
INCAD: 2D VECTOR DRAWINGS CREATION USING INSTANCE SEGMENTATION 
 

 

Thodoris Betsas*1, Andreas Georgopoulos1, Anastasios Doulamis1  

 
1 National Technical University of Athens, School of Rural, Surveying and Geoinformatics Engineering, Lab of Photogrammetry, 

Zografou Campus, Heroon Polytechniou 9, 15780, Zografou, Athens, Greece 

betsasth@mail.ntua.gr, drag@central.ntua.gr, adoulam@cs.ntua.gr  

 

Commission II 
 

 

KEY WORDS: 2D instance segmentation, 2D vector drawings, cultural heritage, YOLOv8, orthophotos 

 
ABSTRACT: 

 

Orthoimages are a common product used as a base in CAD software for vectorization purposes. In fact, vectorization of orthoimages 

constitutes a tedious and labour-intensive process which should be supervised by experts e.g. architects, chemical engineers etc. On 
the one hand, deep learning algorithms are used extensively nowadays achieving high quality results. On the other hand, deep learning 

algorithms require a huge amount of manually annotated data to be trained on, which is a very difficult process especially at pixel level 

applications like semantic segmentation and instance segmentation. However, the transformation of 2D CAD drawings into a suitable 

deep learning dataset (CAD2DLD) is underexplored ignoring a large source of data, created by experts. In this effort, the InCAD 
algorithm is proposed, which aims to automatically create 2D vector drawings using the YOLOv8 instance segmentation algorithm 

which was trained on CAD2DLD data. Additionally, a methodology for transforming 2D CAD drawings into a suitable deep learning 

dataset for instance segmentation, is presented. Finally, the proposed workflow is evaluated on the creation of 2D vector drawings of 

stones of a fortification wall achieving promising results (78.34 mIoU). 
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Figure 1: InCAD Flowchart. Orange Rectangle: The 

transformation of CAD Drawings to COCO labels for training. 

The COCO labels are used to train the YOLOv8. Blue 
Rectangle: The inference Images are passed to YOLOv8 

algorithm. Green Rectangle: The output of InCAD algorithm. 
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1. INTRODUCTION 

Geometric documentation of cultural heritage buildings could 

be achieved using either conventional or modern 

photogrammetric approaches in combination with post-

processing steps, providing many products to the users like 
textured 3D models, orthophotos and 2D architectural vector 

drawings. There are many researches investigating the use of 

deep learning techniques on cultural heritage data for 3D 

documentation (Agrafiotis, Talaveros and Georgopoulos, 2023), 
and inspection (Tzortzis et al., 2022) among others, using either 

conventional RGB images or orthophotographies. 

Orthophotography combines the valuable information of 

texture with the ability to perform accurate measurements. 
However, they are commonly used as raster maps for the creation 

of 2D vector drawings e.g., architectural, material etc. More 

precisely, the 2D vector drawings are created by manually 

vectorizing the orthophotos using Computer Aided Design 
(CAD) software, which is a time-consuming and labour-intensive 

process. The output of this process is a CAD drawing file which 

contains the vectorized objects assigned to different layers. 
Consequently, the CAD drawings could provide both geometric 

i.e., vector like lines, polygons etc. and semantic information i.e., 

the layer names. To be more specific, each CAD drawing has 

different layers representing the available data and the vectorized 
objects. For instance, the available data could be an orthophoto 

of a fortification wall and the vectorized objects could be the 

“stones”, “mortar”, “wood” etc. parts of the wall. The main idea 

of this paper is to investigate the use of CAD drawings as a 
training dataset for deep learning instance segmentation 

algorithms in order to automate the creation of 2D architectural 

vector drawings. Deep learning instance segmentation algorithms 

seek a huge amount of ground truth data to be trained on. Well 
known deep learning datasets e.g. COCO (Lin et al., 2015), 

provide a large number of images accompanied with their labels 

in a “.txt” file. Thus, the semantic and geometric information of 

CAD drawings should be transformed into a suitable structure in 
order to be used as a training dataset of instance segmentation 

algorithms. To be more specific, the visual information of the 

orthophotos should be combined with the geometric and semantic 
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information of the CAD layers to create a suitable dataset for 

training deep learning algorithms. 

