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ABSTRACT: 
Traditionally, drawing products created from 3D surveying activities have been the universal medium of communication used by 
architects. This has resulted in a vast repository of graphic documentation that serves as a testament of the architectural heritage. The 
embedded information found in elevations, plans and sections holds considerable value, and it can be seamlessly integrated into the 
intricate graphics produced during large-scale data acquisition processes. The core objective of this research is to investigate how the 
information coming from the large amount of existing architectural technical drawings can support 3D heritage classification processes 
and avoid time-consuming annotation of materials and construction techniques of historical building facades. Starting from available 
sets of drawings, AI-based methodologies are applied for the annotation of orthoimages and point clouds in order to obtain a predictive 
model that can recognize classes of materials and construction techniques in a large amount of data. The predicted classes also allow 
the automatic creation of vector drawing representing the facades of new buildings, providing a novel tool to facilitate the processes of 
analysis and conservation of architectural heritage.  
 

 
Figure 1: The proposed 3D classification process based on technical architectural drawings to avoid data annotation and support 
automatic sematic segmentation of historical building facades. 

 
 

1. INTRODUCTION 

The information stored in architectural drawings can be a 
powerful source to be integrated with Artificial Intelligence (AI) 
methods to semantically enrich 2D/3D digital heritage. In 
particular, the challenge of 3D heritage classification has been 
open for some years with few automated processes available 
(Poux et al., 2017; Grilli & Remondino, 2019, Grilli & 
Remondino, 2020, Matrone et al., 2020; Pierdicca et al., 2020; 
Yang et al., 2023). Digital heritage often presents peculiar 
characteristics that hamper replicability and generalization of AI 
methods across different scenarios. Especially in the architectural 
field, the presence of unbalanced classes, the size and uniqueness 
of the monuments as well as the level of detail that architectural 
analysis of buildings usually requires pose hard challenges for 
AI-based classification approaches. Another severe drawback 

consists in the lack of sufficient training data which, linked to the 
previous challenges, contributes to making these kinds of 
approaches even more challenging. In this scenario, the use of 
previously produced architectural drawings to generate a sizeable 
amount of training data can be very useful to boost the 
implementation of AI methods in the field. 
Knowledge and conservation of architectural heritage presents a 
growing number of modalities and techniques. The integration of 
semantic information into 2D and 3D data through automated 
classification methods has been a crucial advancement in digital 
production, aiming to enhance the analysis, monitoring, and 
conservation methodologies of cultural assets. In recent years, 
advances in Machine Learning (ML) and Deep Learning (DL) 
algorithms had a decisive impact on performing these tasks.  
Specifically, the classification of building facades has been 
explored in various studies (Korc and Forstner, 2009; Tyleček 
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and Šára, 2013; Hess et al., 2017). In Teboul et al. (2013), the 
combination of Shape Grammars and Reinforcement Learning 
achieved positive results in the segmentation of 2D facade 
images based on compositional architectural elements. Valero et 
al. (2018) developed innovative algorithms for the automatic 
segmentation of individual masonry units through the use of 
geometric and colour data acquired by laser scanning devices. 
Grilli et al. (2019) compare the precision metrics obtained in the 
segmentation of point clouds from various archaeological and 
architectural heritage cases using Machine and Deep Learning. 
Generally, the process needs manual labelling of classes in the 
learning phase as unsupervised methods are still not available for 
heritage 3D data. In our case, the idea focuses on exploring the 
possibility of replacing the manual annotation operation with 
automatic labelling using the thematic information present in the 
existing vector drawings of the selected case studies. At the same 
time, a data fusion is performed involving the radiometric 
features of the orthoimage and the geometric features of DSM 
and SHP files, aiming to achieve the automatic creation of new 
vector polygons. 
 
1.1 Objectives of the study 

The aim of the presented work is two-fold: 
• to investigate how the information coming from a large amount 

of existing architectural technical drawings can support 
supervised 3D classification processes and avoid time-
consuming annotation of materials and construction techniques 
of historical building facades: this can be accomplished using 
the information that comes from the drawings and projecting 
these kinds of annotations onto point clouds and orthoimages. 
In this way, it is possible to generate a significant amount of 
annotated data and train Machine Learning (ML) / Deep 
Learning (DL) models, speeding up the semantic segmentation 
of architectural-related point clouds and orthoimages. 

• to test whether the use of architectural technical drawings as 
input in the training phase allows the automatic creation of new 
vector files representing the façades of other buildings for 
which no drawing exists.  

