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ABSTRACT:

Current 2D and 3D semantic segmentation frameworks are developed and trained on specific benchmark datasets, often
rich of synthetic data, and when they are applied to complex and real-world heritage scenarios they offer much lower
accuracy than expected. In this work, we present and demonstrate an early and late fusion of methods for semantic
segmentation in cultural heritage applications. We rely on image datasets, point clouds and BIM models. The early
fusion utilizes multi-view rendering to generate RGBD imagery of the scene. In contrast, the late fusion approach
merges image-based segmentation with a Point Transformer applied to point clouds. Two scenarios are considered and
inference results show that predictions are primarily influenced by whether the scene has a predominantly geometric or

texture-based signature, underscoring the necessity of fusion methods.

1. INTRODUCTION

The semantic segmentation of constructions encompasses
the segmentation of primary, secondary, and auxiliary build-
ing classes, as noted in the reference (Armeni et al., 2017).
This segmentation is an intermediate step crucial for de-
tecting different instances of elements within buildings, a
requirement for various tasks such as scan-to-BIM pro-
cedures and building enrichment pipelines, among oth-
ers (Croce et al., 2023). Prior to 2020, traditional ma-
chine learning methods, along with specific features, were
the preferred choice. However, the state of the art has
now completely shifted towards deep learning methods, as
evident in references (Bello et al., 2020} |Guo et al., 2021)).
These deep learning techniques generally offer improved
generalization and reduce the need for feature engineer-
ing, such as radiometric feature extraction. Nonetheless,
they do demand a significantly larger amount of training
data to achieve similar detection rates.

Currently, most semantic segmentation approaches still
primarily focus on a single modality, which could be ei-
ther imagery or point cloud data (Coudron et al., 2020).
This bias toward single-modality methods is largely due
to benchmark datasets that predominantly promote such
competitions (Armeni et al., 2017)) or limitation in process-
ing methods. However, these single-modality approaches
fall short in achieving market-ready detection rates, par-
ticularly when dealing with objects of heritage that exhibit
intricate geometries and textures. For example, identify-
ing different types of columns in a heavily eroded setting
can greatly benefit from both visual and geometric inter-
pretations, even when the latter might introduce noise.
Multi-modal data fusion in machine learning is a grow-
ing sector (Townend et al., 2024) and some recent works
started also to introduce background knowledge into the
neural network’s learning pipelines (Grilli et al., 2023)).

In our work, we propose a framework that integrates im-
age and point cloud segmentation techniques for cultural
heritage building elements. To achieve this, we have de-
veloped an integration pipeline that combines state-of-the-
art methods for semantic segmentation of both images and
point clouds. In summary, our contributions include:

1. The theoretical framework and implementation for
early and late image and point cloud semantic seg-
mentation.

2. An implementation for automated image and point
cloud training sample production.

3. An empirical study on two heritage assets to compare
the proposed joint semantic segmentation.

2. RELATED WORK

Heritage Semantic Segmentation - Researchers have been
exploring the application of machine learning techniques
for the semantic enrichment of 3D point clouds in the cul-
tural heritage field for some time now (Fiorucci et al., 2020,
Yang et al., 2023). Supervised machine learning meth-
ods have primarily focused on mapping various materials,
building techniques, and deterioration phenomena. Lever-
aging the geometric characteristics of 3D data (Weinmann
et al., 2015)), these methods utilize extracted geometric fea-
tures, and sometimes sensor-based features, to train ma-
chine learning algorithms to perform their tasks (Grilli et
al., 2018 |Grilli and Remondino, 2020, [Croce et al., 2021J).
Despite the potential of these approaches, even the field of
cultural heritage has seen an increasing change in research
interest towards deep learning methods due to their note-
worthy improvements in performing the semantic enrich-
ment of 3D point clouds(Pierdicca et al., 2020, Matrone et
al., 2020)).
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Figure 1: Overview of the project inputs: (left) hand-held and UAV images, point clouds and BIM model.

