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ABSTRACT: 
Image classification and object detection techniques have been widely discussed and developed in recent years; they are the basis of 
various prosperous applications, for example, real-time mapping. Promising as it is, the practical test in the cultural heritage field 
encountered multiple problems. In this paper, the authors attempt to share the research experimentations and the empirical 
knowledge focusing on the classification and detection of architectural pathology. The tests are built on elaborated training sets 
annotated with analysed and in-advance defined categories. The trained models were examined from the perspective of evaluation 
sets, model explanation and unseen datasets. The outcomes indicated the mistakes and confusions behind things and stuff in the 
object detection efforts, to which cultural heritage and architectural field are closely related. The model also reveals specific visual 
patterns for recognition from thousands of instances in the training set. By digging into different aspects of model performance, the 
potential and limitations of these techniques in practical applications can be better understood. 
 
 

1. INTRODUCTION 

Architectural pathology detection is an essential step for the 
maintenance of infrastructure, from modern architecture to 
cultural heritage to support restoration and preservation works. 
Examining and mapping extensive areas has been a time-
consuming manual job even until now, generally done after a 
detailed survey of the spaces and synthesising the information 
on 2D mapped sections or orthophotos. Nowadays, the job of 
identification and mapping is entirely manual. Integrating 
artificial intelligence (AI) techniques is expected to accelerate 
this process, starting with automated annotation of images. 
This means to solve the “What-is problem” automatically and 
quickly, and this is the solid ground upon which all the other 
data interpretation can be built, e.g. real-time mapping and 
semantic photogrammetry.  
Recent years have seen fast development of AI. While deep 
learning (DL) methods for computer vision in conducting tasks 
like classification and object detection are becoming mature in 
many other fields, the application in the architectural field is 
rarely seen because they prepare the dataset, which is 
challenging due to the fact that CH is characteristic to map are 
too various and not standard. For this reason, preparing the 
correct training set needs a combination of 3D and 2D 
multiscale datasets.  
However, if the provided training set is of high quality and 
matches the complexity of the model, the statistical methods can 
also be practical in this field. That typically needs large datasets 
and proper training. An example is given by LeCun et al. in 
1989, who automated the recognition of digits by providing the 
dataset MINST and the well-known model LeNet. The dataset 
included 60,000 images of manually written digits training set 
for training and 10.000 for evaluation; each image contains 
28*28 pixels in grayscale. Another famous example is given by 
Deng et al., 2009 attempting to use 1000 images to describe one 
synset.  
Nowadays deep learning models are becoming more 
complicated by the years, capable of remembering description 
factors for thousands of categories. The models are enabled not 

only to recognize the presence of a certain objct on the image 
but also to locate it in the image itself. The application of those 
methods is limited because there are limited datasets annotated 
based on specific uses and practical scenes. 
The main challenges of AI applications in the architecture field 
are mainly in the process of providing a profitable training set. 
Changes influence data acquisition in light, perspective and 
distances of tiny details, making categorising decay manually 
challenging. 
This paper tests two deep learning tasks, classification and 
object detection, for detecting specific pathological patterns on 
architectural surfaces. It attempts to explain the results by 
discussing the problems that occurred during the preparation of 
the training set, examining the correlation of samples, and 
explaining the inference process. 
 

