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ABSTRACT: 
Finding corresponding points between images is a fundamental step in photogrammetry and computer vision tasks. Traditionally, image 
matching has relied on hand-crafted algorithms such as SIFT or ORB. However, these algorithms face challenges when dealing with 
multi-temporal images, varying radiometry and contents as well as significant viewpoint differences. Recently, the computer vision 
community has proposed several deep learning-based approaches that are trained for challenging illumination and wide viewing angle 
scenarios. However, they suffer from certain limitations, such as rotations, and they are not applicable to high resolution images due 
to computational constraints. In addition, they are not widely used by the photogrammetric community due to limited integration with 
standard photogrammetric software packages. To overcome these challenges, this paper introduces Deep-Image-Matching, an open-
source toolbox designed to match images using different matching strategies, ranging from traditional hand-crafted to deep-learning 
methods (https://github.com/3DOM-FBK/deep-image-matching). The toolbox accommodates high-resolution datasets, e.g. data 
acquired with full-frame or aerial sensors, and addresses known rotation-related problems of the learned features. The toolbox provides 
image correspondences outcomes that are directly compatible with commercial and open-source software packages, such as COLMAP 
and openMVG, for a bundle adjustment. The paper includes also a series of cultural heritage case studies that present challenging 
conditions where traditional hand-crafted approaches typically fail. 
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Figure 1: Sample images of the datasets used to test the proposed Deep-Image-Matching toolbox. 
 

1. INTRODUCTION 

Image matching plays a pivotal role in Structure-from-Motion 
(SfM), Visual Odometry (VO), simultaneous localization and 
mapping (SLAM), and various photogrammetric applications. 
Although traditional hand-crafted local features, such as SIFT 
(Lowe, 2004) and ORB (Rublee et al., 2011), have facilitated 
automatic keypoint extraction and matching, these methods have 
limitations when dealing with significant viewpoint and 
radiometric variations. These challenging situations can occur in 
cultural heritage image datasets, for example, when matching 
historical images with contemporary dataset for valorization 
projects based on virtual/augmented reality (Maiwald et al., 
2021; Morelli et al., 2022) or multitemporal aerial datasets 
(Zhang et al., 2021; Farella et al., 2022). Typically, in these 

scenarios the number of historical images is often limited and 
presents strong variations in viewpoint and radiometric 
appearance. 
Over the last decade, there has been a proliferation of deep 
learning (DL) approaches for feature extraction and matching 
(Chen et al., 2021; Jin et al. 2021; Yao et al., 2021) that aim to 
overcome these limitations and they have demonstrated 
resilience against varying illumination conditions, multi-
temporal datasets, wide baselines, and significantly different 
view angles. Recently, several works have proved the 
effectiveness of DL approaches in challenging scenarios, 
including glacier monitoring with wide camera baselines (Ioli et 
al., 2023a, Ioli et al., 2023b), multi-temporal image matching 
(Maiwald et al., 2023), multi-temporal co-registration problems 
(Maiwald et al., 2021; Morelli et al., 2022), VO and SLAM 
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(Morelli et al., 2023), aerial triangulation (Remondino et al., 
2022) and in terrestrial laser scanning point cloud registration 
(Markiewicz et al., 2023). However, well known limitations of 
DL approaches are their computational complexity, limited scale 
and rotation invariance of the descriptors and their application on 
high-resolution images. 
Despite the growing interest in the topic, the practical use of local 
features and matchers for photogrammetric applications remains 
limited. This can be attributed to the effectiveness and reliability 
of SIFT-like approaches under optimal photogrammetric 
conditions, but also to the lack of an open-source library that 
easily integrates these new DL approaches into common open-
source SfM pipelines such as COLMAP (Schonberger and 
Frahm, 2016), openMVG (Moulon et al., 2017), or commercial 
software packages such as Agisoft Metashape and Pix4D 
Mapper. 
The aim of this paper is to introduce Deep-Image-Matching, an 
open-source toolbox for multi-camera image matching using DL 
approaches. Deep-Image-Matching aims to be a flexible toolbox 
for extracting corresponding points that are ready to be used for 
a photogrammetric reconstruction and to provide an easy-to-use 
interface to a wide range of state-of-the-art algorithms that have 
been recently developed by the computer vision community. 
Additionally, this paper presents some qualitative and 
quantitative case studies in cultural heritage, including 
challenging scenarios for traditional working pipelines.  
The key features of Deep-Image-Matching are the following:  
• availability of both traditional and DL-based local features 

