
3D Edge Detection based on Normal Vectors

A. Makka1*, M. Pateraki1, 2, T. Betsas1, A. Georgopoulos1

1Lab. of Photogrammetry, School of Rural, Surveying & Geoinformatics Engineering, National Technical University of Athens
2Ιnstitute of Communication and Computer Systems, National Technical University of Athens
rs18050@mail.ntua.gr, mpateraki@mail.ntua.gr, betsasth@mail.ntua.gr, drag@central.ntua.gr

Commission II

KEY WORDS: Edge detection, point cloud, 3D mesh, graph theory, least squares, RANSAC

ABSTRACT: Edge detection is supported by extensive research and is part of different photogrammetric and computer vision tasks
across numerous application areas. While 2D edge detection may achieve high accuracy results from several automated methods, the
automation of edge detection in 3D space remains a challenge. Existing methods are often computationally demanding and heavily
parameterized, leading to a lack of adaptability. In real-world applications 3D edges, representing the object boundaries and break
lines, are crucial, particularly in fields such as computer vision, robotics and architecture. In this context, we present a method that
automates 3D edge detection in 3D point clouds exploiting the normal vectors’ direction differences to detect finite edges, which are
further pruned and grouped to edge segments and fitted to indicate the presence of a 3D edge.

Figure 1 . The five stage workflow of the proposed method for 3D edge detection.

1. INTRODUCTION

Edge detection in 2D images is a well-investigated topic in the
photogrammetric and computer vision communities. Line
features from images are extracted with a variety of methods,
either exploiting classical pipelines or deep neural networks that
have recently emerged. (e.g. Abdellali et al., 2021, Zhang et al.,
2021). 3D edge extraction has attracted increasing interest over
the last few years. More specifically, the analysis of 3D data and
the extraction of line segments can be used in multiple tasks, such
as 3D building documentation, construction, restoration,
Structure from Motion (SfM) which has many applications in
augmented reality, visual localization and mapping, etc. All the
aforementioned applications require high-accuracy 3D line
vectors, which are usually extracted by delineating break lines in
3D mesh models and point clouds. Nowadays, this process is
performed manually and is time-consuming. However, the
research community still finds it challenging to provide a
computationally efficient and geometrically accurate approach
for automated 3D edge detection and vectorization in point
clouds and 3D mesh models.

This paper proposes a method that exploits the normal vectors’
direction differences to identify edges in unorganised 3D point
clouds. It follows by further grouping and merging the detected
finite edges into 3D edges. The results of this method have also
been assessed qualitatively to test the efficiency and accuracy of
the method.

2. RELATED WORK

Numerous 2D or 3D edge detection algorithms have been
proposed in the recent past to speed up the process of delineating
3D line features in 3D models or 3D dense point clouds or
modelling surface discontinuities by matching edge features in
2D images (Pateraki and Baltsavias, 2004). This is also highly
relevant for generating 3D vector drawings, for which the state-
of-the-art process is time consuming, laborious and requires
specialists from several scientific fields. The detection may be
performed in two ways. Firstly, detect the edges on the 2D
images and project them into 3D models or point clouds. 2D edge
detection is a fundamental computer vision problem and various
traditional edge detection operators proposed in the literature
exploit the gradient magnitude to detect pixels that may lie on an
edge, while further search and aggregate those pixels sharing a
similar gradient angle to a 2D edge.

The most notable handcrafted 2D line detectors are LSD
(Grompone et al, 2008), EDLines (Akinlar and Topal, 2011) and
several extensions such as ELSED (Suarez et al, 2022). These
methods are in general fast but lack robustness in challenging
imaging conditions producing noisy lines.

Recently, a few methods proposed deep learning architectures to
detect 2D edges (Poma et al., 2020; Su et al., 2021, Pautrat et al.,
2023). Several efforts have been reported, which are based on
image segmentation (Dhankhar & Sahu, 2013, Lu et al., 2019,
Xie et al., 2020), which aim to cluster the pixels or points into
groups with similar geometric or spectral characteristics without
considering semantic meaning. Furthermore, 3D edge detection

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-295-2024 | © Author(s) 2024. CC BY 4.0 License.