Joint point cloud and image segmentation - Joint point
cloud and image segmentation is a popular topic in deep
learning fusion approaches . Both data
fusion (early) and method fusion (late) are predominantly
pursued in academia. Early fusion methods, for instance,
involve rendering 3D information as multi-view 2D im-
ages with an additional depth channel (RGBD), which
can then be processed by standard 2D convolutions
et al., 2022) (MVCNN). Alternatively, 2D images can be
rendered as a 3D graph, tree, or raster point cloud rep-
resentation . However, these 2D meth-
ods often lose some 3D geometric context and struggle
with per-point label prediction. Recent advancements in

MVCNN networks include ShapeConv (Cao et al., 2021))
and FPS-Net (Xiao et al., 2021)). On the other hand, late

fusion combines the outputs of multiple networks and av-
erages the results, for example, by integrating Point Trans-
formers with purely image-based net-
works. The advantage here is that each modality can be
trained separately, leveraging numerous available bench-
marks. However, the averaging of results is typically sub-
optimal and does not consider the quality of the geomet-
ric/texture signature at that location. Beyond early and
late fusion, there are hybrid solutions that combine the
strengths of both approaches (Zhang et al., 2021). These
typically involve the use of intermediate fusion blocks that
enable the parallelization of different networks, merging
them at strategic points.

3. METHODOLOGY

3.1 Training data production

The successful integration of Deep Learning (DL) meth-
ods into heritage projects is fundamentally linked to the
automated generation of training and testing data. In our
work, we aim for a seamless transition between IFC BIM

models, geolocated images produced by a photogrammet-
ric pipeline, and the combined point cloud resulting from
both photogrammetry and 3D terrestrial laser scanning
(Fig. [1). To effectively train semantic segmentation mod-
els, it is crucial to amalgamate information from these
three sources, thereby generating the necessary training
data. First, there is the choice of the initial modality to
which training labels are assigned. Generally, labelling 3D
objects is more efficient than 2D formats, as images in
photogrammetric pipelines typically have over 60% over-
lap. Among the 3D formats, the IFC model is much more
efficient to label due to the limited number of elements.
Additionally, IFC models already contain metadata that
can be utilized for the production of training data. For in-
stance, in the first test case (Section 4.1), the IFC model
comprises only 214 elements across four types of building
elements, while it has a point cloud of 56 million points
and 894 24MP images.

Figure 2: Overview of the transfer of 3D semantic labels
from the IFC model to the 3D point cloud: without normal
filtering, showing poor results near edges (left) and with
normal filtering for a more nuanced segmentation (right).
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3D Point Cloud Annotation - Thus in the initial phase of
training data creation, the BIM information is associated
with the point cloud data. The annotation of BIM infor-
mation onto the point cloud data, denoted as P, relies on a
nearest neighbours variant involving a uniformly sampled
BIM point cloud, represented as (). Given the substantial
abstractions present in the BIM, the criterion for assign-
ing information is determined by the difference in normals
between a source point p; € P and a set of neighbouring
BIM points Q; C Q, as expressed in Equation

Qj= {Qi p; € Pg €Q: Hpi—q]'HStd}

qj = {Qi

In this context, @) represents the joint visibility point cloud,
which is obtained by sampling points from the BIM ob-
jects. However, points g; that are situated within neigh-
bouring objects are removed, up to a specified threshold.
The sets Q; consist of points that are in close proximity
to every p;, determined by the Euclidean distance thresh-
old t4. To find the best fit g; for each p;, a maximization
process is applied to the dot product between the two nor-

I ¢ §)
p; € P,q; € Q; : argmazg;|n(p;) - ng;) \}

—
mals, represented as n(p;) and n(q;). As shown in Fig.
[ it is evident that the normal filtering improves the fit
between the BIM and the point cloud annotation without
significantly increasing computational complexity. Subse-
quently, the class information of the object that g; belongs
to is transferred to p; as an additional point label.

2D Image Annotation - The IFC or point cloud data are
used to automatically label the imagery. Operating on the
full imagery has a major advantage as it has significantly
higher detailing (ranging from 12 to 40 megapixels, re-
sulting in avg. 0.002 m ground sampling distance - GSD)
than the point cloud (avg. density of about 0.005 m). The
training data for the image classification is automatically
derived from the manually annotated point cloud. Firstly,
the images are undistorted using OpenCV, utilizing the in-
trinsic camera matrices K for each image. Subsequently,
each image is subdivided into pixel regions in accordance
with the requirements of the image classification model.
Next, a set of depth maps denoted as D is generated.
This is achieved by performing a dense ray tracing of the
photogrammetric point cloud for each image, utilizing the
extrinsic camera matrices M for each image (Fig. [3| left,
Equation .