and matchers in a single toolbox; 
• ability to output multi-camera matches ready to be processed 

e.g., in COLMAP, openMVG or Agisoft Metashape; 
• image pair selection with various strategy, including brute-

force, low-resolution guided, sequential, image retrieval with 
global descriptors and custom pairs; 

• support for large image formats with a tiling approach; 
• support for camera/image rotations; 
• support for global descriptors for effectively selecting image 

pairs in wide scale or complex scenarios; 
• support of command line interface (CLI) and graphical user 

interface (GUI). 
To the best of our knowledge, the most similar existing tools are 
HLOC (Sarlin et al., 2019) and Image Matching WebUI1. 
However, they do not support image rotations, large image 
formats and export for various software, notwithstanding the fact 
that the latter tool is designed only for image pairs. 
 

2. DEEP-IMAGE-MATCHING TOOLBOX 

Given a set of unordered images, Deep-Image-Matching can 
perform the matching operations and return the corresponding 
points between images. It is developed in Python and publicly 
available on GitHub (https://github.com/3DOM-FBK/deep-
image-matching), it supports both CLI and GUI as well as a wide 
range of local features and matching algorithms, spanning from 
the traditional ones to recent state-of-the-art learning approaches. 
Available local features include ORB, SIFT, SuperPoint 
(DeTone et al., 2020), ALIKE (Zhao et al., 2022), ALIKED 
(Zhao et al., 2023), DISK (Tyszkiewicz et al., 2020), Key.Net 
(Barroso-Laguna et al., 2019) + HardNet8 (Pultar, 2020), 
DeDoDe (Edstedt et al., 2023b). SuperGlue (Sarlin et al., 2020), 
LightGlue (Lindenberger et al., 2023), LoFTR (Sun et al., 2021), 
SE2-LoFTR (Bökman and Kahl, 2022), and RoMA (Edstedt et 
al., 2023a) are implemented as matchers. Additionally, KORNIA 

 
1 https://github.com/Vincentqyw/image-matching-webui  

python library (Riba et al., 2020) can be used for nearest 
neighbour matching. 
Image pairs to be matched can be chosen by the user 
(custom_pair option), or they can be automatically selected by 
other strategies, including all possible pairs (brute_force), 
sequential matching (sequential), or image retrieval using global 
descriptors (retrieval). Image pairs can also be chosen by running 
a brute force on low-resolution images to limit computational 
time (option matching_lowres). 
For high resolution images (e.g. one size larger than 5000 px), 
feature extraction and matching are carried out by tiling the 
images on a regular grid to fit into GPU memory, while the 
selection of the tiles to be matched is guided by a first matching 
on low-resolution images. Features matched on each image pair 
are verified by using PyDegensac (Mishkin et al., 2015) to reject 
outliers. Geometrically verified tie points are then stored in a 
SQLite3 database to be imported in COLMAP, or in the 
openMVG format, ready for the bundle adjustment in the 
respective software. To import the solution in other 
photogrammetric software (e.g. Metashape), image orientation is 
performed with pycolmap library and 3D tie points are exported 
in the Bundler format (Snavely et al., 2006). 
 

3. DATASETS AND METHOD 

3.1 Datasets 
 
To show the potentiality of Deep-Image-Matching, four 
challenging heritage datasets have been selected (Figures 1-5), 
ranging from architectural heritage to reconstructions of 
historical figures. 
Dataset A – Bel temple – is a collection of crowdsourced tourist 
photos - taken from the online repository REKREI (Vincent et 
al., 2015, 2016) - of the temple of Bel in Palmyra in Syria (Figure 
2) destroyed in 2015. The dataset is composed of 79 images of 
different formats, quality and resolution, with significant changes 
in baselines as well as scales and illumination conditions. Dataset 
A included images acquired from all the four sides of the temple, 
although primarily on the main facade. Being tourist acquisitions, 
images do not share common calibration parameters. 