295

mailto:rs18050@mail.ntua.gr
mailto:mpateraki@mail.ntua.gr
mailto:betsasth@mail.ntua.gr

may be realized by detecting the edges directly in the 3D
environment, mainly the point clouds. Several techniques have
been proposed, e.g., model fitting, analytical geometry,
semantically enriched images, etc. Certain researchers
(Rodríguez Miranda et al. 2008, Canciani et al. 2013,) have tried
to produce vectors, i.e. linear features, directly from the point
clouds either manually or semi-automatically. However, this
procedure is time consuming and extremely strenuous and
demands loads of computer power. Consequently, the solution
lies in the automation of vector detection directly in the point
cloud (Briese & Pfeifer, 2008). Nguatem et al. (2014) used
predefined templates of windows and doors to detect their 3D
boundaries exploiting plane intersection. Mitropoulou and
Georgopoulos (2019) first segmented 3D point clouds into planes
and then detected the 3D edge points by applying plane
intersection. Liakopoulou (2022) performed plane intersection
based on planes defined by edges on images and their exterior
orientation parameters. Bazazian et al. (2015) first find the
nearest neighbours of 3D points and then for each group of 3D
points, the covariance matrix is calculated. Finally, the
eigenvalues and eigenvectors of each matrix are examined to
detect the sharp 3D edges by deciding whether the point belongs
to a plane or to an edge. Lu et al. (2019) also exploit the
eigenvalues and eigenvectors of the calculated covariance matrix
of the points’ neighbourhood. The 3D point cloud is segmented
into planes, using the region growing and merging method.
Afterwards, the 3D points of each fitted plane are projected onto
it, to create images. Finally, a 2D contour detection algorithm is
applied and the detected 2D contours are projected back into 3D
space. Additionally, Dolapsaki and Georgopoulos (2021),
proposed a 3D edge detection method, which exploits the
relationships of analytical geometry and the properties of planes
in combination with digital images. These planes are defined by
edges detected on images and the exterior orientation elements of
the images. Finally, the detected 3D edge points inevitably lie on
these planes.

Detecting edges in 3D space can also be performed by using 2.5D
data e.g., range images, and depth images. Bao et al. (2015)
proposed an approach which first creates range images from a
given point cloud, then applies the Canny operator (Canny, 1983)
on them and finally projects the 2D edges into 3D space.
Recently, Betsas & Georgopoulos (2022) have proposed a
method which uses semantically enriched images to detect
straight edges after an SfM/MVS process of these images.

3. METHODOLOGY

The following subsections provide brief overviews of key
concepts that are of central importance for the development of
the proposed method in Section 4

3.1 3D surface representation

A triangulated mesh is generated from the unorganised point
cloud data, which serves as a 3D surface representation. To
achieve this, the Ball Pivoting Algorithm (BPA) (Bernardini et
al. 1999) is exploited as it can handle datasets consisting of
millions of points with short execution times and has shown good
performance on noisy point clouds acquired from laser scanning.
The BPA, as the name suggests, uses a ball of ρ-radius that
interpolates the point cloud to create the triangular mesh.
However, during this process, some gaps may be formed on the
surface. Therefore, the BPA allows the use of different user-
specified radii to avoid these gaps on the surface. The algorithm
starts with the smallest radius and the process is repeated
sequentially with the larger radii to fill the gaps. The BPA is

provided as a built-in function in the OPEN3D library
(https://www.open3d.org). To generate the geometric mesh
representation, we calculate the mean distance from 30
neighbouring points within the sphere of a predefined radius
using OPEN3D’s built-in function. Then, this distance is
multiplied by one, two, four and eight to determine the radii
which are used in the BPA algorithm.

3.2 Edge Detection in 3D Point Clouds

The normal vector is computed for every triangle of the mesh,
and the angle between the normal vectors of two adjacent
triangles is subsequently calculated. This value, representing the
inclination differences of adjacent planes, is then assigned to the
common edge of the two triangles. More specifically, a small
angle between adjacent triangles indicates small plane inclination
differences, which means that the triangles possibly belong to the
same plane, while larger angles may indicate the presence of a
3D discontinuity, i.e., an edge.

3.3 Graph Generation

In brief, a graph is a data structure that consists of nodes and
edges. Understanding the relations among the elements of
unordered data i.e., which do not lie on a regular grid, like 3D
point clouds, is complicated. Transforming the unordered data to
a graph provides a way to understand the relations among them,
by using primarily the edges of it. The triangulated network
which was created in the previous step consists of points and
edges. Thus, it could be treated as a graph. Each edge of the
triangulated network belongs to at most two -adjacent- triangles.
To enhance the information carried by the edges, the inclination
differences between the normals of their adjacent triangles is
inherited to them. Hereafter, the valuable information of the
inclination angles could be used throughout the workflow,
diversely as a property of each edge.

