π/6 and 6π/7, 
respectively i.e., the goal is to identify the edges that lay in 
between the two threshold values using the following inequality. 

 

(1) 

After eliminating those finite edges the initial cartesian graph (G) 
is converted to a line graph L(G), where each vertex of L(G) 
refers to an edge of G (Figure 2).  By computing the angle 
between each three consecutive vertices of the L(G) we can find 
which finite edges belong to the same final edge and group them 
together. More specifically, if the angle value is greater than 5π/6, 
the 3D finite edges are parts of the same final edge and are 
grouped together. 
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Figure 2. Conversion of graph (G) to line graph L(G). 
 
3.4 Least Squares 

The graph generation step of the previous section provided us 
with groups of finite edges. In order to combine them into a single 
edge segment, we used the Least Squares method to estimate the 
best-fitting 3D line. However, as the edges are primarily line 
segments it is necessary to detect the endpoints of every best-
fitting parametric line to transform it into a segment. To do so, 
we project the initial finite edges onto the parametric line and 
keep as endpoints of the line segment the ones that are furthest 
apart.      
 
3.5 RANSAC variation  

From the line segments that are estimated from the least squares 
method, the ones that represent different parts of the same edge 
should be combined, excluding line segments attributed to the 
presence of random noise and surface abnormalities (roughness). 
Therefore, we exploit the RANdom SAmple Consensus 
algorithm (RANSAC), which manages to estimate a model from 
data in the presence of outliers. In classical RANSAC, a single 
data object (e.g point, line segment), which is significantly distant 
from the model is automatically labelled as an outlier, without 
checking if the segments between the model and this segment are 
inliers or not. However, we aim at expanding the edge segments 
as much as possible in order to detect a prominent 3D edge and 
eliminate possible gaps. We are proposing a variation of the 
RANSAC algorithm, where we use as a model one single 
segment and try to expand each of its endpoints using inlier 
segments. This process is performed for a single endpoint each 
time. For reasons of computational complexity, we outright 
marked segments extremely distant or misaligned as outliers, as 
we want the perpendicular distance to the model and the angle 
between the initial model and the new ones to remain mostly 
constant. The remaining segments were characterised as 
“possibly extending endpoints of the model”. Therefore, the 
algorithm checks for each of these segments in ascending order 
of distance to the model, to mark them as inliers, while updating 
the edge endpoints. The model is updated with every new inlier 
and therefore its length is constantly increasing. In this way, a 
segment, which has a large distance from the initial model can be 
marked as an inlier for the updated one. Therefore, we are not 
missing inliers due to distance limitations from the initial model, 
which leads to the initial model being expanded to its maximum 
extent. 
 
 
 
4. IMPLEMENTATION  

The proposed method exploits the normal vectors’ direction 
differences to detect edges in 3D point clouds. A five-stage 
workflow was adopted to achieve this scope. 
 

➢ Triangulated Mesh generation. 
➢ Angle computation between adjacent normals.  
➢ Graph theory implementation to organise finite edges 

into groups.  
➢ Least Squares to merge the finite edges of groups into 

edge segments. 
➢ Ransac’s Variation to determine the 3D edge. 

 
The first step (section 3.1) applies to generating the triangulated 
mesh surface using the BPA. The input data used for this is a 3D 
point cloud. In the second stage of the algorithm's 
implementation, the corresponding normal vector for each 
triangle of the triangulated surface is computed and the angle 
between the normal vectors for every pair of adjacent triangles of 
the triangulated mesh is calculated. In the third stage of the 
algorithm (section 3.3), two thresholds are used to prune edges 
that do not depict surface discontinuities. With these 
optimizations, the triangulated network is converted to an 
undirected Cartesian Graph (G)  (Section 3.3) During the Graph’s 
generation, edges within certain thresholds are kept, Then, the 
initial Graph (G) was converted into a Line Graph L(G) (Section 
3.3). At last, the Line Graph is reverted into a set of grouped 
edges from the initial mesh, where each group corresponds to one 
single edge. During the fourth step of the implementation, the 
Least Squares method (section 3.4) is used to combine each 
group of the finite edges into line segments. 
In the last stage, the line segments were concatenated as 
described in section 3.5  with other almost-parallel line segments 
close to each other using our proposed variation of RANSAC. 
 