   

   
Figure 2: Sample images Dataset A - Temple of Bel. 

 
Dataset B – Semperoper – shows the famous opera house in 
Dresden, Germany (Figure 3) and has been introduced in 
Maiwald et al., 2021 by using an automatic image retrieval 
approach within a large photo library 
(https://www.deutschefotothek.de/). For a better comparison of 
the methods provided by Deep-Image-Matching, the dataset has 
been reduced manually to 165 images so that exclusively the 
newly reconstructed opera house after 1869 is shown. The 
majority of images is provided with a maximum edge length of 
1600 pixels by the library. The capture dates of the photographs 
span a period from 1880 to 2020 although most of the images 
have been taken from 1946 to 1960. Consequently, the 
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photographs show vast radiometric and geometric changes. 
Additionally, the dataset features various image resolutions, 
varying image rotations and zooms. 

   

   
Figure 3: Sample images Dataset B - Semperoper. 

 
Dataset C – Nadar – is a collection of 12 self-portrait images 
from the opera Revolving (1865) of Gaspard-Félix Tournachon, 
known as Nadar2 (Figure 4). The images have been downloaded 
from Wikipedia (resolution of 524 x 671 px), and they show 
significantly different viewpoints, low radiometric quality and 
many time-related artefacts. In addition, the dataset is partially 
ill-posed for photogrammetric purposes since Nadar sometimes 
changed both facial expressions and the relative position between 
head and shoulders. All these characteristics make the 
reconstruction difficult with classical approaches. 
 

    

    

    
Figure 4: Sample images Dataset C - Nadar. 

 
Dataset D – Castle – is composed of 48 images of the half-
destroyed historical Castle of Casalbagliano, Alessandria (Italy). 
It is a traditional photogrammetric dataset of a cultural heritage 
site including 25 nadiral UAV images, 11 oblique UAV images 
and 12 terrestrial images (Fig. 5), with a camera network like a 
classical photogrammetric survey. Dataset D is the only one with 
an available ground truth. All the images of Dataset D were 
acquired by a single Canon Eos M with a fixed focal length of 22 
mm and have a size of 5184 x 3456 px. The UAV nadiral images 
exhibit a modest overlap, approximately 60% in the longitudinal 
direction and 40% in the transversal direction. The UAV oblique 
images consist of four convergent shots acquired at each corner 
of the block, along with five additional images positioned along 
the exterior perimeter. The terrestrial images are acquired along 
a circle all around the castle. The main challenge of this dataset 
is linking together the nadiral UAV images with the terrestrial 
ones, as they have a strongly different point of view. Moreover, 

 
2 https://en.wikipedia.org/wiki/Nadar  

some of the terrestrial images are underexposed and 
characterized by large dark areas or acquired against the sun and 
therefore they show strong sunlight reflections.  
Dataset D was extracted from a larger and more robust dataset, 
named dataset D_GT (Figure 6), and which was used as ground 
truth reference to validate the results obtained with Deep-Image-
Matching. This dataset is composed of 172 images (83 nadiral, 
61 oblique and 28 terrestrial) with an average overlap between 
the images between 70% and 80% and an average GSD of 
approximately 9 mm (Gagliolo et al., 2017, Gagliolo et al., 2018). 
The full dataset also included 19 targets deployed on the ground 
around the castle and measured by a total station with sub-
centimetric accuracy. Dataset D_GT was processed with 
Metashape, by using 10 targets as Ground Control Points (GCPs) 
and performing a self-calibration of the camera. The quality of 
the photogrammetric block was evaluated on the remaining 9 
targets, used as Check Points (CP), resulting in an overall RMSE 
of 1.9 cm in the three directions. 
 