2. RELATED WORKS 

2.1 Introduction to the deep learning methods 

Pathology detection is a challenging task because there is no 
clear boundary among the different types of pathology. This 
means that pathology can not be considered as “thing” (objects 
with a well-defined shape, e.g. cat, person) but must be 
considered as “stuff” (amorphous regions, e.g. sky, forest), 
following the definition of Caesar et al., 2018. It has addressed 
the issue of dataset preparation with ‘thing’ and ‘stuff’, 
emphasised the importance of stuff and discussed the contextual 
correlation to things. 
In order to perform the pathology classification, the classical 3 
steps are followed: Dataset preparation, model training and 
evaluation and explanation. 
1) Dataset preparation has been discussed for a long (Deng et 
al., 2009; Everingham et al., 2010; Lin et al., 2015), including 
topics like the scale of the dataset (referring to the number of 
categories and instances), the semantic hierarchy of the classes, 
accuracy (reliability of the annotation), and diversity 
(appearance, positions, viewpoints). The data preparation 
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activities follow the suggestions from these previous 
experiences.  
2) The model training models for image classification and objct 
detection in recent days are many. Among all, the most famous 
should be LeNet. Afterwards, typical man-crafted networks 
with limited depth of layer were developed, like VGG 
(Simonyan and Zisserman, 2015), and Inception Network 
(Szegedy et al., 2014). Residual networks such as ResNet were 
developed by He et al., 2015 which introduced the concept of 
residual connection, solving the problem of gradient vanishing 
and allowing layer depth increase. 
Later Deep Learning models, like Faster RCNN (Ren et al., 
2016) and YOLO (Redmon et al., 2016), are nowadays popular 
models used use for detection are they stand for two typical 
approaches for 2D object mapping. The RCNN, as a two-stage 
approach, starts with region proposals and then determines if 
objects are contained in each proposal. As a one-stage approach, 
Yolo directly asks the model to output box location and classes. 
A comparison of the two first-version models suggests that the 
YOLO is less sensitive towards small objects and less accurate 
in general, while faster in referencing.  
3) To understand how the model is responsive to the data, one 
of the used methods is t-distributed Stochastic Neighbor 
Embedding (t-SNE) (Maaten and Hinton, 2008) that visualise 
the high-dimension data to examine the data and understand the 
model. It processes the data-points and locates them in a 2D 
map, exposing the similarities and confusion among the 
categories. Other techniques like class visualisation, Saliency 
maps (Simonyan et al., 2014), and Class Activation Map (CAM, 
Muhammad and Yeasin, 2020; Zhou et al., 2016) were later 
developed to understand the decisions made by the model. In 
this research, the choice is to use t-SNE and CAM. 
 
2.2 Some related research 

Multiple works have delved into the automatic attribution of 
semantic meaning to architectural data. Various AI approaches 
were adopted, triggered by the needs of individual case studies.  
Some of them use the Machine Learning (ML) approach. This 
method will require a case-by-case training set. The outcomes 
are promising because the model is deliberately trained for the 
same case. This means that the 2D representation of samples 
possesses features that are more coherent to the describing 
categories; light environment and other surrounding conditions 
don’t affect much. This is the case followed by (Grilli et al., 
2018) that classifies 2D texture or orthoimages unwrapped from 
3D models, projecting them onto 3D geometries for a better 
spatial understanding, performing a “texture-based” 
classification. Optimised models, orthoimages, and UV maps 
are created for each case under study.  
Several works (Guerrieri and Parla, 2022; Kwon and Yu, 2019; 
Mishra et al., 2022; Pathak et al., 2021) have been seen using 
deep learning object detection to detect pathological issues and 
materials of the surfaces. The applications of those works are 
promising, but they deal with very specific objects and 
favourable conditions like high image quality and easily defined 
categories to be detected.  
Currently, there hasn’t been a general model or working 
approach to solve the problem in a more general way dealing 
with the detection of all the different types of surface 
deteriorations (related to stuff). This is real for pathology 
detection in 2D and even truer for a direct 3D approach.  
3D object detection is another field under heated discussion. 
Deep learning models were trained to attribute semantic 
meaning directly to the point cloud. (Charles et al., 2017; Qi et 
al., 2018) Cultural heritage has been seen using machine 
learning and deep learning models to map architectural 

components (Malinverni et al., 2019; Pierdicca et al., 2020; 
Teruggi et al., 2020; Zhang et al., 2022; Zhang et al., 2022). 
While the pathology upon surfaces requires performing 
detection job on point cloud at high resolution, allowing 
calculations of geometric features at an extremely detailed level, 
this approach is not optimal for the reason of difficulty in data 
collection, heavy computational resources and relatively long-
time processing. 
 