InCAD (Figure 1) is a simple yet efficient approach which 
automatically creates 2D vector drawings using an instance 

segmentation algorithm e.g., YOLOv8 (Jocher, Chaurasia and 

Qiu, 2023) which has been trained exploiting the layers created 

by experts in CAD format. Although InCAD uses YOLO v8 for 
instance segmentation, the presented methodology is compatible 

with any instance segmentation algorithm. 

In fact, deep learning algorithms require vast amount of 

annotated data to be trained on. Meanwhile, orthophotographs are 
manually vectorized by experts, to create architectural drawings, 

especially in the cultural heritage domain. However, the 2D CAD 

data remains underexplored as a source of training data for deep 

learning algorithms.  
In this paper, the use of 2D CAD drawings as training data for 

automated creation of architectural vector drawings is 

investigated. InCAD uses the YOLOv8 algorithm to create vector 

drawings in .dxf format. YOLOv8 was trained on CAD data 
created by experts, which was first transformed into a suitable 

dataset for training deep learning algorithms. 

To sum up the contributions of this paper are: 

• The proposed methodology which transforms 2D CAD 

drawings to deep learning datasets (CAD2DLD). 

• The automatic creation of 2D vector drawings using 
instance segmentation algorithms trained on 

CAD2DLD data, with promising results. 

 

2. RELATED WORK 

In this effort we investigate the creation of 2D vector drawings 

using instance segmentation deep learning algorithms trained 

using CAD data. Many efforts presented so far aim to automate 

the creation of 2D-3D vector drawings. In fact, many of them 
incorporate 2D and 3D edge detection techniques, because the 

edges could be easily transformed into vectors. Hence, the related 

work is organized as follows. Firstly, a brief analysis of instance 

segmentation algorithms is presented. Finally, a brief analysis of 
2D – 3D vector drawing creation, using edges and novel 

computer vision techniques, is included. 

 

2.1 2D Instance Segmentation 

Image pixels could be grouped into sets of pixels with similar 

characteristics performing a segmentation of the image. 

However, segmenting an image does not include a semantic 

meaning about the groups. Semantic segmentation techniques 
(Long, Shelhamer and Darrell, 2015; Chen et al., 2018) have 

been proposed to assign a meaning to pixels using informative 

labels like “car”, “person” etc. In fact, some of the semantic 

categories, for example the “car”, could have multiple instances 

in the image while others like “sky” could not. Semantic 

segmentation techniques cannot distinguish the instances of each 

category. To achieve this, object detection techniques (Girshick 
et al., 2013; Ren et al., 2017), are combined with semantic 

segmentation techniques to mask the instances of each class, 

performing an instance segmentation of the image (Hariharan et 

al., 2014). Hafiz and Bhat, 2020 present a review of instance 
segmentation algorithms. In this effort, the YOLOv8 (Jocher, 

Chaurasia and Qiu, 2023) algorithm, created by Ultralitics is 

used. YOLO is a family of algorithms used for object detection, 

instance segmentation etc. (Bochkovskiy, Wang and Liao, 2020; 
Jocher, Chaurasia and Qiu, 2023). Redmon et al., 2016 presented 

the first YOLOv1 algorithm for object detection. Specifically, 

YOLOv1 divides the given image into a grid. Then, for each grid 

cell a set of bounding boxes is predicted. Each bounding box has 
a confidence score. The confidence score is crucial for YOLO 

because based on that and the class probabilities the algorithm 

assesses the predicted boxes. 

 

2.2 2D – 3D vector drawing creation 

Various 2D edge detection operators have been proposed so far 

e.g., Canny (Canny, 1983), Prewitt (Prewitt et.al, 1970) etc. 

These methods exploit the convolution operation to extract the 

2D edges. Nowadays, deep learning algorithms for 2D edge 

detection have been proposed, solving some of the limitations of 

the traditional methods.  