Using these data an undirected cartesian graph (G) was
generated. The constructed graph (G) contains all the edges of the
triangulated network. However, the goal is to extract only the 3D
edges of the object, which is a subset of the graph’s edges. To
achieve this, the calculated angles between the adjacent triangles,
which were previously inherited to each edge of the graph, are
exploited. Firstly, a lower θ1 and an upper θ2, threshold values
are defined. The edges that do not satisfy the above threshold are
eliminated from the graph (G) resulting in a first estimation of
objects’ 3D edges in the form of 3D finite edges. During this
effort the threshold values θ1, θ2 are defined as π/6 and 6π/7,
respectively i.e., the goal is to identify the edges that lay in
between the two threshold values using the following inequality.

(1)

After eliminating those finite edges the initial cartesian graph (G)
is converted to a line graph L(G), where each vertex of L(G)
refers to an edge of G (Figure 2). By computing the angle
between each three consecutive vertices of the L(G) we can find
which finite edges belong to the same final edge and group them
together. More specifically, if the angle value is greater than 5π/6,
the 3D finite edges are parts of the same final edge and are
grouped together.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-295-2024 | © Author(s) 2024. CC BY 4.0 License.

296

Figure 2. Conversion of graph (G) to line graph L(G).

3.4 Least Squares

The graph generation step of the previous section provided us
with groups of finite edges. In order to combine them into a single
edge segment, we used the Least Squares method to estimate the
best-fitting 3D line. However, as the edges are primarily line
segments it is necessary to detect the endpoints of every best-
fitting parametric line to transform it into a segment. To do so,
we project the initial finite edges onto the parametric line and
keep as endpoints of the line segment the ones that are furthest
apart.

3.5 RANSAC variation

From the line segments that are estimated from the least squares
method, the ones that represent different parts of the same edge
should be combined, excluding line segments attributed to the
presence of random noise and surface abnormalities (roughness).
Therefore, we exploit the RANdom SAmple Consensus
algorithm (RANSAC), which manages to estimate a model from
data in the presence of outliers. In classical RANSAC, a single
data object (e.g point, line segment), which is significantly distant
from the model is automatically labelled as an outlier, without
checking if the segments between the model and this segment are
inliers or not. However, we aim at expanding the edge segments
as much as possible in order to detect a prominent 3D edge and
eliminate possible gaps. We are proposing a variation of the
RANSAC algorithm, where we use as a model one single
segment and try to expand each of its endpoints using inlier
segments. This process is performed for a single endpoint each
time. For reasons of computational complexity, we outright
marked segments extremely distant or misaligned as outliers, as
we want the perpendicular distance to the model and the angle
between the initial model and the new ones to remain mostly
constant. The remaining segments were characterised as
“possibly extending endpoints of the model”. Therefore, the
algorithm checks for each of these segments in ascending order
of distance to the model, to mark them as inliers, while updating
the edge endpoints. The model is updated with every new inlier
and therefore its length is constantly increasing. In this way, a
segment, which has a large distance from the initial model can be
marked as an inlier for the updated one. Therefore, we are not
missing inliers due to distance limitations from the initial model,
which leads to the initial model being expanded to its maximum
extent.

4. IMPLEMENTATION

The proposed method exploits the normal vectors’ direction
differences to detect edges in 3D point clouds. A five-stage
workflow was adopted to achieve this scope.

➢ Triangulated Mesh generation.
➢ Angle computation between adjacent normals.
➢ Graph theory implementation to organise finite edges

into groups.
➢ Least Squares to merge the finite edges of groups into

edge segments.
➢ Ransac’s Variation to determine the 3D edge.