3. METHODOLOGY 

This paper mainly addresses the practical tests on architectural 
pathological issues for image classification and object detection 
tasks. Like the development history of deep learning 
technology, the statistic models were trained first to identify 
‘what’ (classification)  and then ‘where’ (detection).  
The primal need is to figure out if the pathological issues are 
identifiable. The second is how they can be detected. 
Then, the future task will be to use them for 3D mapping and 
other further utilities. 
 
3.1 Designing the Categories 

Families Categories Description 

Biological 
colonisation 

Biological 
colonisation 

(B.I.O.) 

Colonisation of the material by 
plants and micro-organisms such 
as bacteria, cyanobacteria, algae, 

fungi, and lichen (symbioses of the 
latter three) 

Plant 
(P.L.T.) 

Vegetal living being, having, when 
complete, root, stem, and leaves, 
though consisting sometimes only 
of a single leafy expansion (e.g., 

Tree, fern, herb). 

Discoloration and 
deposit 

Discoloration 
(C.H.R.) 

Change of the surface colour in 
one to three of the colour 

parameters: hue, value and 
chroma. 

Crust and Deposit 
(CRU) 

Generally, crust coherent to 
accumulation of materials on the 

surface. And deposit to 
accumulation of exogenic material 

of variable thickness. 

Subflorescence and 
efflorescence 

(S.N.E.) 

Generally whitish, powdery, or 
whisker-like crystals on the 
surface. Subflorescences are 

usually hidden. 

Graffiti 
(G.R.A.) 

Engraving, scratching, cutting or 
application of paint, ink, or similar 

matter on the surface. 

Features induced by 
material loss 

Alveolization 
(A.L.V.) 

Formation, on the surface, of 
cavities (alveoles) which may be 

interconnected and may have 
variable shapes and sizes 

(generally centimetric, sometimes 
metric). 

Erosion 
(E.R.O.) 

Loss of original surface, leading to 
smoothed shapes. 

Crack and 
deformation 

Crack 
(C.R.A.) 

Individual fissure, clearly visible 
by the naked eye, resulting from 

separation of one part from 
another. 

Detachment 

Peeling 
(P.E.L.) 

Shedding, coming off, or partial 
detachment of a superficial layer 

(thickness: submillimetric to 
millimetric) having the aspect of a 

film or coating which has been 
applied on the surface. 

Delamination 
(DEL) 

It corresponds to a physical 
separation into one or several 
layers following the laminae. 

Disintegration 
(D.I.S.) 

Detachment of single or aggregates 
of grains 

Table 1. Families and used categories with their definitions. 
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One of the most essential steps of the process is to identify 
clearly the pathology categories under detection. The 
terminology in defining pathological issues comprises multiple 
types regarding various materials and causes. Furthermore, the 
visual aspect of the same deterioration type cannot be the same, 
being the result of a different combination of materiality, natural 
causes (climate and animals), building techniques, human 
interventions, etc.  
The ICOMOS glossary for stone deterioration (Verges-Belmin 
and Stone, 2008), a widely recognised resource in the field of 
cultural heritage conservation, was used as the primary 
reference for implementing the semantic hierarchy and its 
accompanying categories. Please refer to Table 1 for further 
details. 
To avoid confusion and simplify the categories to be used, some 
of the patterns that share similar visual representations have 
been grouped. Therefore, few categories are not included in the 
plane text: alga, lichen, moss, and mould for the biological 
colonisation; encrustation, film, glossy aspect, patina, soiling 
for the discolouration and deposit family; mechanical damage, 
microkarst, missing part, perforation, pitting for features 
induced by material loss; blistering, bursting, fragmentation 
scaling for detachment family. 
Multiple categories mentioned in the ICOMOS glossary are not 
used for the training process. In some specific cases, ICOMOS 
degradation categories are rare to find samples, confusing or 
hard to recognise by both machines and humans. For example, 
the diagnosis of a deformation case requires knowledge of the 
original or earlier appearance of the object as a reference to 
determine if the current situation can be classified as 
deformation. For these reasons, these types of degradation are 
not considered at the moment but are left for further 
examination. 
 