   

   
Figure 5: Sample images Dataset D - Castle. Images in the first 
row are samples of the nadiral and oblique UAV images, those in 
the second row are sample of the terrestrial images, including 
some of the challenging underexposed or overexposed images. 
 

 
Figure 6: Dataset A_GT, used as the ground truth to evaluate the 
results on Dataset D. The red flags are the targets used as GCPs 
while the yellow ones those used as CPs. 
 
3.2 Processing 
 
Datasets were processed by Deep-Image-Matching using 
different DL local features and matchers. In particular, Dataset A 
was processed using the combination of SuperPoint and 
SuperGlue, as they have been widely used in challenging 
viewpoint and illumination scenarios (Ioli et al. 2023a). 
Similarly, also Dataset B and D were also processed by using 
SuperPoint features and LightGlue matcher, which is an 
optimized evolution of SuperGlue. On the other hand, Dataset C, 
which consists of the challenging set of Nadar's self portrait 
pictures, was tested with a combination of different DL local 
features. Except for Dataset D, all the other datasets were 
processed by using a brute-force pair selection approach and 
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features were extracted from full-resolution images to avoid 
losing keypoint detection accuracy.  
Dataset D, which included high resolution images acquired by a 
mirrorless camera, was processed by upsampling the images by 
a factor of two using a bicubic interpolation technique before 
extracting features. This was motivated by the fact that 
SuperPoint lacks subpixel refinement capability in keypoint 
detection. Therefore, upsampling the images allowed for 
subpixel accuracy at the half-pixel level. In addition, since the 
upsampled images of dataset D had a resolution of 10368 x 6912 
px and they could not fit into the memory of a consumer-grade 
GPU, the images were processed by subdividing them into 
regular tiles with a dimension of 3600 x 2400 px. The tile size 
was chosen as a compromise to limit the total number of tiles, but 
at the same time to be able to perform the processing using an 
NVIDIA RTX A2000 GPU with 12 GB of memory. To reduce 
the computational time, image pairs of Dataset D were selected 
by a low-resolution guided approach, which consisted of 
performing first a matching on all the possible pairs of images 
downsampled with the longest edge of 2000 px, and then 
selecting all the possible pairs with at least 30 valid matches. 
For all the datasets, the tie points extracted with Deep-Image-
Matching were imported into COLMAP to orient the image block 
by performing an incremental bundle block adjustment to 
estimate the camera poses and the 3D coordinates of the tie 
points. The results are compared with those obtained using (i) 
COLMAP with its native feature extraction (RootSIFT) and 
matching techniques and (ii) Agisoft Metashape, which 
implements proprietary algorithms for feature extraction and 
matching. The number of features per image extracted by 
COLMAP and Metashape was tuned by trial and error. In the end, 
the default values (8196 features per image for COLMAP and 
40000 for Metashape) were used because they provided a good 
compromise between the number of valid matches extracted, the 
processing time, and the computational resources required by 
each software. In particular, the high number of features 
extracted by Metashape was needed to overcome its known 
limitations in extracting reliable matches in difficult scenarios. 
For Deep-Image-Matching, the maximum number of features per 
image was adjusted on a case-by-case basis to obtain a good 
number of local features (8000 for the Bel and Nadar datasets, 

40000 for the Castle dataset, while no feature limit was set for 
the historical images of the Semperoper dataset). DL-based 
matching algorithms, such as SuperGlue and LightGlue, are 
effective in discriminating the valid matches even with a very 
high number of features, thanks to the attention mechanisms 
implemented inside the networks (Sarlin et al., 2020, 
Lindenberger et al., 2023). 
As no ground-truth is available, except for dataset D, the 
comparison on the quality of the image orientation with different 
local features was made by comparing the number of oriented 
images to the total number available images (Table 1) and 
visually verifying the good orientation and consistency of the 
sparse reconstruction of tie points. This metric is considered 
sufficient for the purpose of illustrating the potential of learned 
local features for cultural heritage datasets, since classical 
methods (e.g. SIFT and ORB) usually fail almost completely on 
this kind of datasets. 
 