D:{D‘IEI:D:MKP} (2)

However, raycasting on the original point cloud is not ideal
due to its limited density. Rays tend to pass in between
points, resulting in labels for objects situated behind the
initial layer of points (Fig. [3| middle). Instead, we adopt
an alternative approach by generating a voxel mesh from
the octree representation of the point cloud. By enhanc-
ing the voxel traversal mechanisms available in Open3D,
we can create a dense mesh with the appropriate labels,
making it considerably more traceable (Fig. right and
Fig. [4)).

Figure 3: Overview of the image raycasting: original im-
age (left), raycasting on the original point cloud, which is
unusable due the lack of surfaces (middle) and raycasting
on the voxel mesh, which does yield proper masks for im-
age segmentation (right).

Figure 4: Voxel mesh generated from the point cloud oc-
tree.

3.2 Semantic segmentation

In the early fusion, images and point clouds are merged
into RGBD images: this reduces the complexity of ge-
ometric reasoning but allows for the joint semantic seg-
mentation of image and point cloud modalities. For late
fusion, we first conduct an image-based semantic segmen-
tation: the results of this segmentation are then associated
with the point cloud data. Subsequently, the final classi-
fication is determined through a second semantic segmen-
tation step, which is based on features extracted from the
point cloud.

Geolocated Imagery - For image classification, we employ
transfer learning with DeepLabV2 (Adam et al., 2021)),
which uses ResNet152 (He et al., 2016) as the backbone
and pre-trained on the ImageNet database. The initial
version of DeepLab (DeepLabV1l (Chen et al., 2018))
introduced a novel concept called atrous (dilated) con-
volutions. The use of atrous convolutions allowed the
model to capture wider context in images without reduc-
ing their resolution. while DeepLabV2 introduced Atrous
Spatial Pyramid Pooling (ASPP) that greatly improved
the model’s ability to handle objects of varying scales and
has demonstrated robustness against various image per-
turbations and high-class variance, among other factors.
Initially, the generated masks are divided into training,
validation, and testing datasets. The sparse categorical
cross-entropy loss function was used, given the multi-class
semantic segmentation task. Class balancing techniques
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Figure 5: Overview of the early fusion modality: (left) original undistorted image, (middle) projected point cloud labels

and (right) HHA imagery with depth information.

were applied to account for low class presence, and data

for producing HHA imagery, as proposed in (Gupta et al.,

augmentation methods, as recommended in (Shorten and|

[2014). This format incorporates the depth and viewing

[Khoshgoftaar, 2019), were employed. The training pro-
cess occurred in two stages. Initially, only the output layer
was trained using automatically generated training data.
Subsequently, the model was further fine-tuned. Out of
the total 30,925,387 parameters in DeepLabV2, 30,840,427
were trained for both the building elements and the ma-
terials. Given the image segmentation, the outcomes are
associated with the most suitable points in the point cloud
P. By utilizing the image coordinates of the labels I and
depth maps D, a reference point cloud ) can be created
using the same raycasting mechanism (Equation . As
there is significant overlap in the imagery, mislabeling in I
will result in a cluttered reference point cloud. To obtain
the final result, a k-nearest neighbour evaluation between
the initial point cloud and the reference cloud. The la-
belling Y is then obtained by the weighted average label
of the project image labels, given inverse distance weights
w. These image labels are then assigned as an additional
feature in the point cloud semantic segmentation.

. k
Qj= {Qj p; € P,q; € Q : argming,|p; —qj(- )H}
3)
Y = y‘Qj € Qj : argmaz,, Z w;iy(g;)
4;€Q;

Point clouds - For the point cloud segmentation, a set of
covariance features are computed for P, including linearity,

planarity, verticality, and others as proposed in (Niemeyer
et al., 2014). These features, together with the results

of the 2D segmentation, are then passed to a neural net-
work as an extra channel of input data. For the tests,
we employed the Point Transformer architecture(Zhao et]
, a deep learning method that relies on the self-
attention operator for essential tasks in scene understand-
ing. In the Point Transformer, the self-attention mech-
anism is applied locally, allowing the network to upscale
its capabilities for tasks on large scenes with millions of
points. The training process was conducted in a single
step, with class balancing techniques applied to account
for low class presence. The resulting labels, Y, can then
be directly applied to the point cloud P.