3.2 Data preparation 

The training dataset was expected to deal with the problems 
addressed above, with the data mainly coming from field studies 
in Italy. This means the training set should have high 
similarities to the data acquired in aimed application scenes.  
For this reason, the images used for the classification are taken 
almost right in front of, focused on the pathological area and 
showing only one type of decay. For object detection, the 
prepared photos were shot without strict rules regards the 
shooting position and image deformation. Moreover, some 
photos might include various object categories (see Figure 1).  
This approach is aimed at solving two different practical tasks. 
The classification and segmentation tasks are expected to 
generate results from photos or images with better qualities, 
while object detection is expected to work in real-time, 
requiring robustness for more complicated situations. 
 

 
Figure 1. Samples for object detection and classification. 

Photos for the training set have also been processed, especially 
to reduce the image size, which largely affects the training 
process, either leading to large memory consumption in CPU 

and GPU, or discarding objects that are relatively small for the 
annotation. The chosen main solution was to split some large 
photos into 9 parts. On one hand, it minimises the size of inputs; 
on the other, some irrelevant parts can be dropped to avoid 
redundant and negative training feeds. 
  
3.3 Model training and evaluation 

Considering the inference time, accuracy and model 
complexity, the chosen training models are ResNet18 (He et al., 
2015) for the image classification and Yolo v5. 
Residual networks allow skipping connections of layers (see 
Figure 2). By concatenating feature maps generated from the 
previous layer to the current, the network can continue 
processing without losing attention to details. This allows the 
model to avoid vanishing gradient and degradation problems, 
performing well as feature extractors in multiple other computer 
vision tasks.  

 
Figure 2. ResNet-18 Architecture. 

Yolo architectures (see Figure 3) compared to the ‘two-step’ 
RCNN approach, are known for speed and convergence time 
while lowering precision. The used model architecture is 
comprised of mainly two parts: backbone and head. The 
backbone architecture is considered as the feature extractor; 
hence, it may vary from case to case, but commonly used is an 
optimised version of Darknet, namely CSP-Darknet53. This 
backbone typically includes four C3 blocks (CSP bottleneck 
blocks with 3 convolutions) eventually output through an SPPF 
(Spatial Pyramid Pooling – Fast) layer, with the first two C3 
modules outputs catenated to the layers of detection head. The 
head in Yolo v5 accepts several outputs from the feature 
extractor; in the same logic of concatenation, the eventual 
detection head processes the outputs from the last three C3 
modules, generating bounding boxes, confidence scores and 
class probabilities. 
 

 
Figure 3. Yolo v5 architecture. 

Part of the examination process is based on the numerical value 
calculated from the evaluation set that is randomly selected, 
taking up 10% of the overall annotated dataset. 
These results suggest how well the model is fitted to the training 
set and, for similar scenarios, how the performances are in terms 
of precision. The representativity of the training and evaluating 
sets is namely their similarity with reality and it has also to be 
considered in the examination phase.  
The model was also examined by using explanation tools, e.g. 
Class Activation Map (CAM). The explanation methods reveal 
how the model makes decisions by associating weights with 
each feature map in the final convolution layer. Summing the 
weighted feature maps, it allows visualising the triggering part 
of specific classes on a heatmap. The quality of the training 
model can be represented using the heatmap that can show in a 
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very intuitive way the areas that are closely related to the 
reference of human decision. 
 

4. MODEL BEHAVIOR 

4.1 Image classification 

4.1.1 Dataset composition 
4777 photos of different materials, including stone, ceramic, 
plaster, cement, and wood, were collected from multiple 
sources, including fieldwork, books, and the internet. After the 
pre-processing, the images were categorised into 12 
pathological classes. 

 
Figure 4. Histogram of the number of images per category 

 
Figure 5. Example images from each category of material 

plaster, followed by an average image (marked by 
blue) and a strengthened pattern (marked by dark 
blue). From up to down list: Biological colonisation, 
Plant, Crack, Delamination, Disintegration, Peeling, 
Discoloration, Crust, Graffiti, Subflorescence & 
Effloresence and Alveolization. 