Xie and Tu, 2015 proposed HED a convolutional neural 
network for 2D edge detection, build upon a modified VGGNet 

(Simonyan and Zisserman, 2015) architecture. For example, they 

“trimmed” the last pooling and fully connected layers of VGG to 

create fine 2D edge maps and to reduce the complexity of the 
algorithm. Poma, Riba and Sappa, 2020 proposed DexiNed an 

architecture composed of multiple learning layers for 2D edges 

detection. During inference DexiNed creates a series of edge 

maps which are finally combined to the final output.  
Bazazian, Casas and Ruiz-Hidalgo, (2015) presented a 3D 

edge detection technique method which uses the covariance 

matrix of point neighborhoods. Firstly, the kNN algorithm is 

applied to define the neighborhood of each 3D point. Afterwards 
the covariance matrix of each neighborhood is calculated. At the 

end, the points are classified as “edge points” or “other” based on 

the eigenvectors and eigenvalues of the covariance matrix of their 

neighborhood. The performance of the method was evaluated 
using different metrics e.g., Precision, Recall and F1-score. 

Dolapsaki and Georgopoulos, (2021) proposed a method which 

detects 3D edges using digital images with known exterior 

orientation. More precisely, they first define the 2D edge on the 
digital images and define the plane on which the perspective 

center of the image and the 2D edge lay. Inevitably, the 3D edge 

points of the 2D edge lie on the same plane and hence could be 

extracted. Betsas and Georgopoulos, (2022) proposed 3DPlan a 
3D edge detection and vectorization framework. 3DPlan first 

segments the given images using 2D edge detection techniques 

creating 2D edge maps. Then, the RGB images are enriched with 

the 2D edge maps creating four-channel images. Afterwards, the 
enriched images are fed into SfM-MVS algorithms to extract the 

3D edges points. The output of 3DPlan is a .dxf file with the 

vectorized 3D edges. 

Apart from the edge detection techniques, novel computer 
vision algorithms could be used for automatic architectural vector 

drawing creation. Agrafiotis, Talaveros and Georgopoulos, 

(2023) presented a method for automated creation of architectural 

drawings using conditional generative adversarial networks 
(cGANs). The input of their approach is an orthophoto. Then 

cGAN uses the given orthophoto and tries to create the 2D 

architectural drawings by mimicking the CAD drawing. The 

trained algorithm was evaluated diversly. Firstly, a visual 
evaluation using different orthophotos was made with promising 

results. Also, informative conclusions were drawn by sending a 

questionary to end user experts in which they tried to distinguish 

the ground truth from the cGAN, drawings.  
 

3. METHODOLOGY 

Creating an instance segmentation dataset using CAD 
drawings has multiple benefits for many applications. In this 

paper the created dataset is used to train the YOLOv8 algorithm 

to automatically generate 2D CAD drawings of stones. Firstly, a 

CAD drawing to Deep Learning Dataset (CAD2DLD) pipeline is 
presented, which is used to create the training dataset. At the 

inference step i.e., when the trained algorithm is applied on new 

images, the generated instance masks should be transformed to 
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CAD drawings (IS2CAD), creating the final products of InCAD 

algorithm. The following paragraphs describe the CAD2DLD 

and IS2CAD workflows. 
The scope of CAD2DLD step is to transform the CAD drawing 

to a suitable training dataset for deep learning algorithms. First 

and foremost, the CAD drawing is stored in “.dxf” format. Then 

the orthophoto and the CAD vectors are imported to a GIS 
software using the local coordinate system of the CAD drawing. 

In this effort the QGIS software is used. Afterwards the line 

vectors are transformed to polygons using the built-in QGIS 

algorithm “lines2polygons” creating a new file in “.shp” format.  
InCAD aims to use the created polygons as instance 

segmentation masks of the underlying orthophoto. However, the 

coordinates of the polygons which are referenced to the local 

projective coordinate system should be transformed to pixel 
coordinates in order to be used as masks of the orthophoto. 

Additionally, the created orthophoto is a 74022 x 11194 pixels 

image which cannot be used directly into the training and 

inference procedure of the deep learning algorithm because most 
of them are fed with smaller images, for example 640x640 pixels. 