The automated recognition of materials and construction 
techniques and the automatic obtaining of vector representations 
can be an extremely valuable tool for preserving, restoring and 
monitoring the abundant architectural heritage found throughout 
urban landscapes.  
 

2. METHODOLOGY  

2.1 Materials and construction techniques 

The investigation used CAD technical drawings for annotation 
and both unclassified point clouds and orthoimages from 
photogrammetric surveys for training and validation. A 
significant quantity of two-dimensional CAD technical drawings 
has been collected throughout the years. The variety of materials 
and construction techniques is represented using recurrent 
textures and patterns. This information can help AI methods in 
their task of automatically recognising classes within building 
facades. To facilitate this, a proper schedule was conceived, 
identifying the diverse categories of materials and construction 
techniques within this architectural typology. The schedule 
summarises the general categories of materials and construction 
techniques commonly found in most palaces. Specifically, during 
the learning phase, we selected buildings with more complexity 
and a greater variety of categories to help the algorithm acquiring 
as much information as possible simplifying the subsequent 
prediction task. In this way, the technical drawings of the most 
representative facades were schematised by dividing the layers 

based on the classes represented in the schedule. This resulted in 
the labelled information used to train the ML/DL models to 
perform their tasks.  
Some architectural studies (Pallottino, 1990; 1992), specify in 
detail the various construction techniques and materials that 
constitute the elements present in the facades of this architectural 
typology. In this way, by taking these works as a reference and 
conducting on-site observations of selected and analogue 
buildings in the urban context of Rome, a synthesised schedule 
of the materials and construction techniques most frequently 
found on their façades was carried out (Figure 2). As a result, 
travertine, plaster, stucco and fixtures were identified as classes 
of materials. The fixtures class, in particular, included the internal 
elements of the fixtures, such as glass, shutters or grilles, which 
involve a greater complexity due to the presence of reflections in 
the glass or the variation of the position of the shutters. These 
aspects can be a significant obstacle in the development of an 
automated process, so it was decided to consider this class 
autonomously, avoiding possible errors that could hinder the 
experimental phase.  
Regarding construction techniques, the identified classes include 
rusticated travertine, carved travertine, particular elements 
travertine, smooth plaster, rusticated plaster, carved stucco, and 
once again, fixture as a general category.  
The fundamental aspect of constructing this schedule is related to 
the identification of the geometric and morphological 
characteristics through which these construction techniques are 
represented in the various two-dimensional drawings that exist of 
these buildings. In this regard, geometric features derived from 
the representation of this architectural language are added to the 
radiometric features involved in the machine learning process. 

 
Figure 2: Schedule of materials and construction techniques. 

 
2.2 3D semantic segmentation pipeline 

The first proposed pipeline (Figure 3) leverages the drawing 
information to generate labelled 3D annotated data of the 
facades, eventually aiming at training a neural network to 
perform the semantic enrichment of not yet annotated facades’ 
point clouds. 
At first, we generate masks comprising the classes that represent 
the materials and the construction techniques by reprojecting the 
CAD vector drawings onto orthoimages. Subsequently, we align 
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the generated masks to the palace facades' photogrammetric point 
clouds to reproject the classes of choice onto the point clouds via 
interpolation. Following the reprojection, the annotated point 
clouds are divided into training and evaluation sets. These sets 
are then fed into the deep learning algorithm together with 
sensor- and geometric-based features, which help the network to 
learn how to identify the selected classes. Eventually, we use the 
generated models to predict the classes on new unseen data. 
The prediction phase relies on Point Transformer (PT) (Zhao et 
al., 2021), a method that accomplishes fundamental scene 
understanding tasks by leveraging the self-attention operator. 
The PT architecture can improve its capabilities for tasks 
involving large scenes with millions of points by implementing 
the self-attention mechanism locally. In addition, the network can 
employ class-balancing techniques to account for the existence 
of underrepresented classes. 

 
Figure 3: The proposed 3D semantic segmentation pipeline. 

.

 
Figure 4: The 2D segmentation and vectorisation pipeline. 

2.3 2D semantic segmentation and vectorisation pipeline 

The second proposed pipeline (Figure 4) proceeds in the same 
manner as the first, converting the drawings into masks 
representative of the selected classes. However, in this case, the 
end goal is to generate vector-based drawings, therefore the 
semantic enrichment is carried out directly at 2D level, with no 
information passed to the 3D point cloud. At the same time, to 
take advantage of the 3D reconstruction, the geometric 
information is transferred into the network by using the available 
facades’ Digital Surface Model (DSM). After preparing the 
masks with the annotated classes, orthophoto and DSM are 
injected into the deep learning network (Figure 5). By doing so, 
we aim to enhance the algorithm's results combining depth 
information from the DSM with features extracted from the 
orthophoto. 