Unfortunately, also in this case, as common in many examples, 
the dataset has a balance problem in terms of the number of 

samples. Figure 4 shows how many images are used for each 
category for the five different considered materials. In the future, 
as the annotation work proceeds, the constantly renewing 
dataset will enhance the model performances on categories for 
minor classes. 
Taking the data of plaster, as an example, which was collected 
from the field precisely for the purpose of dataset preparation, 
the abundant samples and clear visual patterns enable proper 
training and discussion.  
 
4.1.2 Training and evaluation 
The training process started after the preparation of the training 
set. The model is trained on data related to plaster and stone 
material because they have more images (3500 images) and 
together cover all 12 classes. 
Nowadays pre-trained model is commonly used for transfer 
learning. This could save time and computer resources because 
it leverages knowledge gained from conducting the source task 
on the target task. In the presented case the training set is ad hoc 
created and it is new and different from the most used as for 
example the ImageNet benchmark. For this reason, the ResNet-
18 model is used and trained from scratch.  
The model is trained with images processed into size 224*224, 
with 64 samples used in one iteration (batch size), with a 
learning rate (hyperparameter that determines the size of steps 
taken in the optimisation process) starting from 0.01 and with a 
scheduler that decays the rate each 30 epoch (a complete 
process of the entire training dataset) by a gamma equals to 0.1. 
The training process reached convergence after 800 epochs, 
taking 27.8 hours, using CUDA 12.2 upon Quadro P4000 
8192MiB.  
The first test achieved 49% accuracy on all the samples in the 
evaluation set. By removing non-nadiral photos, cropping the 
image to the wanted zone, and applying the trans-learning 
approach, the model acquired 80% accuracy with 500 epochs of 
training.  
The best model achieved the 84% of accuracy. It got the optimal 
performances of 100% precision upon biological colonisation, 
graffiti and cracks, but some critical results with discoloration 
and disintegration with the precision of 66.7% and 42.8% 
accordingly.  
 

 
Figure 6. Gradient-CAM visualisation. For a photo (left) shot 

for target “CRA” (cracks), the middle and the right 
explain how the model made the decision for cracks 
and alveolization. 

The class activation map (CAM) technique shows that the 
model is making decisions as expected. In fact is clear from 
Figure 6, that upon the image representing the crack, the 
activation of the indicated targets located the highest value upon 
the serpentine opening. If the activation map was asked to 
visualize the parts that activate other targets (the right heatmap 
in Figure 6 is CAM for alveolization) exposes the limits on 
image classification. 
The model typically generates a single choice. To determine this 
decision, post-processing is performed on the output probability 
vectors. This involves applying a sigmoid function to map the 
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probabilities into a range of 0 to 1. The decision is then 
determined by selecting the maximum output probability.  
As a matter of fact, it is not an ideal situation where the 
diagnosis of the pathology is made. The deterioration of the 
material is a process that lasts for a time, the causes and the 
effects represented on the surfaces are multiple. Photos shot for 
preservation purposes can record the complexity of pathologies. 
Aside from the primal and the most obvious pathology from the 
perspective of humans, there are secondary pathologies to 
examine. According to how many details are revealed, cracks, 
alveolization, erosion, and discoloration can represent 
themselves in various ways. Considering this complicated 
situation for detecting the pathology, the evaluation strategy that 
looks to merely numerical value is not sufficient. 
The generalisation tests are conducted, but the results are not 
optimal. The model trained on the dataset of plaster and stone is 
tested on the dataset of other materials. It got precision on 
cement, ceramic and wood data of 0.2830, 0.3449 and 0.1562, 
with Top-3 accuracy equal to 0.5849, 0.6155 and 0.4265 
accordingly. The model is also tested on a combined dataset that 
includes annotated images from all three materials (see Table 2). 
The confusion matrix suggests that crack, peeling, delamination, 
and discoloration confuse each other. The category plant 
acquired a high harmonic mean of precision and recall (F1-
score) for the observably coarse pattern and high value in the 
green channel. Disintegration and discoloration also acquired 
relatively high scores. The model behaviour on the overall 
dataset (4777 samples) reaches 72% accuracy. This result is 
partially biased by the weight of the plaster and stone. 
 