The first step (section 3.1) applies to generating the triangulated
mesh surface using the BPA. The input data used for this is a 3D
point cloud. In the second stage of the algorithm's
implementation, the corresponding normal vector for each
triangle of the triangulated surface is computed and the angle
between the normal vectors for every pair of adjacent triangles of
the triangulated mesh is calculated. In the third stage of the
algorithm (section 3.3), two thresholds are used to prune edges
that do not depict surface discontinuities. With these
optimizations, the triangulated network is converted to an
undirected Cartesian Graph (G) (Section 3.3) During the Graph’s
generation, edges within certain thresholds are kept, Then, the
initial Graph (G) was converted into a Line Graph L(G) (Section
3.3). At last, the Line Graph is reverted into a set of grouped
edges from the initial mesh, where each group corresponds to one
single edge. During the fourth step of the implementation, the
Least Squares method (section 3.4) is used to combine each
group of the finite edges into line segments.
In the last stage, the line segments were concatenated as
described in section 3.5 with other almost-parallel line segments
close to each other using our proposed variation of RANSAC.

5. EXPERIMENTAL RESULTS

5.1 Simulated Data

To first assess the algorithm performance on noise-free data we
used simulated data of 3D points generated on cube faces of
different densities. The cube models contain well-defined edges
and are therefore suitable for validating the assumptions of our
methodology. The results do not depend on the point cloud
density but only on the mesh quality. Provided that the cube has
an optimal mesh and the plane surfaces are smooth, the edges
may be detected even from the third stage of the algorithm’s
implementation without the utilisation of the Least squares and
RANSAC stage. Figure 3, depicts two of the different cube
models with varying density of 3D points and the triangulated
surface representation, used in the experiments. A denser
sampling with fifty 3D points in each face was also exploited.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-295-2024 | © Author(s) 2024. CC BY 4.0 License.

297

Figure 3. Top row: Triangular mesh of 3D points defined on
cube faces with varying density. Bottom row: Detected
edges (in red) and pruned ones (in yellow).

5.2 Real Data

A dense point cloud dataset representing the Temple of Demeter
in Naxos, Greece was used to test the algorithm’s efficiency in
real data. The 3D points were extracted from images using the
Multi-View Stereo process. The Temple's point cloud consists of
more than three million points and has a sufficient amount of
noise (Figure..4). All five stages of the algorithm implementation
were needed for the detection of the edges in this dataset. The
initial four stages i.e., the mesh generation, the computation of
the mesh’s edge values, the edge grouping through the graphs
(Figure 5) and the least squares implementation (Figure 6) had a
good execution time. However, RANSAC slowed down the
process as the developed implementation needed a significant
amount of time to run using large point clouds. The reason is
because it performs thousands of iterations between the different
line segments to find the best models and therefore to eliminate
the noise of the data. In order to bypass that problem we tested
the RANSAC variation using a smaller point cloud (Figure..7).

The proposed algorithm identifies the edges of an object, by
automatically calculating the inclination angle between the
adjacent triangles of the mesh. Τhe only parameters that the user
should define are those for the BPA algorithm (Section 3.1).
Additionally, the user could define the threshold values θ1, θ2
(Section 3.3) to identify different edges, but this is not a
necessary step. Hence, the use of the proposed algorithm is not
highly parameterized and so it can be used by non-experts. On
the one hand, the proposed algorithm tries to identify the object's
edges with the best possible accuracy, in respect to the given data
by including the least squares and RANSAC steps (Figure 7 and
Figure 8). On the other hand, the execution time increases for
large and medium point clouds and decreases with small point
clouds i.e., less than 40000 points). The execution times in Table
2 are until the least squares step i.e., excluding RANSAC. With
RANSAC the execution time increases for large and medium
point clouds. The presented results in Figure 8, are gathered by
terminating the RANSAC manually and so an improvement of
the implementation of the RANSAC algorithm should be further
investigated and optimized.

Figure 4. The dense point cloud of Demeter’s temple.

Figure 5. Visualisation of finite edges detection after graphs’
implementation on the temple dataset.

Figure 6. Visualisation of edge segments after least squares
implementation on the temples algorithm.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-295-2024 | © Author(s) 2024. CC BY 4.0 License.

298

Figure 7 . Edge segments after least squares implementation.

Figure 8. Final Edge detection after Ransac’s implementation.

Experiment Execution Time (seconds)

Temple of Demeter in Naxos
(≈3.100.000 3D points, Fig 6)

≈ 48000 (≈ 13 mins,
Including BPA)

Part of the Temple of Demeter
in Naxos (≈ 32.000 3D points,

Fig 7 and Fig. 8)

≈ 12 (Including BPA)

Cube 1 (Fig. 3) < 1 (without BPA)

Cube 2 (Fig. 3) < 1 (without BPA)

Table 2: Execution time for each experiment until the least
squares step.