RGBD - In the early fusion of image and point semantic
segmentation, we project the 3D coordinate information
onto the image depth channel to form RGBD imagery us-
ing the aforementioned techniques. As it is challenging to
unify depth maps based on their respective depths, we opt

direction into a uniform depth format, which is more com-
prehensible than conventional depth maps, albeit being
quite computationally demanding to compute, as shown
in Fig.

For the semantic segmentation itself, we employ ShapeConv
combined with Deeplabv3+(Chen et al., 2018) and a ResNet-
101 backbone(He et al., 2016). ShapeConv is a model-
agnostic convolutional layer that can be easily integrated
into existing networks, focusing on jointly learning shape
and base components. In the original paper, ShapeConv
significantly improved the generalization and performance
of the base networks on known datasets such as SiD, NYUv2-
40, and SUN, as shown in Table [T}

Table 1: Baseline ShapeConv results on benchmark
datasets.
Class Mean IoU (%) fw. IoU (%) Pixel Acc (%) Mean acc (%)
SID 60.6 71.2 82.7 70.0
NYUv2-40 51.3 63.0 74.5 59.5
SUN 48.6 71.3 76.4 63.5

4. EXPERIMENTS

The early and late fusion are compared against traditional
networks that process only a single modality. Specifically,
two photogrammetric datasets, each with a unique signa-
ture, are selected for these tests.

4.1 Dataset I: Paestum

The first test is a photogrammetric reconstruction of the
Greek Temple of Neptune (ca 25m x 60m x 15m), located
in Paestum, Italy (Fiorillo et al., 2013). The dataset com-
prises 894 geolocated images captured by hand and UAVs,
resulting in a point cloud of ca 56 million points. Al-
though the temple is constructed entirely of one material,
it features 10 different building techniques (Fig. @ Con-
sequently, the temple exhibits a predominantly geometric
signature rather than a distinct texture signature. Each
method was trained and validated on 25% of the data
for 300 epochs, and inference was performed on the en-
tire dataset. Table 2] presents the data distribution in the
dataset, which is fairly unbalanced as typically happens
in such datasets. Notably, the distributions are similar
for the point and pixel distributions, except for classes
4 (6.9% vs 0.2%) and 7 (4.5% vs 0.1%), which are un-
derrepresented in the image dataset, and class 3 (15.8%
vs 41.2%), which is significantly over-represented. This
over-representation is attributable to the large number of
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Table 2: Class distribution (%) in the imagery and point
cloud of Paestum.

Class Points (%) Pixels (%)
0. Grass 28.7 28.1
1. Crepidoma 4.9 6.6
2. Pavement 10.6 11.1
3. Shaft 15.8 41.2
4. Echinus 6.9 0.2
5. Abacus 3.7 3.9
6. Architrave 5.9 3.2
7. Frieze 4.5 0.1
8. Cornice 18.6 5.2
9. Tympanum 0.4 0.4

images (76%) taken inside the structure at eye level, pri-
marily featuring columns.

The image segmentation is conducted as outlined in Sec-
tion For the late fusion, the segmentation results are
projected onto the point cloud as an additional feature.
Following this, the Point Transformer network was trained
again on the same partition, utilizing also the covariance
features listed in Table[3] A batch size of 48,000 points was
employed, with a subsampling of 0.005m. Additionally, the
ShapeConv combined with Deeplabv3+ and a ResNet-101
backbone was trained on the RGB and HHA channels.
Achieved results are presented in TaubleE;I7 and Fig. m
Overall, while each method scores well for the more preva-
lent classes, some key differences are observed. Firstly,
there is a notable divergence between the mloU and the
weighted mloU, primarily attributed to class balancing.
This effect is most pronounced with ShapeConv, which dis-
proportionately favours the majority classes, resulting in a
skewed performance as it neglects minority classes (4,7 and
9). Contrarily, other methods which incorporate weighted
training approaches demonstrate a more balanced perfor-
mance profile. Notably, the detection rates across differ-

Cornice (ID08) [l
Tympanum (ID09) g

Echinus (ID04) §
Shaft (1D03)

Pavement (1D02) [= ===
Crepidoma (1D01) f&5s 7
Grass (ID00)

2 '

Figure 6: Paestum dataset, exploded in its 10 building
technique classes (above). 25% training and validation
(RGB coloured) and 75% test (highlighted) images (be-
low).

ent classes still show considerable variance, with the im-
age segmentation networks being particularly susceptible
to discrepancies in training sample sizes. Secondly, Point
Transformer scores the best results (71.4% mlIoU) which is
expected due to the geometric nature of the dataset. On
the other hand, the DeepLabV2 network, rather than im-
proving these results, actually contributes to greater con-
fusion in the late fusion (with a lower mlIoU of 68.5%) due
to its subpar classification of the less represented classes.
This underscores the importance of careful integration of
network results in late fusion, potentially by including the
confidence levels.