5. EXPERIMENTAL RESULTS 

5.1 Simulated Data 

To first assess the algorithm performance on noise-free data we 
used simulated data of 3D points generated on cube faces of 
different densities. The cube models contain well-defined edges 
and are therefore suitable for validating the assumptions of our 
methodology. The results do not depend on the point cloud 
density but only on the mesh quality. Provided that the cube has 
an optimal mesh and the plane surfaces are smooth, the edges 
may be detected even from the third stage of the algorithm’s 
implementation without the utilisation of the Least squares and 
RANSAC stage. Figure 3, depicts two of the different cube 
models with varying density of 3D points and the triangulated 
surface representation, used in the experiments. A denser 
sampling with fifty 3D points in each face was also exploited.  
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Figure 3. Top row: Triangular mesh of 3D points defined on 
cube faces with varying density. Bottom row:  Detected 
edges (in red) and pruned ones (in yellow). 
 

5.2 Real Data 

A dense point cloud dataset representing the Temple of Demeter 
in Naxos, Greece was used to test the algorithm’s efficiency in 
real data. The 3D points were extracted from images using the 
Multi-View Stereo process. The Temple's point cloud consists of 
more than three million points and has a sufficient amount of 
noise (Figure..4). All five stages of the algorithm implementation 
were needed for the detection of the edges in this dataset. The 
initial four stages i.e., the mesh generation, the computation of 
the mesh’s edge values, the edge grouping through the graphs 
(Figure 5) and the least squares implementation (Figure 6) had a 
good execution time. However, RANSAC slowed down the 
process as the developed implementation needed a significant 
amount of time to run using large point clouds. The reason is 
because it performs thousands of iterations between the different 
line segments to find the best models and therefore to eliminate 
the noise of the data. In order to bypass that problem we tested 
the RANSAC variation using a smaller point cloud (Figure..7). 

The proposed algorithm identifies the edges of an object, by 
automatically calculating the inclination angle between the 
adjacent triangles of the mesh. Τhe only parameters that the user 
should define are those for the BPA algorithm (Section 3.1). 
Additionally, the user could define the threshold values θ1, θ2 
(Section 3.3) to identify different edges, but this is not a 
necessary step. Hence, the use of the proposed algorithm is not 
highly parameterized and so it can be used by non-experts. On 
the one hand, the proposed algorithm tries to identify the object's 
edges with the best possible accuracy, in respect to the given data 
by including the least squares and RANSAC steps (Figure 7 and 
Figure 8). On the other hand, the execution time increases for 
large and medium point clouds  and decreases with small point 
clouds i.e., less than 40000 points). The execution times in Table 
2 are until the least squares step i.e., excluding RANSAC. With 
RANSAC the execution time increases for large and medium 
point clouds. The presented results in Figure 8, are gathered by 
terminating the RANSAC manually and so an improvement of 
the implementation of the RANSAC algorithm should be further 
investigated and optimized. 

 

Figure 4.  The dense point cloud of Demeter’s temple. 

 

 
Figure 5. Visualisation of finite edges detection after graphs’ 
implementation on the temple dataset. 
 
 

Figure 6. Visualisation of edge segments after least squares 
implementation on the temples algorithm. 
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Figure 7 . Edge segments  after least squares  implementation. 

 
Figure 8. Final Edge detection after Ransac’s implementation. 
 
 

Experiment Execution Time (seconds) 

Temple of Demeter in Naxos 
(≈3.100.000 3D points, Fig 6) 

≈ 48000 (≈ 13 mins, 
Including BPA) 

Part of the Temple of Demeter 
in Naxos (≈ 32.000 3D points, 

Fig 7 and Fig. 8) 

≈ 12 (Including BPA) 

Cube 1 (Fig. 3) < 1 (without BPA) 

Cube 2 (Fig. 3) < 1 (without BPA) 

Table 2: Execution time for each experiment until the least 
squares step. 

 Furthermore, the proposed workflow gives promising results 
against noise. To be more specific, the experiments using the 
small dense point cloud depicted in Figure 7 and Figure 8 proves 
that the algorithm could handle noisy, real-world point clouds to 
detect the dominant 3D edges, i.e., the detected small edges 
attributed to micro-surface abnormalities depicted in Figure 7, 
have been almost eliminated in Figure 8. To sum up, the proposed 
algorithm has to be improved in terms of execution time but 
provides promising results against noise.  

6. CONCLUSIONS 

 In this paper, we propose a method that performs 3D edge 
detection by exploiting the direction differences of normal 
vectors in 3D point clouds. The proposed approach was tested on 
both simulated and real-world data with promising results in 
terms of accuracy. However, a further optimization of the 
developed method should be performed to improve the execution 
time of the algorithm. Finally, the proposed method gives good 
results using small point clouds, demonstrating the effectiveness 
of the main idea.   
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