 
Figure 5: Data preparation for the training phase. 

 
The prediction step relies on DeepLabV2 (Adam et al. 2021), 
which is an improved version of the origin DeepLab (Chen et al. 
2017). It is based on ResNet152 (He et al. 2015) as the backbone 
network which was trained using the ImageNet database. The 
main advantage of DeepLab is the use of the dilated convolutions 
concept, also called atrous. This new concept allows the model 
to capture wider context in images without reducing their 
resolution. It has also demonstrated robustness against various 
image perturbations and high-class variance, among other 
factors.  
The predicted masks are then used to generate a contour map of 
the classes’ area borders and, from that, automatically create the 
vector-based drawings of the predicted classes, already divided 
into multiple shapefiles, one for each represented class. 
 
2.4 Evaluation metrics 

In order to objectively evaluate the segmentation results of both 
pipelines, we decided to use the following metrics, calculated by 
comparing the predictions’ results to the ground truth data: 
The Overall Accuracy (the higher the better): 

OA = ∑
!
"#1 "#"
$

  (1) 
The mean of Intersection over Union (the higher the better): 

mIoU = 1
%
∑%&'1

"#"
"#"()#"()$"

  (2) 

The weighted Intersection over Union (the higher the better): 

wIoU = ∑%&'1
*"×"#"

"#"()#"()$"
  (3) 

with 
C: the total number of classes. 
N: the total number of samples. 
Ni: the total number of samples of class “i” (i = 1, …, C). 
True positive (TPi): the number of correctly predicted samples of 
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class “i”. 
False Positive (FPi): the number of samples of other classes (not 
class “i”) which are predicted as class “i”. 
False Negative (FNi): the number of samples of class “i” that is 
wrongly predicted to other classes. 
wi: the weight of the class “i” which represents the sample 
percentage of class “i” over all the samples. 
 

3. EXPERIMENTS 

3.1 The case studies 

To test the implementation of the proposed pipelines, a large 
amount of 2D graphic documentation of renaissance and neo-
renaissance palaces in Rome is considered. These palaces present 
an interesting variety of materials and construction techniques, 
all clearly distinguishable through the available architectural 
drawings. Consequently, this documentation stands out as a 
coherent and standardised representation of a specific 
architectural language, providing a perfect basis for the 
experimental methods we employ. The data acquisition from 
these buildings (Figure 6) was carried out using photogrammetric 
survey campaigns. High-resolution orthoimages and digital 
surface models (DSM) were generated for each of the surveyed 
buildings. 
 

 
Figure 6: Facades orthoimages (left) and photographs of the 
urban context (right) in which the selected palaces are located. 
 
The Palazzo Severo, also known as Palazzo della Pontificia 
Accademia Ecclesiastica, is an example of those buildings that in 
the 19th century had their façade renovated, following the 
neoclassical canons with typical neo-Renaissance decorations. Its 
facade spans approximately 42 meters in length and 23 meters in 
height, while the photogrammetric point cloud obtained during 
the survey consists of around 27,4M points. 
The Palazzo in Piazza Rondanini is a simple example of a 
Renaissance building built in the 16th century. With a height of 
14 meters and a length of around 19 meters, it showcases a 

rusticated travertine arch at the entrance, sculpted travertine 
moulding details, and a "false" rusticated plaster at level 0. The 
point cloud of this palace comprised 42,7M points ca. 
The Palazzo Mazzetti was constructed between 1855 and 1860, 
featuring distinctive rusticated travertine, lintel-framed windows 
in stone, and a false rusticated plaster on the upper levels. With a 
height of approximately 23 meters and a length of 24 meters, it 
yielded a dense point cloud comprising around 40,8M points. 
 
3.2 3D point cloud semantic segmentation results 

For all three palace facades’, annotated masks were generated 
from a simplified version of their technical drawings. Both the 
shapefiles-to-mask reprojection and masks-to-shapefiles 
generation procedures are performed via Python scripts, utilising 
the libraries Rasterio, Shapely and Fiona. As explained in Section 
3.2, the obtained masks in projected onto the point cloud through 
interpolation by using the CloudCompare software interpolation 
tool. A portion of each building is then allocated for the training 
process, aiming to provide the algorithm with a sufficient 
quantity of data for efficient learning and effective model 
development. Approximately 30% of the dataset was allocated to 
the training set, 20% to the evaluation set, and 50% to the test set. 
This choice was taken in light of generalization purposes. The 
algorithm was assisted in converging to a better result by using 
selected geometric features calculated at different radii (Table 1) 
as well as sensor-based features (RGB radiometric values). The 
network was trained for 100 epochs with a batch size of 32, using 
the Adam optimizer method (Kingma and Ba, 2015) and 
subsampling the input point clouds at 1 cm. The optimizer 
method used for the training was the Adam method. 
 