Thus, the created polygons and the orthophoto should be cropped 

into patches and each polygon transformed to the coordinate 

system of each patch. 
Firstly, the boundary of the orthophoto is calculated using the 

QGIS software. Afterwards, a grid with the desired image 

dimensions e.g., 512x512, 640x640 etc. is created. Finally, the 

orthophoto and the polygons are cropped to multiple patches 
simultaneously, using each cell of the grid as crop boundary. The 

cropped image patches are stored in “.tif” while the cropped 

polygons patches to “.geojson”, format. The polygons’ 

coordinates into the “geojson” files, are referenced to the local 
coordinate system of the CAD drawing and so they should be 

transformed to pixel values using the following equations: 

 

                    𝑋𝑝 =  
 𝑋𝐶− 𝑋𝑅 

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
 ;  𝑌𝑝 =  

𝑌𝑅− 𝑌𝐶

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
                          (1) 

 

where     𝑋𝑝, 𝑌𝑝  =  Polygons Pixel Coordinates. 

               𝑋𝐶 , 𝑌𝐶  =  Polygons Local Coordinates. 

               𝑋𝑅 , 𝑌𝑅  =  Local Coordinates of the center of the patch   
                                upper left pixel. 

               pixel size = Orthophoto pixel size. 

 

InCAD uses the YOLOv8 instance segmentation algorithm 
which requires mask coordinates from 0 to 1. So, a coordinates 

normalization procedure is followed the transformation in pixel 

coordinates step, using the following equations: 

 

                            𝑋𝑁 =  
 𝑋𝑃

𝑤
 ;  𝑌𝑁 =  

𝑌𝑃

ℎ
                                   (2) 

 

where     𝑋𝑁 , 𝑌𝑁= Normalized Coordinates. 

               𝑋𝑃, 𝑌𝑃= Pixel Coordinates. 

              w  ,  h  = Image Width and Height. 

 
Finally, the normalized values should be stored in COCO 

format to be accessible from the YOLOv8 instance segmentation 

algorithm. To be more specific, each created patch is 

accompanied by a “.txt” file. Each row of the file contains a label-

mask pair in “𝐿 𝑋𝑁1, 𝑌𝑁1, 𝑋𝑁2, 𝑌𝑁2, … , 𝑋𝑁𝑛, 𝑌𝑁𝑛, 𝑋𝑁1, 𝑌𝑁1” 

format, where L is the label number and the rest is the normalized 

values of the mask. 
In fact, the creation of CAD drawings using the instance 

segmentation masks, during inference, is the opposite workflow 

of the CAD2DLD workflow. Firstly, the orthophotos are fed into 

the InCAD algorithm resulting in a set of instance masks for each 
image which finally transformed to the 2D vector drawings. To 

be more specific, the normalized coordinates of each mask are 

firstly transformed to pixels and then to the local projective 

coordinate system of the CAD drawing, using the equations 
included in eq. 1 and eq. 2. Thus, 2D drawings for each 

orthophoto are created in “.dxf” format which is the main product 

of the InCAD algorithm. A detailed analysis of the performance 

of the algorithm under different training schemes using an 
orthophoto of a fortification wall is presented in Section 4. 

 

4. EXPERIMENTS AND RESULTS 

InCAD algorithm was trained on CAD2DLD data in order to 
automate the creation of 2D vector drawings of stones. In general, 

instance segmentation algorithms are not pretrained on classes 

like “stones”, “mortar”, “wood”, “columns” etc. but in 

completely different ones like “cars”, “person” etc. and so a 
retraining exploiting the new dataset should be performed by 

initializing the YOLOv8 with the provided weights. YOLOv8 

algorithm has five different versions (n, s, m, l, x). Each version 

has a different number of parameters, execution time, metrics and 
floating-point operations per second (FLOPs). Hence, the first 

step is to select the appropriate version for the current 

application. In this effort the “m” version is selected, as the 

version with average complexity. There is no need for real-time 
execution of the InCAD algorithm and also by testing the “m” 

version we could roughly estimate if the application needs a more 

complicated i.e., “l”, “x” or a simpler i.e., “n”. “s” version of 

YOLOv8. The following subsections describe the CAD dataset 
used during the experiments and the assessment of the YOLOv8 

and InCAD algorithms. 

 

4.1 CAD and Training Datasets 

 In our experiments we use a dataset of a fortification wall from 

Chios, Greece, acquired during its geometric documentation by 

the Laboratory of Photogrammetry SRSGE NTUA in 2016 

(Tapinaki et al., 2019). The CAD dataset contains an orthophoto 
74022 x 11194 pixels and a drawing in “.dwg” format (Figure 2). 