4. RESULTS AND DISCUSSION 

4.1 Temple of Bel 
 
As reported in Table 1, the RootSIFT features implemented in 
COLMAP oriented 105 out of 149 images of dataset A, covering 
only three sides of the temple (Figure 7a). Metashape oriented 
almost all the images, but inconsistently: two coherent sub-
blocks of images were correctly oriented, but wrongly connected 
because of wrong matches. Moreover, as shown in Figure 7b, the 
plan of the temple is duplicated. This could be the reason of the 
small reprojector error. 
The combination of SuperPoint local features and SuperGlue 
matcher consistently oriented 141/149 images (Figure 7c). Even 
if a ground-truth is not available, the advantages of using deep-
learning local features is clearly visible in the completeness of 
the dense cloud obtained from SuperGlue (Figure 7f) with respect 
to standard COLMAP (Figure 7d). For the processing, the 
simple-radial camera model has been used (focal length, 
principal point, and one parameter for radial distortion) with 
image variant calibration parameters, since images were taken by 
different tourists and different camera sensors.

 
Table 1: Summary of the results obtained with Deep-Image-Matching (DIM), compared to the results obtained with COLMAP (with 
RootSIFT features) and Agisoft Metashape with its own proprietary feature extractor and matchers. (*) Dataset C1 has been oriented 
combining different local features: SIFT, KeyNey + HardNet, ALIKED, SuperPoint, and DISK.  (**) As COLMAP produced two non-
linked reconstructions, the reported results refer to the reconstruction with the highest number of oriented images. 

Label Dataset Local feature extractor and matcher Oriented / 
total images 

Mean reprojection 
error [px] 

Mean track 
length 

3D tie 
points 

A1 Bel DIM: SuperPoint + SuperGlue 141/149 1.33 5.6 118494 
A2 Bel COLMAP (RootSIFT) 105/149 0.59 4.3 17970 
A3 Bel Metashape (proprietary) 134/149 0.46 2.9 48141 
B1 Semperoper DIM: SuperPoint + LightGlue 161/165 1.47 7.0 17197 
B2 Semperoper COLMAP (RootSIFT) 147/165 0.75 4.7 20080 
B3 Semperoper Metashape (proprietary) 119/165 1.03 2.6 24970 
C1 Nadar DIM: Combination of local features (*) 12/12 1.09 2.6 2791 
C2 Nadar COLMAP (RootSIFT) 0/12 NA NA NA 

C3 Nadar Metashape (proprietary) 3/12 0.36 2.0 294 
D1 Castle DIM: SuperPoint + LightGlue 48/48 0.90 3.3 75274 
D2 Castle COLMAP (RootSIFT) (**) 31/48 0.94 3.7 11367 
D3 Castle Metashape (proprietary) 48/48 0.50 2.5 59679 
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Figure 7: Results for the Bel temple dataset. (a-c) Tie points and camera orientation and (d-f) dense reconstruction for COLMAP 
RootSIFT, Agisoft Metashape, and SuperPoint+SuperGlue approaches, respectively. Metashape dense reconstrunction has not been 
run because of the incosistent image orientation output. 
 
 

 
(a) 

 
(b) 

Figure 8: Semperoper image pair example with matches 
represented as green lines, while the red dots are the non-matched 
keypoints. (a) Features correctly matched by RootSIFT; (b) 
feature matched by SuperPoint + LightGlue. On this image pair 
Metashape could not find any correct match. 
 
4.2 Semperoper 
 
For dataset B, Metashape was able to correctly orient 119/165 
images with a mean reprojection error of 1.03 pixels and with a 
relatively small mean track length (2.6 images), i.e., the number 
of images on which the same keypoint was found. However, 
Metashape was not able to orient the images with wide baselines 
such as those with sideviews of the building, even if parts of the 

front view are visible. Additionally, the images taken at night 
cannot be properly oriented. COLMAP was able to orient 
147/165 with the smallest mean reprojection error of all 
experiments (0.75 pixels). COLMAP also finds only few correct 
feature points for the sideviews (Figure 8a). On the other hand, 
the DL-based approach (SuperPoint + LightGlue) enabled 
features to be matched even for image pairs with strong 
radiometric differences and wide baselines (Fig. 8b), with a 
reasonable large number for the mean track length. The total 
number of registered images is 161/165 with a mean reprojection 
error of 1.47 pixels. The larger reprojection error is probably 
related to the fact that SuperPoint lacks subpixel accuracy in 
keypoint detection, because it operates at the pixel level. With 
almost all images registered, the DL-based feature matching 
results is the best solution.  
 