 Prec. Recall F1-score Support 
COL 0.1111 0.1515 0.1282 33 
PLT 0.4143 0.4462 0.4296 65 
CHR 0.3452 0.3677 0.3561 291 
CRU 0.1200 0.0375 0.0571 80 
SNE 0.2000 0.0308 0.0533 65 
GRA - - - - 

A.L.V. - - - - 
ERO 0.0476 0.0667 0.0556 30 
PEL 0.0522 0.1034 0.0694 58 
DEL 0.0833 0.0163 0.0272 123 
CRA 0.1789 0.1417 0.1571 120 
DIS 0.3820 0.4931 0.4305 361 

     
Accu.   0.2861 1226 

Mac. Avg. 0.1612 0.1546 0.1471 1226 
Wgt. Avg. 0.2671 0.2861 0.2667 1226 

Table 2. Confusion matrix testing on unseen datasets, including 
cement, ceramic, and wood, using the model trained 
on plaster and stone. 

 
4.2 Object detection 

4.2.1 Dataset composition 
Yolo v5 medium model is trained on the prepared manual 
annotated dataset. This dataset collected photo shots from in 
front and multiple other ‘not standard’ perspectives. It covers 
the samples of ceramic, plaster and stone to pursue a better 
balance of sample distribution. The dataset contains 1621 
samples and 21008 instances, with an average of almost 13 
instances in each image sample. 10 percent of the samples are 
randomly selected for evaluation.  
Among all the categories, biological colonisation, peeling, and 
chromatic alteration are given the highest number of instances, 
above 3000 (see Figure 7). Graffiti on the other hand is found 
the least, although it’s adequate to be defined by the provided 
samples. 

 

Figure 7. Instances distribution of the annotated dataset 
 

 
Figure 8. Box ratio distribution 

The training set is prepared by marking bounding boxes which 
moderately include the object. A practical problem is 
highlighted: the boundary box has a square shape. Instead, the 
category to be correlated in many cases has an irregular shape 
not corresponding to a square area. Therefore, in many cases, 
the object category would occupy only a limited portion of the 
squared area. For this reason, it’s decided to use continuous and 
adjacent boxes to mark the pathology, rather than a single box 
to include the whole area at once. If divide the area of the 
bounding box by that of the image, most of the used bounding 
boxes in the dataset are within the range of 0.005 to 0.03,  
bounding boxes under 0.1 take up 97.5% (see Figure 8). 
 
4.2.2 Training and evaluation 
For better management of files and computer memory, images 
are grouped as patches containing 200 images each. After the 
patches of samples were ready, the data was processed and fed 
to the YOLOv5m model. The training started from the pre-
trained model, with the CSP-Darknet53 backbone layers frozen. 
The model is trained with image size 640*640 with batch size 
16. The Yolov5 model used separately 3 learning rates for 
weight, bias and batch normalisation. The model uses 3 epochs 
to warmup, allowing each learning rate to reach 0.01. 
Afterwards, it uses a learning rate factor of 0.01 for the linear 
decay. The model reaches convergence after 2.08 hours of 
training, at around 80 epochs, using CUDA 12.2 upon Quadro 
P4000 8192MiB. 
The trained model achieved acceptable results. The model needs 
23.9ms inference time for each image. The bounding boxes 
plotted on the images take up 1% to 10% partition of the whole 
image. The best performances are the detection of biological 
colonisation, plant, erosion, graffiti, peeling, crack and 
disintegration. Others like crust, subflorescence and 
efflorescence, and alveolization in many cases turn out to be 
mispredicted. 
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Figure 9. Eigen C.A.M. visualising activation map on the 8th 

layer for detecting peeling and cracks (up) biological 
colonisation (middle) and plant (down) 

The model behaviour is better understood by using Eigen 
C.A.M. to plot the activation map upon the original image.  
Examples in Figure 9 can be considered as where the model is 
looking at when making decisions. To be noticed that in order to 
detect peeling, the model turns to look at the surrounding area 
of the cracking gap, where the detached pieces cast slightly the 
shading effect. It is different from the expectation that it will 
mainly look at the serpentine openings. Other examples also 
show that the model is trained well for finding out where to 
look for the interested object, even with distractions from the 
surroundings: In the middle, cracks and vertical patterns on the 
plaster surface are thought to be confusing to biological 
colonisation caused by the leaking water; at the bottom, similar 
green colour of biological organisms on the brick surfaces are 
thought to be confusing to class plant. 
 