 Furthermore, the proposed workflow gives promising results
against noise. To be more specific, the experiments using the
small dense point cloud depicted in Figure 7 and Figure 8 proves
that the algorithm could handle noisy, real-world point clouds to
detect the dominant 3D edges, i.e., the detected small edges
attributed to micro-surface abnormalities depicted in Figure 7,
have been almost eliminated in Figure 8. To sum up, the proposed
algorithm has to be improved in terms of execution time but
provides promising results against noise.

6. CONCLUSIONS

 In this paper, we propose a method that performs 3D edge
detection by exploiting the direction differences of normal
vectors in 3D point clouds. The proposed approach was tested on
both simulated and real-world data with promising results in
terms of accuracy. However, a further optimization of the
developed method should be performed to improve the execution
time of the algorithm. Finally, the proposed method gives good
results using small point clouds, demonstrating the effectiveness
of the main idea.

ACKNOWLEDGEMENTS

This work was partially funded by the European Union’s Horizon
2020 research and innovation programme FELICE (GA No
101017151) and Horizon Europe programme SOPRANO (GA
No 101120990).

REFERENCES

Abdellali, H., Frohlich, R., Vilagos, V., Kato, Z., 2021. L2D2:
Learnable line detector and descriptor. In Intl. Conf. on 3D
Vision (3DV).

Akinlar, C., Topal, C., 2011. EDLines: Real-time line segment
detection by edge drawing. In Proc. International Conference on
Image Processing (ICIP), Brussels, Belgium, 2011, pp. 2837-
2840.

Bazazian D., Casas J. and Ruiz-Hidalgo R., 2015, Fast and
Robust Edge Extraction in Unorganized Point Clouds, In Digital
Image Computing: Techniques and Applications (DICTA), Int.
Conference IEEE, (https://imatge.upc.edu/web
/sites/default/files/pub/cBazazian15.pdf).

Bao, T., Zhao, J., Xu, M., 2015. Step edge detection method for
3D point clouds based on 2D range images. 126(20), 2706–2710.
https:// linkinghub.elsevier.com/
retrieve/pii/S0030402615005586.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin,
G., 1999. The Ball-Pivoting Algorithm for Surface
Reconstruction. IEEE Transactions on Visualization and
Computer Graphics, vol. 5, no. 4, pp. 349-359.

Betsas, T. and Georgopoulos, A.: 3D Edge Detection and
Comparison using Four-Channel Images, Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2/W2-
2022, 9–15, https://doi.org/10.5194/ isprs-archives-XLVIII-2-
W2-2022-9-2022, 2022.

Betsas, T., Georgopoulos, A., 2022. Point-Cloud Segmentation
for 3D Edge Detection and Vectorization. Heritage 5.4 (2022):
4037-4060.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-295-2024 | © Author(s) 2024. CC BY 4.0 License.

299

https://doi.org/10.5194/

Briese, C. and Pfeifer, N., 2008. Towards automatic feature line
modelling from terrestrial laser scanner data. International
Archives of Photogrammetry & Remote Sensing and Spatial
Information Science, Volume XXXVII Part B5 pp. 463-468.

Canciani, M., Falcolini, C., Saccone, M. and Spadafora, G., 2013.
From Point Clouds to Architectural Models: Algorithms for
Shape Reconstruction. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume XL-5/W1, 20133D-ARCH 2013 - 3D Virtual
Reconstruction and Visualization of Complex Architectures, 25
– 26 February 2013, Trento, Italy.

Canny, J. F., 1983. Finding edges and lines in images. Technical
report, Massachusetts Inst of Tech Cambridge Artificial
Intelligence Lab., DSpace@MIT Home,
https://dspace.mit.edu/handle/1721.1/6939

Dhankhar, P., Sahu, N., 2013. Α Review and Research of Edge
Detection Techniques for Image Segmentation. International
Journal of Computer Science and Mobile Computing - IJCSMC
Vol.2, No. 7, pp. 86-92, ISSN 2320–088X.

Dolapsaki, M.M.; Georgopoulos, A. Edge Detection in 3D Point
Clouds Using Digital Images. ISPRS Int. J. Geo-Inf. 2021, 10,
229. https://doi.org/10.3390/ijgi10040229

Grompone Von Gioi, R., Jakubowicz, J., Morel, J.M., Randall,
G., 2008. LSD: A fast line segment detector with a false detection
control. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 32(4):722– 732

Kirsch, R. A., 1971. Computer determination of the constituent
structure of biological images. Computers and biomedical
research, 4(3), 315–328.