Thirdly, the ShapeConv network has mixed results. It
scores better than most image classes and even some late
fusion classes. Nevertheless, it underperforms in repre-
senting the minority classes from the image perspective,
suggesting a loss of contextual understanding when transi-
tioning from a general to a viewpoint-specific approach, in
part due to the severe unbalancing of the training data. Fi-
nally, the training efficiency for early fusion is significantly
higher than its late fusion counterpart. This depends on
the implementation but also the data modality (2D convo-
lutions are faster) and the joint training of a single network
with fewer parameters, which is less demanding.

Table 3: Covariance features.

Feature Radius (m)
Omnivariance 1.5
Sphericity 1.5
Sphericity 2
Surface variation 0.4
Surface variation 0.7
Surface variation 1.0
Surface variation 1.5
Surface variation 2.0
Verticality 0.2
Verticality 0.6
Verticality 1.0
Verticality 1.2

Table 4: Semantic segmentation results per method.

Method Time (s) | mIoU (%) Weighted mIoU (%)
DeepLabV2 (RGB) 28620 44.2 69.5
Point Transformer (PCD) 12510 71.4 80.3
DeepLabV2,PT (RGB+PCD) 40710 68.5 78.4
ShapeConv (RGBD) 6784 52.5 82.9

Table 5: Average IoU per class for the 75% test area.

Class RGB (%) PCD (%) RGB+PCD (%) RGBD (%)
0. Grass 47.21 7.5 85.6 92.3
1. Crepidoma 27.1 89.5 86.8 49.0
2. Pavement 61.16 85.3 88.6 55.7
3. Shaft 79.31 90.2 90.7 88.6
4. Echinus 44.58 76.1 66.8 0.0
5. Abacus 39.42 60.8 50.7 38.9
6. Architrave 45.82 74.1 62.3 37.6
7. Frieze 38.3 56.2 53.0 0.0
8. Cornice 50.26 77.6 73.1 53.9
9. Tympanum 9.17 26.2 27.3 5.4

4.2 Dataset II: Wall of the Pecile

The second test is a photogrammetric 3D reconstruction of
the Wall of the Pecile (18m x 1m x 8m), a part of the court-
yard of the Roman Villa Adriana in Tivoli, Rome. The
dataset comprises 54 geolocated images taken by hand, re-
sulting in a point cloud of 2.5 million points. It includes 6
building techniques (Fig. E[) However, these classes pri-
marily have texture signatures since the reconstruction
consists of a gate at the center of a flat wall with lim-
ited geometric signatures. Therefore, it is expected that
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Figure 8: Semantic segmentation results for the Paestum
DeepLabV2 plus Point Transformer (right).

detection in the imagery will outperform the point cloud
in semantic segmentation.

Each method was trained and validated on 50% of the
data for 300 epochs, and inference was performed on the
entire dataset. Table [f] again reveals a highly unbalanced
dataset, with an average class balancing spread of oc =
15%. Similar imbalances in class representation are ob-
served as in Paestum, with classes at eye-level being over-
represented. However, given that the Pecile dataset is sig-
nificantly smaller, these effects are more pronounced. For
instance, the average difference in class balance in Paestum
is 5.5%, whereas in Pecile it is 10.5%.

Table 6: Pecile class distribution (%) in the imagery and
point cloud.

Class Points (%) Pixels (%)
0. Plaster 9.9 41.3
1. Old opus reticulatum 41.3 28.3
2. Restored opus reticulatum 8.4 6.5
3. Opus reticulatum grey 34.7 19.7
4. Old opus latericium 0.7 0.1
5. Restored opus latericium 5.0 4.1

All methods were processed analogously to those in Paes-
tum. The Point Transformer network was trained with a

prediction

labels

dataset: ground truth (left), Point transformer (middle) and

batch size of 48000 points, a subsampling of 0.005m, and
the features listed in Table[7] For the image segmentation
using DeeplabV2 and ShapeConv, the imagery was divided
into 9 tiles, thereby increasing the number of samples to
504. This partitioning incurs minimal overhead on the to-
tal calculations. The generation of HHA imagery took 423
seconds.