5. DISCUSSION 

The practical application of deep learning methods in this paper 
is expected to suit the needs of the architecture preservation 
scenario. Hence, very importance is given to the reliability of 
the final results, to quantify (precision), and to reason 

(explanation). The training set preparation is fundamental for 
the corresponding tasks, for both classification and object 
detection. Considering the training and evaluation set, and 
future test sets, the evaluation of the model behaviour reveals 
the correlation between the provided samples and the related 
categories. 
Confusion of classification may be attributed to the definition of 
categories. If merely examining the samples of the same 
material, taking plaster as an example, the pathologies might 
share similar visual features on images, as they are determined 
with a reference to the relatively plain and complete surface. 
The concept of decay on a surface is relative and related to the 
concept of ‘completeness’ Conceptually the more the pathology 
is defined based on the comparison to normal case, not standing 
alone to define itself, the worse it might be defined by the 
model, namely more confusion. Therefore, from the outcome of 
image classification, the most confusing categories are always: 
crack, peeling, delamination, discoloration and disintegration. 
Numerically, samples from each category were easily confused 
within these 5. On the contrary, among all the tests, the ‘BIO’ 
(biological colonisation) and PLT’ (Plant), in most of the cases, 
present the highest F1 score (0.79-0.94). The reason seems to be 
clear: they are all green, regardless of their residing area. 
Additionally, these 2 classes can be differentiated from each 
other by the patterns and sizes of the shade. 
It would be more reasonable to evaluate the model behavior by 
using Top-K accuracy and examine it using explainable 
artificial intelligence methods. Grouping some visually 
confusing categories, or output the corresponding family of the 
category can make the results more practical, leaving the 
possibility of sub-decision for the expert considerations.  
Using the t-SNE technique, the samples from all materials are 
coloured according to the prediction results, and mapped in 2D 
based on the similarities(see Figure 10). Though the algorithm 
is stochastic, the results reveal the clarity of the designed 
categories to the annotated samples, by mapping the possibility 
vectors from the model output for all samples in 2D. From the 
outcome, biological colonisation, crust & deposit should be 
very well defined by the training set and are well differentiable 
from the other categories. At the clusters’ edges, the mixture of 
colours can be spotted. The region of delamination is 
interrupted by samples of disintegration. The region of peeling 
by samples of discoloration and cracks. The regions of plant, 
discoloration, disintegration and crack unlike other categories 
located closer to the center, while the main parts of higher 
purity are separable from the mixture. 

 
Figure 10. t-SNE visualisation across categories using the model trained on plaster and stone data, while mapping the overall dataset. 
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This t-SNE visualisation reveals mainly how categories for the 
unseen datasets (ceramic, cement and wood) can confuse with 
each other, considering the samples of plaster and stone are well 
fitted by the trained model. The mixture or the joint of clusters 
visually represents that those related classes are easily mistaken 
for each other. The mixture can indicate that the dataset 
annotation is under criticism. If the model is considered to be 
well-trained, then the problem is that image samples don’t 
contain adequate for making the diagnosis of specific pathology, 
or the annotated category cannot fully represent the content. 
The object detection model is good at detecting some specific 
pathologies, like biological colonisation, cracks, delamination 
etc. It allows exhaustive checks through all parts of the image. 
On one hand, this subjectivity is fast and helpful, the model will 
not be distracted by visual distortion, complicated patterns and 
light environment. On the other hand, the model will give 
unwanted weight to the portions that might lead to an 
unsatisfying decision. In some situations, architecture surfaces 
expose multiple materials with overlapping pathologies caused 
by numerous facts, the expert would simplify the case and make 
a general assertation. If each possible pathology is mapped out 
automatically by conducting a swift survey activity using an 
object detection model, the outcome will be suggestive and 
helpful. 
The model performance for pathology detection is also hard to 
evaluate. Numerically, the trained model achieved mean 
Average Precision (mAP) at the Intersection over Union of 0.5 
(mAP_0.5) is 0.13, and the average mAP at different IoU 
thresholds from 0.5 to 0.95 in steps of 0.05 (mAP_0.5:0.95) is 
0.04, with precision of 0.21 and 0.22 recall. This is partially 
resulted by the box annotation approach for object detection. 
Pathological instances usually feature irregular shapes and 
ambiguous boundaries, the mAP based on IoU can hardly 
represent the model behaviour. 
The model’s behaviour is expected to be justified in the 
practical scene where the moving camera will register the 
surroundings in each timeframe. With the camera moving, the 
changing perspective will allow the model to perform detection 
several times.  
 