 

 

 

 

 
 

Figure 2: The CAD dataset used for training and testing the 

InCAD algorithm. (a) Orthoimage, (b) Close view of the 

Orthoimage, (c) CAD drawing, (d) Close view of the CAD 

drawing 
 

Vectorizing an orthophoto is a tedious process which could be 

performed only by the supervision of specialists like architects. 

Each category in the created orthophoto is represented using a 
different layer e.g., “stones”, “mortar” etc. in the CAD drawing. 

In this experiment we only use the “stones” layer and so the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024 
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

 
67



 

InCAD algorithm automatically creates the 2D drawing of them. 

As described in Section 3 the CAD dataset should be transformed 

to the training dataset. 
Firstly, the orthophoto and the polygons are cropped 

simultaneously, to create the patches. Based on the size of the 

grid, the number of the images varies in the generated dataset. In 

this effort 640x640 images are created for training. which is the 
default image dimensions of YOLO. The idea behind the 

selection of 640x640 grid is the assessment of InCAD 

performance using the default dimensions and altering only some 

of the model hyperparameters like the learning rate (LR), the 
training epochs and the optimizer e.g., Adam (Kingma and Ba, 

2014) or Stochastic Gradient Descent SGD (Ruder, 2017). 

Almost 2000 patches were created by cropping the given 

orthophoto, using its boundary, into patches of 640x640 pixels. 
Some of them do not have valuable information e.g., only 

background info, due to the orthophoto boundary calculation. 

Hence, around 1700 images were finally used into the training 

dataset. After the patches’ generation, the 90%, 5% and 5% i.e., 
1530, 85 and 85, of them were grouped randomly into the “train”, 

“validation” and “test” sets, respectively (Table 1). 

 

 Images Train Validation Test 

Percentage (%) 100 90 5 5 

Numb. of Imgs. 1700 1530 85 85 

 

Table 1: Train, Validation and Test sets of the created Dataset. 
 

Finally, the computers’ specifications used for training are 

presented in Table 2. 

 

Asus ROG 

Zephyrus G15 

CPU GPU RAM 

Ryzen 9  NVDIA 
GeForce 

RTX 3060 

(6GB) 

16 GB 

DDR5 
6900HS Z3+ 

3,3 GHz 

 

Table 2: The Computer Specifications 
 

4.2 Evaluation Metrics 

After the training, using different schemes, the YOLOV8 
algorithm was applied on the test set to assess its performance 

using Accuracy, Precision, Recall, F1-score and intersection over 

union (IoU) metrics using the following equations: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
(3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
(4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

 
(5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(6) 

𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
 

 

(7) 

 

4.1 YOLOv8 Training Scenarios for Instance Segmentation  

In this subsection, the training scenarios of the YOLOv8 

algorithm using different combinations of hyperparameters are 

presented. Although Ultralitics, the creators of YOLOv8, provide 

many hyperparameters for tuning purposes, the assessment 

conducted during this endeavor was made only by changing the 

optimizer, the number of epochs and the learning rate (lr) ones 
which are some of the “main” hyperparameters for training 

purposes. The performance of the instance segmentation 

algorithm is in relationship to the effectiveness of InCAD 

algorithm. However, an in-depth analysis of YOLOv8 
performance it is out of the scope of this paper. So, YOLOv8 and 

other instance segmentation algorithms will be further analyzed 

in future in combination with modern computer vision 

techniques. In this paper, six different scenarios were evaluated 
to improve the products of InCAD algorithm and to investigate 

the future improvement of YOLOv8 performance. Table 3 

displays the different scenarios used during training assessment 

of the YOLOv8 algorithm using the CAD2DLD data described 
in Subsection 4.1. 