Results are presented in Table[8] 0]and Fig.[I0] The aver-
age detection rate of the methods is 63% mloU while the
weighted mlIoU is 78.9%, showing a similar trend as the
Paestum dataset due to training data differences. How-
ever, the image-based methods score significantly better
with Point Transformer now being the weakest performer.
A significant observation here is the superior performance
of image-based methods, with the Point Transformer being
the less effective method. This underscores the importance
of choosing networks that leverage both texture and geo-
metric features in a scene.

Both early and late fusion techniques show comparable effi-
cacy, with the contribution in late fusion primarily coming
from the DeepLabV2. Again, it is observed that ShapeConv
does not deal well with low presence classes. Despite this,
the added geometry channels in ShapeConv do improve the
detection rate as some of the materials have some depth-
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Figure 9: The Pecile dataset including 6 building technique
classes, 50% training and validation images (green) and
50% test images (red).

sensitive erosion.

An interesting insight is that each network has variable
performance depending on the scene, expect for the late
fusion. It seems that by directly embedding image detec-
tion results into the geometric processing, simultaneously
the best and worst results are filtered out, leading to a
stable performance across scenes with varying texture and
geometric signatures. Contrary to expectations, early fu-
sion didn’t mirror this behavior. The further imbalance
in training data appeared to hamper the network’s effi-
cacy. Additionally, the limited parameter set in early fu-
sion, as opposed to the more elaborate setup in late fusion
involving multiple networks, seemed to restrict its ability
to encapsulate the same level of complexity effectively.

Table 7: Pecile covariance features.

Feature Radius (m)

Anisotropy 0.05
Gaussian curvature 0.1
Mean curvature 0.1
Normal change rate 0.05
Roughness 0.05
Roughness 0.1
Roughness 0.2

Table 8: Average Pecile semantic segmentation results per
method.

Method Time (s) | mIoU (%) weighted mIoU (%)
DeepLabV2 (RGB) 7260 66.6 85.2
Point Transformer (PCD) 1410 51.0 60.7
DeepLabV2,PT (RGB+PCD) | 1770 67.4 82.3
ShapeConv (RGBD) 6154 67.0 87.4

5. CONCLUSIONS

This work presented the adoption of early and late fu-
sion methods for image and point cloud semantic seg-

Table 9: Pecile IoU per class for the 50% test area.

Class RGB (%) PCD (%) RGB+PCD (%) RGBD (%)
0. Plaster 80.9 73.1 85.6 96.8
1. Old opus reticulatum 82.8 61.8 86.2 84.2
2. Restored opus reticulatum 47.9 37.6 54.0 59.1
3. Opus reticulatum grey 80.0 66.1 90.5 86.4
4. Old opus latericium 50.4 22.3 34.3 0.0
5. Restored opus latericium 54.2 45.0 54.1 69.8

mentation in cultural heritage applications. It features a
methodology for seamless transition between data modal-
ities and efficient production of training data. The late
fusion approach merges image-based segmentation with a
Point Transformer applied to point clouds. In contrast,
the early fusion utilizes multi-view rendering to generate
RGBD imagery of the scene.

Experiments on two test cases demonstrate that the detec-
tion rate is primarily influenced by whether the scene has
a predominantly geometric or texture-based signature, un-
derscoring the necessity of fusion methods. Image seman-
tic segmentation proves to be more effective in texture-
rich areas, whereas Point Transformers excel in geometri-
cally complex scenes. The combination of both approaches
yields enhanced results in both cases, a pattern also ob-
served in early fusion. Notably, late fusion tends to be
more consistent, benefiting from better-suited data modal-
ities and the absence of training entanglement.

The study concludes that employing networks in series or
parallel, as seen in late fusion, tends to be more advan-
tageous for projects than early fusion. This is because
even if only one of the networks in the series performs
well, satisfactory results are achievable. An essential fac-
tor in choosing between early and late fusion methods is
the scene’s complexity. In highly intricate scenes, late fu-
sion is often the better choice as each modality requires a
dedicated network for precise tuning. However, in simpler
scenarios like those examined in this study, the ability to
generalize quickly over smaller networks makes early fusion
a viable option. Future research aims to explore further
the relationship between scene complexity and the choice
of fusion methods.
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