Kroon, D., 2009. Numerical optimization of kernel-based image
derivatives. Short Paper University Twente, 3.

Liakopoulou, A.M., 2022. Development of a plane intersection
algorithm for 3D edge determination.
https://dspace.lib.ntua.gr/xmlui/handle/123456789/56782,
Diploma Thesis, Lab of Photogrammetry, NTUA (in Greek).

Lu, X., Liu, Y., & Li, K. (2019). Fast 3D Line Segment Detection
from Unorganized Point Cloud. ArXiv, abs/1901.02532.

Marr, D., Hildreth, E., 1980. Theory of edge detection.
Proceedings of the Royal Society of London. Series B. Biological
Sciences, 207(1167), 187–217.

Mitropoulou, A., Georgopoulos, A., 2019. An automated process
to detect edges in unorganized point clouds. ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 4, 99-105.

Nguatem, W., Drauschke, M., Mayer, H., 2014. Localization of
Windows and Doors in 3d Point Clouds of Facades. II-3, 87– 94.

Pateraki, M., Baltsavias, E., 2004. Surface discontinuity
modelling by LSM through patch adaptation and Use of edges.
In: Proc. of the ISPRS Congress, IAPRS, Vol. 35, Part B3, pp.
522-527.

Poma, X. S., Riba, E., Sappa, A., 2020. Dense extreme inception
network: Towards a robust CNN model for edge detection.
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1923–1932.

Prewitt, J. M., 1970. Object enhancement and extraction. Picture
Processing and Psychopictorics, B. Lipkin and A. Rosenfeld,
Eds., New York: Academic Press, 1970, pp. 75-149.

Pautrat, R., Barath, D., Larsson, V., Oswald, M., Pollefeys, M.,
2023. DeepLSD: Line Segment Detection and Refinement with
Deep Image Gradients. In Proc. EEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Vancouver,
Canada,

Rodríguez Miranda, Á., Valle Melón, J. M. and Martínez Montiel
J. M., 2008. 3D Line Drawing from Point Clouds using
Chromatic Stereo and Shading. Digital Heritage. Proceedings of
the 14th International Conference on Virtual Systems and
Multimedia VSMM 2008. ISBN: 978-963-8046-99-4 pp. 77-84

Sobel, I., Feldman, G. et al., 1968. A 3x3 isotropic gradient
operator for image processing. a talk at the Stanford Artificial
Project in, 271–272.

Su, Z., Liu, W., Yu, Z., Hu, D., Liao, Q., Tian, Q., Pietikainen,
M., Liu, L., 2021. Pixel difference networks for efficient edge
detection. Proceedings of the IEEE/CVF International
Conference on Computer Vision, 5117–5127.

Suárez, I., Buenaposada, J., Baumela, L. 2022. ELSED:
Enhanced line segment drawing. Pattern Recognition.

Wang, Y., Ewert, D., Schilberg, D., Jeschke, S., 2014. Edge
extraction by merging the 3D point cloud and 2D image data.
Automation, Communication and Cybernetics in Science and
Engineering 2013/2014, 773-785.

Xie, Y., Tian, J., Zhu, X. X., 2020. Linking points with labels in
3D: A review of point cloud semantic segmentation. IEEE
Geoscience and Remote Sensing Magazine, 8(4), 38–59.

Zhang, H., Luo, Y., Qin, F., He, Y., Liu, X., 2021. Elsd: Efficient
line segment detector and descriptor. In International Conference
on Computer Vision (ICCV),

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-295-2024 | © Author(s) 2024. CC BY 4.0 License.

300

https://dspace.mit.edu/
https://dspace.mit.edu/
https://dspace.mit.edu/handle/1721.1/6939
https://dspace.mit.edu/handle/1721.1/6939
https://dspace.mit.edu/handle/1721.1/6939
https://doi.org/10.3390/ijgi10040229
https://dspace.lib.ntua.gr/xmlui/handle/123456789/56782
https://dspace.lib.ntua.gr/xmlui/handle/123456789/56782
https://dspace.lib.ntua.gr/xmlui/handle/123456789/56782
about:blank