 

Scenario Optimizer Epochs Learning Rate 

1 (default) 

SGD 

100  0.01  

2 100 0.003 

3 100 0.001 

4 (default) 

ADAM 

100 0.001 

5 100 0.003 
6 130 0.003 

 

Table 3: The Different Training Scenarios 

 
Firstly, YOLOv8 is trained on the “train” set of images using 

the ground truth annotation data and then it is evaluated on the 

“validation” set of images to estimate its performance. Based on 

the calculated metrics of each epoch, YOLOv8 tries to improve 
the next epoch performance. When the algorithm trained for the 

entire set of epochs, the weights of the best epoch are stored as 

the final model for each scenario. The metrics calculated during 

training are good indicators in order to improve the performance 
of YOLOv8, by tuning the hyperparameters and not assessing the 

performance of the model to unseen images. Thus, an objective 

assessment of the performance of YOLOv8 should be performed.  

 
4.2 YOLOv8 Objective and Subjective Evaluation and Best 

Model Selection for the InCAD algorithm.  

In this subsection, an assessment of the best models of each 

scenario of the YOLOv8 algorithm is presented, applied on the 
test set of the created dataset to select the optimal model for the 

InCAD experiments. Stone instance segmentation is a binary 

class segmentation problem i.e., the pixels should be categorized 

as stones or background. Thus, the mean value of each metric in 
Table 4, e.g. mAcc, is the mean value of the metrics calculated 

for the images of the test set, and not the mean metric e.g., mAcc 

between the different classes. Table 4 presents the mean 

Accuracy (mAcc), mean Precision (mPrecision), mean Recall 
(mRecall), mean F1-Score and mean Intersection Over Union 

(mIoU) metrics for each scenario applied on the images of the 

test set. 

Sc. mAcc mPrecision mRecall mF1 mIoU 

1 82.40 84.75 88.02 87.85 76.84 
2 82.38  84.44  89.33  85.68  77.18 

3 83.17  84.28  90.95  86.42  78.34 

4 78.67  83.95  82.48  84.42  71.95 

5 78.95  83.88  83.38  82.42  72.58 
6 81.29  84.65  86.16  86.78  75.44 

mScs. 81.14 84.32 86.72 85.59 75.38 
 

Table 4: The Evaluation Metrics of YOLOv8 algorithm applied 

on the Test set for each Scenario. Where mScs: mean value for 

each metric taking into account all the scenarios, Scenario 3 was 
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selected as the instance segmentation model of InCAD algorithm 

(Light Gray) 

 
Often, a safe conclusion about the trained model could be 

drawn by examine each calculated metric. In fact, the assessment 

of the performance of a model it is a more complicated process 

including objective and subjective analysis i.e., the metrics 
calculations and visual comparisons, among others. Also, the 

assessment process should take into account the specific 

application with its particularities. For example, in this 

application most of the pixels of the patches included in the 
created dataset are “stone” rather than “background” pixels and 

thus the accuracy, precision, recall and F1-score metrics may not 

be a true indicator of the model’s performance. However, the 

calculated metrics are not so high i.e., over 90%, hence the 
complexity involved in the automatic creation of 2D architectural 

vector drawings of stones and in general, is confirmed. 

Furthermore, the intersection over union (IoU), which is the main 

evaluation metric for semantic, instance and panoptic 
segmentation tasks due to the “spatial” criteria involved in the 

calculation, gives promising results. Apart from the objective 

analysis of each scenario a subjective analysis i.e., visual 

comparisons, is included to select the optimal instance 
segmentation model for the InCAD algorithm. For a fair 

comparison between the scenarios, some of the worst (first line) 

and some of the best (second line) predictions for each scenario 

are displayed in Figure 3. 
 

Scenario 1 

The Predicted Instance Segmentation Masks 
 

   
   

   
 

Scenario 2 

The Predicted Instance Segmentation Masks 
 

   
   

   
 

 
 

Scenario 3 

The Predicted Instance Segmentation Masks 
 

   
   

   
 

Scenario 4 

The Predicted Instance Segmentation Masks 
 

   
   

   
 

Scenario 5 
The Predicted Instance Segmentation Masks 

 

   
   

   
 

Scenario 6 

The Predicted Instance Segmentation Masks 
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Figure 3: Subjective Evaluation of Training Scenarios. The first 

row presents some of the worst instance segmentation results 

while the second some of the best instance segmentation results. 