Geometric Feature Radius (m) 
Normal change rate 0.05 

Mean curvature 0.1 
Normal change rate 0.1 

Mean curvature 0.2 
Normal change rate 0.3 

Roughness 0.3 
Sphericity 0.3 
Verticality 0.3 

Table 1: Geometric features calculated at different radii. 

The pipeline was adopted to predict both materials and 
construction techniques classes, with the only difference being 
that we used the materials label as a feature to train the 
construction techniques model. The reasoning behind this 
decision is that since the materials and construction techniques 
are related in a "one to many" manner, following the intervention 
of a manual operator who corrects the inconsistencies in the 
materials’ prediction, the materials' labelled data can be used to 
assist the network in the subsequent phase. 
As visually noticeable in Figure 7, the facades were for the most 
part correctly predicted for both materials and construction 
techniques. Even very under-represented classes like stucco in 
the materials’ prediction and the class particular elements in the 
construction techniques prediction have been detected and 
segmented quite successfully. Looking more closely at the 
predictions’ masks, we can see that the algorithm had a harder 
time distinguishing among classes with very similar geometric or 
radiometric characteristics, as noticeable on the Palace of Piazza 
Rondanini’s facade between two different variants of plasters 
(rusticated and smooth) or the confusion between carved 
travertine and particular elements on Palazzo Severo’s facade in 
Figure 7. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024 
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-445-2024 | © Author(s) 2024. CC BY 4.0 License.

 
448



 

 
Figure 7: Predicted point clouds for material (left) and 
construction techniques (right). 
 
Tables 2 and 3 present some metric for the abovementioned tests.  
The metrics were calculated on each facade’s prediction, causing 
the issue of not having a complete representation of all the classes 
in every facade. This problem didn’t affect the calculation of the 
OA, not being influenced by it, and wIoU, being the weight of 
the not represented classes equal to 0. The mIoU was instead 
estimated by taking the class that was not represented out of the 
computation. 
 

Dataset OA % mIoU % wIoU % 
Palazzo Severo 93.32 88.30 87.52 
Palazzo Mazzetti 93.66 88.19 88.18 
Palazzo at n. 48 86.12 72.31 77.26 

Table 2: Quantitative evaluation for materials predictions. 
 

Dataset OA % mIoU % wIoU % 
Palazzo Severo 93.48 79.00 90.12 
Palazzo Mazzetti 92.87 78.69 88.71 
Palazzo at n. 48 88.12 77.10 80.95 

Table 3: Quantitative evaluation for construction techniques 
predictions. 
 
The metrics show that, even if encouraging results are visible 
through visual inspection, there still remains a large number of 
inaccuracies, particularly in the facade prediction for the Palace 
of Piazza Rondanini. This was to be expected given the type of 
data we used, facades of buildings, comprising several classes 
with no recognisable geometric signature. Because of that, it was 
not possible to take full advantage of the 3D nature of the point 
clouds. 
 
3.3 2D semantic segmentation and vectorisation results 

After creating the annotated masks representing materials and 
construction techniques of the facades, we divided our dataset 
into 2 subsets, a training set and a testing set. In order to fairly 

evaluate the 2D semantic segmentation results and generate 
models with a higher understanding of the scene, each image was 
divided into 2 equal parts: the left part of the image (50%) was 
used for the training set while the other part was used for the 
testing set. The training dataset was created by cropping 
randomly over the training set (the left half of each image). Each 
crop (patch) was of size 512x512 px. The total number of training 
samples was 9000 samples. Half of them were created using data 
augmentation (horizontal flipping). 
The proposed model was implemented by using the TensorFlow 
library. The batch size was set to 4 with the maximum number of 
epochs equal to 100. The optimizer method used in training was 
the Adam method (Kingma and Ba, 2015) combined with the 
“categorical cross-entropy” loss function. The initial learning rate 
was set to 0.0002 and the obtained results are presented in the 
next tables. 
Table 4 and Table 4 reports prediction metrics whereas visual 
results are shown in Figure 8. 
 