6. CONCLUSION 

This paper presented practical tests of classification and object 
detection of pathological issues in architectural preservation, 
using deep learning methods. With the expectation of 
understanding how much the methods can be applied to detect 
aimed pathology as ‘stuff’, which differs from the common 
‘thing’ object, and applicability in further usage in 3D mapping. 
The expectation of the deep learning methods is primarily 
limited and defined by the category design. This categorising 
system has to associate the capability and characteristics of the 
image feature extractor with the visual patterns that indicate 
semantic meanings. In this paper, the used category is based on 
the ICOMOS glossary for stone deterioration, maintaining the 
semantic hierarchy. The strategy of adopting semantic hierarchy 
is expected to improve the eventual reliability of the model in 
future application practices. 
The paper has provided a detailed procedure for the application 
of deep learning computer vision methods to the architecture 
preservation field, the results are instructive to the general 
workflow. The evaluation results of the models reveal the 
problems with the identification of pathology using RGB image 
data collected without standards for perspective, ground 
sampling distance, light control etc. In a common situation,  
‘generic’ images captured by non-experts or robots may be 
used, with a reduced possibility of capturing a dataset with 
predefined criteria. Therefore, the establishment of categories in 

the first place should be clear, concise, and consistent. Before 
the dataset preparation process, a clear manual should be set up, 
for naming the files, definition and disambiguation for each 
category, standard for annotation, proof checking of the training 
set. In the meantime, the training process should align with the 
wanted application scene. Multiple technical details should be 
taken care of during the data acquisition process, for example, 
the light and shading, the ground sampling distances of the 
camera, and the photoshoot perspective. 
Critics of the trials to detect architectural pathology occur when 
it comes to generalising the trained model capability to different 
architecture cases, materials etc. Multiple pathological concepts 
are closely related to specific causes and the characteristics of 
the material. In the broader range of pathologies, biological 
colonisation, and chromatic alteration might appear in different 
ways with regard to architecture cases and materials. Pitting and 
alveolization, peeling and cracks share similarities in visual 
features. Therefore, it requires more data and further fitting of 
the model to examine the potential of the models. Considering 
additional information types, such as ultraviolet, infrared etc., 
with model complexity increased, the outcome will be 
improved. Another possible solution is to train a model for each 
specific case, with regards to materials and architectural cases. 
The eventual goal of the test of object detection is to build a 
base for 3D mapping. The trained model for object detection 
acquired acceptable results. Biological colonisation and plant 
are the most distinct categories. Confusing pathologies like 
cracks and peelings can be well recognized. The characteristic 
of the pathology is that it cannot be easily defined by the 
boundary and is featured with irregular shapes. This 
characteristic is closely related to the definition of ‘thing’ and 
‘stuff’ in the deep learning computer vision field. Bounded by 
this, the outcome of object detection with numerical value 
cannot fully represent the applicability of the methods. In this 
case, segmentation appears to be a better solution. However, 
considering that the corresponding decay areas are usually 
irregular, and the boundaries related to some pathologies are not 
well defined, the manual annotation for preparing the 
segmentation dataset will be costly. 
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