4.3 Nadar dataset 
 
For the Nadar dataset, different local features have been tested: 
SIFT, KeyNey + HardNet, ALIKED, SuperPoint, and DISK. 
SuperPoint and DISK are matched with LightGlue, while the 
others are matched with a nearest neighbor approach. None of 
these approaches managed to orient more than three images, 
except DISK that found significantly more tie points and oriented 
seven images. In Figure 9a, a matching pair example is reported 
for SIFT (a) and DISK (b). Metashape completely failed to orient 
the dataset.  
Only combining all the tie points from the previous approaches, 
excluded Metashape, it was possible to orient the whole dataset 
(Figure 9c-d). Tie points with multiplicity equals to two were 
excluded because considered not sufficiently robust and prone to 
outliers. In addition, no ratio threshold has been used to retain 
more matches. Because of the camera network and the scarcity 
of tie points, images were first oriented using a rough nominal 
focal length, then focal length and one radial distortion parameter 
were updated in a final bundle adjustment with self-calibration. 
With regard to 3D model reconstruction, the poor radiometry of 
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the images caused the dense matching of COLMAP and 
Metashape to fail. Therefore, to obtain a point cloud dense 
enough to build a meshed textured 3D model, the deep learning-
based semi-dense matcher RoMA available in Deep-Image-

Matching is applied (Figure 9e and 9f). Finally, using Metashape 
functionalities, a textureized model is created (Figure 9g and 9h). 
 

  
 

 
(a) SIFT (b) DISK (c) camera poses (d) tie points close-up 

    

(e) dense cloud - front (f) dense cloud - back (g) mesh with texture - front (h) mesh with texture - back 
Figure 9: Results for Nadar dataset. (a) SIFT matches and (b) DISK matches on an image pair; (c) camera poses and (d) 3D tie points; 
(e-f) semi-dense point cloud generated from RoMA tie points; (g-h) textured mesh 3D model. 
 

 

 

(a) 

 
(b) (c) 

Figure 10: Example of matched features with the different approaches on a challenging image pair (green or blue lines are the valid 
matches, while the red dots are the rejected keypoints): (a) SuperPoint + LightGlue (658 valid matches); (b) COLMAP RootSIFT (49 
valid matches); (c) Agisoft Metashape (1 valid match). 
 
4.4 Castle dataset 
 
The results obtained with SuperPoint + LightGlue (Tab. 1 - D1) 
were significantly better only compared to those obtained with a 
traditional COLMAP processing pipeline (D2), while they were 
similar to the outcomes obtained with Metashape (D3). With both 
LightGlue and Metashape all 48 images were oriented. On the 
other hand, COLMAP failed to orient all the images together, but 
it created two different not-linked models. The largest model 
consisted of only 31 oriented images, as detailed in Table 1. The 
smallest average reprojection error of 0.5 px was obtained by 
processing the dataset using Metashape with its proprietary local 
feature implementation, while a slightly higher reprojection error 
of 0.9 px was obtained by SuperPoint + LightGlue (Table 1), as 
SuperPoint did not have subpixel accuracy in keypoint detection. 
On the other hand, the mean track length of 3.3 obtained with 
SuperPoint + LightGlue was larger than 2.5 obtained with 