Dataset OA % mIoU % wIoU % 
Palazzo Severo 97.14 93.77 94.47 
Palazzo Mazzetti 95.68 91.68 91.76 
Palazzo at n. 48 97 69.2 94.26 

Table 4: Quantitative evaluation for materials segmentation. 
 

Dataset OA % mIoU % wIoU % 
Palazzo Severo 97.56 91.62 95.28 
Palazzo Mazzetti 96.76 79.63 94.02 
Palazzo at n. 48 96.74 91.18 93.74 

Table 5: Quantitative evaluation for construction technique 
segmentation. 
 

 

 
Figure 8: Predicted materials (left) and construction techniques 
(centre) using the proposed 2D semantic segmentation approach 
and generated vector drawings (right). 
 
In the final phase, the masks’ predictions of the three facades 
were used to create contour maps of the classes and, from those, 
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the classes' shapefiles were generated (Figure 8-right).  
The metrics and the visual inspection of the inferences reveal a 
high level of accuracy in the predictions of both materials and 
construction techniques, exceeding what achieved with the 3D 
pipeline. The network manages to predict both unbalanced 
classes and classes with fairly similar geometric and radiometric 
characteristics with a high degree of success. 
 

4. CONCLUSIONS AND FUTURE WORKS 

The investigation aimed to take advantage of the information 
potential stored in existing technical drawings of buildings’ 
facades. Starting from these architectural drawings, facades’ 
point clouds and their orthoimages, two working pipelines were 
proposed to produce ready-to-be-used products in the field of 
architecture and heritage preservation.  
The first approach integrates the drawings into a 3D semantic 
segmentation pipeline aimed at automatically producing labelled 
point clouds of unseen buildings’ facades. The main advantage 
of this approach consists of automating the generation of training 
data by transferring the drawings’ information to the point 
clouds, an otherwise time-consuming procedure to perform 
manually. Despite the lack of relevant geometrical 3D properties 
in the building facades, the first approach achieved good results 
in performing the semantic enrichment, automatically generating 
annotated point clouds in the needed classes. Nevertheless, the 
use of a DSM as a feature didn't help to improve the accuracy of 
the predictions. 
The second pipeline starts from drawings and facades’ 
orthoimages and create 2D masks exploitable as annotated data. 
We can then use this data to train a neural network to predict other 
palaces' facade orthoimages and eventually convert the 
prediction into technical drawings with the labelled classes. 
Predictions achieved even higher levels of accuracy, allowing the 
successful generation of shapefiles for each predicted class. 
Despite the presence of irregularities and inhomogeneity in the 
resulting shapefiles, the results seem promising and further 
development of the procedure could help to improve the 
outcomes. 
The use of technical drawings has proved to be a reliable and fast 
way to create annotated data from already existing information, 
significantly reducing the time of data preparation for the training 
phase. From a wider perspective, this could lead to the creation 
of a much larger training set by taking advantage of a large corpus 
of already-made technical drawings. 
The vectorization results are promising also on a more conceptual 
level. We might consider that the technical architectural drawing 
brings together two main scopes.  On one hand, manual drawing 
has the role of reporting in 2D vectors the metrical and 
dimensional characters of an object referring purely on captured 
data. On the other hand, drawing is an interpretation tool of a 
certain architectural language. This process of interpretation aims 
at disassembling the building into elements and converting each 
of them into 2D shapes. These shapes are codified from a 
geometrical point of view, and they are built referring to 
geometric constructions. The reported work is located in between 
these two scopes to evaluate at what extent AI processes can 
produce a technical architectural drawing able to report not only 
the metrical and dimensional aspects but also the ones connected 
to a specialistic interpretation of a building. 
First results demonstrate that a certain level of automation in 
generating a 2D vector drawing with metric accuracy can be 
reached. Starting from this, the pipeline could be further 
improved to test the possibility of converting source data into 
codified geometric shapes. Starting from this, we could be one 
step closer to a real automatic drawing. 

Despite the overall successful performance in taking the most out 
of the inputted drawings in both pipelines, some issues remain to 
be addressed: 
• Improve the mask creation procedure to be suitably used to 

create annotated data from detailed, instead of simplified, 
technical drawings: this could lead to a reduction of the total 
amount of manual work and overall speed up the procedure. 

• Both tested pipelines were trained on a very small amount of 
training data, reducing significantly the potentialities of the 
deep learning techniques:  upscaling the experiments using a 
significantly larger amount of data is required to improve 
predictions’ results and generalization. 

• Improve the quality of the resulting shapefiles in the 2D 
pipeline to achieve outcomes closer to the standard used for 
technical drawings, therefore reducing the need for manual 
operations to correct possible inaccuracies. 
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