 
In general, the most difficult predictions are those including 

mortar areas and small stones. On the one hand the instance 

segmentation algorithm struggles to find the stones that are 

surrounded by mortar areas and especially the small ones. On the 
other hand, it achieves high quality results in demanding images 

as depicted in the second row of  Figure 3. To sum up, after the 

quantitative and qualitative analysis of the training scenarios the 

scenario 3 gives the most promising results, especially at the most 
difficult cases (blue rectangle Figure 3). Thus, the best model of 

scenario 3 was chosen as the YOLOv8 instance segmentation 

model of InCAD algorithm.  

In fact, the instance segmentation algorithm is a crucial part of 
InCAD algorithm. However, a subjective and objective analysis 

of the InCAD main products should be performed, using the 

selected YOLOv8 model. In Figure 4 the architectural vector 

drawings of some of the worst and best predictions of the training 
scenario 3 are presented. 

 

InCAD Architectural Vector Drawings 
 

  
  

  
  

  
  

  
  

  
  

  
 

Figure 4: 2D Vector Drawings in .dxf format created using the 

InCAD algorithm. Orthophotos patches (left), generated 2D 
vectors in CAD format (right). 

 

5. DISCUSSION OF RESULTS 

In general, the InCAD algorithm gives promising results as 
depicted in Figure 3 and Figure 4, and analyzed in detail in the 

previous sections. However, a critical analysis of the results and 

the development of InCAD algorithm should be performed for a 

fair assessment of the algorithm. First and foremost, YOLOv8 
algorithm was trained using the CAD data depicted in Figure 2. 

For a fair comparison a test set of orthophotos was created. 

During training the test of images was not involved in any step 

and thus the quantitative (Table 4) and qualitative (Figure 3 and 
Figure 4) evaluation provide a fair assessment of the workflow. 

Figure 4 depicts some of the worst and the best results of InCAD 

algorithm applied on the orthophotos of the test set. However, a 

critical visual comparison between the created 2D vector 
drawings (Figure 4 (right column)) and the ground truth CAD 

drawings (Figure 2c, d) should be conducted ( 

Figure 5). 

 
Ground Truth Drawings VS InCAD Drawings 
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Figure 5: Comparison of ground truth vector drawings 

(left) with the InCAD drawings (right). The different 

colours in the left columns indicates different layers in 

CAD i.e., mortar (pink) and stones which are covered by 

mortar or are farther than most of the stones (green). Each 

stone is depicted with different colour (right). The scale of 

the depicted objects is given with orange. 

 

By comparing the created 2D architectural vector drawings 

with the ground truth vector drawings created by experts, 
informative outcomes can be drawn. On the one hand the InCAD 

algorithm miss to identify and vectorize stones ( 

Figure 5 blue rectangles). Additionally, misdetections in which 

the InCAD algorithm identifies two stones instead of one, are 
also occur ( 

Figure 5 red rectangles). On the other hand, the InCAD 

algorithm gives very good results in many easy but also in very 

demanding cases as depicted in  
Figure 5. Finally, the execution time of InCAD algorithm, 

without including the training phase, is less than 50 seconds for 

80 drawings on a CPU. To sum up the InCAD algorithm gives 

very fast high quality results.  
 

6. CONCLUSION AND FUTURE WORK 

In this paper, the InCAD algorithm is introduced, which aims 

to contribute to the creation of 2D architectural vector drawings 
automatically, using deep learning instance segmentation 

algorithms e.g., YOLOv8. On the one hand deep learning 

algorithms seek huge amount of data for training purposes. On 

the other hand, the 2D CAD drawings created by vectorizing 
orthophotographs are underexplored as training data for deep 

learning algorithms. Hence, a methodology to transform 2D CAD 

drawings into suitable deep learning datasets (CAD2DLD), is 

presented.  
In this effort, the InCAD algorithm was applied on a binary 

instance segmentation problem. Thus, an application using 

multiple classes could be performed in the future, to examine the 

performance of InCAD in a problem with higher complexity. 
Additionally, experiments using larger images with overlap or 

using augmentation techniques, will be made in the future to 

investigate the refinement of instance segmentation process. 

Furthermore, experiments using different instance segmentation 
algorithms could be conducted in future to find the best one for 

the needs of InCAD algorithms. To conclude, many experiments 

were conducted to evaluate the performance of InCAD algorithm 

using the CAD2DLD data demonstrating the promising results of 
the algorithm. 
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