Metashape, guaranteeing higher redundancy of the observations 
in the bundle adjustment.  
Figure 10 shows the matched keypoints for a challenging pair 
composed of a UAV oblique image and a terrestrial image, with 
a wide baseline and rather bad lighting conditions for the 
terrestrial image. The combination of SuperPoint + LightGlue, 
which works better under strong viewpoints conditions (Ioli et 
al., 2023b), allowed for extracting more than 600 valid matches, 
while Metashape was able to find only a single valid match. 
Surprisingly for this pair, COLMAP with RootSIFT was able to 
detect more matches than Metashape, probably thanks to its 
ability to estimate affine descriptors (Lindeberg et al., 1997). 
However, for other challenging pairs the results of SuperPoint + 
LightGlue were comparable to those of Metashape or COLMAP, 
without providing any relevant improvement. The matches 
obtained with SuperPoint + LightGlue were finally imported into 
COLMAP for the bundle adjustment and reconstruction (Figure 
11a). 
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Figure 11: (a) Reconstructed sparse point cloud and oriented 
camera with SuperPoint + LightGlue after the bundle in 
COLMAP; (b) the same solution from Metashape, georeferenced 
with 4 GCPs (red flags), while all the other points are used as CPs 
(yellow flags). 
 

The two complete solutions D1 (SuperPoint + LightGlue) and D3 
(pure Metashape), in which all the 48 images were oriented, were 
validated by importing the estimated reconstructions into a new 
Metashape project and adding 4 GCPs at the block corner as a 
minimum constraint, while leaving the other 15 targets as CPs 
(Figure 11b). This made it possible to compare the solutions D1 
and D3 with the ground truth dataset D_GT and to evaluate the 
on-ground reconstruction accuracy based on the CPs and the 
camera pose error by comparing the camera exterior orientation 
parameters. Comparable results were obtained for both D1 and 
D3, with a centimetric error on the CP and an average error of 
less than 5 cm on the camera location (Table 2). This highlights 
that the dataset D was correctly oriented using both SuperPoint + 
LightGlue and Metashape processing, without showing a clear 
superiority of any approach.  
 

Dataset Approach RMSE X/Y/Z 
on CPs [m] 

RMSE X/Y/Z 
on camera location [m] 

RMSE Yaw/Pitch/Roll 
on camera attitude [º] 

D1 SuperPoint + LightGlue 0.017/0.010/0.010 0.036/0.043/0.044 0.13/0.04/0.07 
D3 Metashape 0.014/0.011/0.012 0.043/0.040/0.041 0.08/0.11/0.11 

Table 2: Summary of accuracy evaluation for the solutions obtained with SuperPoint + LightGlue (D1) and Metashape (D3) with 
respect to the ground truth (D_GT). RMSEs on CPs were computed as the RMS of differences between the 3D coordinates of the 
targets measured on-the-field and those estimated in D1 and D3. The cameras RMSEs were computed as the RMS of the differences 
between the estimated 3D coordinates and attitude angles of the cameras in D_GT and those estimated in D1 and D3. 
 

5. CONCLUSIONS 

The paper presented Deep-Image-Matching, a tool to facilitate 
the usage of DL-based local features in the photogrammetric 
community. Compared to other existing tools, Deep-Image-
Matching implement most of the essential options needed for 
photogrammetric applications, such as managing high resolution 
images, being robust to rotations and an out-of-the-box 
implementation that allows convenient interaction with various 
software packages (COLMAP, openMVG, and Metashape, 
easily extendable to further photogrammetric software). In 
addition, we presented some results on challenging datasets 
where the contribution of DL local features is clearly visible, 
being them trained to deal with wide camera baselines, 
significantly different viewpoints and radiometric differences.  
A known limitation of several DL local features, including 
SuperPoint, is the lack of subpixel refinement in keypoint 
detection, which can easily result in better reprojection error after 
bundle adjustment. As future work, we plan to add a subpixel 
refinement routine into Deep-Image-Matching using traditional 
cross-correlation at the location of the matched features. Recent 
approaches for jointly refine all 2D keypoints that are matched 
together, such as Pixel-Perfect Structure-from-Motion 
(Lindenberger et al., 2021), will be also considered. Additionally, 
we plan to improve Deep-Image-Matching processing by 
exploiting parallelization or batch processing on the GPU. 
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