
INCAD: 2D VECTOR DRAWINGS CREATION USING INSTANCE SEGMENTATION

Thodoris Betsas*1, Andreas Georgopoulos1, Anastasios Doulamis1

1 National Technical University of Athens, School of Rural, Surveying and Geoinformatics Engineering, Lab of Photogrammetry,

Zografou Campus, Heroon Polytechniou 9, 15780, Zografou, Athens, Greece

betsasth@mail.ntua.gr, drag@central.ntua.gr, adoulam@cs.ntua.gr

Commission II

KEY WORDS: 2D instance segmentation, 2D vector drawings, cultural heritage, YOLOv8, orthophotos

ABSTRACT:

Orthoimages are a common product used as a base in CAD software for vectorization purposes. In fact, vectorization of orthoimages

constitutes a tedious and labour-intensive process which should be supervised by experts e.g. architects, chemical engineers etc. On
the one hand, deep learning algorithms are used extensively nowadays achieving high quality results. On the other hand, deep learning

algorithms require a huge amount of manually annotated data to be trained on, which is a very difficult process especially at pixel level

applications like semantic segmentation and instance segmentation. However, the transformation of 2D CAD drawings into a suitable

deep learning dataset (CAD2DLD) is underexplored ignoring a large source of data, created by experts. In this effort, the InCAD
algorithm is proposed, which aims to automatically create 2D vector drawings using the YOLOv8 instance segmentation algorithm

which was trained on CAD2DLD data. Additionally, a methodology for transforming 2D CAD drawings into a suitable deep learning

dataset for instance segmentation, is presented. Finally, the proposed workflow is evaluated on the creation of 2D vector drawings of

stones of a fortification wall achieving promising results (78.34 mIoU).

CAD Drawing

Polygons

Inference Patches

Labels in COCO format YOLO v8

Figure 1: InCAD Flowchart. Orange Rectangle: The

transformation of CAD Drawings to COCO labels for training.

The COCO labels are used to train the YOLOv8. Blue
Rectangle: The inference Images are passed to YOLOv8

algorithm. Green Rectangle: The output of InCAD algorithm.

InCAD Drawings

1. INTRODUCTION

Geometric documentation of cultural heritage buildings could

be achieved using either conventional or modern

photogrammetric approaches in combination with post-

processing steps, providing many products to the users like
textured 3D models, orthophotos and 2D architectural vector

drawings. There are many researches investigating the use of

deep learning techniques on cultural heritage data for 3D

documentation (Agrafiotis, Talaveros and Georgopoulos, 2023),
and inspection (Tzortzis et al., 2022) among others, using either

conventional RGB images or orthophotographies.

Orthophotography combines the valuable information of

texture with the ability to perform accurate measurements.
However, they are commonly used as raster maps for the creation

of 2D vector drawings e.g., architectural, material etc. More

precisely, the 2D vector drawings are created by manually

vectorizing the orthophotos using Computer Aided Design
(CAD) software, which is a time-consuming and labour-intensive

process. The output of this process is a CAD drawing file which

contains the vectorized objects assigned to different layers.
Consequently, the CAD drawings could provide both geometric

i.e., vector like lines, polygons etc. and semantic information i.e.,

the layer names. To be more specific, each CAD drawing has

different layers representing the available data and the vectorized
objects. For instance, the available data could be an orthophoto

of a fortification wall and the vectorized objects could be the

“stones”, “mortar”, “wood” etc. parts of the wall. The main idea

of this paper is to investigate the use of CAD drawings as a
training dataset for deep learning instance segmentation

algorithms in order to automate the creation of 2D architectural

vector drawings. Deep learning instance segmentation algorithms

seek a huge amount of ground truth data to be trained on. Well
known deep learning datasets e.g. COCO (Lin et al., 2015),

provide a large number of images accompanied with their labels

in a “.txt” file. Thus, the semantic and geometric information of

CAD drawings should be transformed into a suitable structure in
order to be used as a training dataset of instance segmentation

algorithms. To be more specific, the visual information of the

orthophotos should be combined with the geometric and semantic

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

65

mailto:betsasth@mail.ntua.gr
mailto:drag@central.ntua.gr
mailto:adoulam@cs.ntua.gr

information of the CAD layers to create a suitable dataset for

training deep learning algorithms.

InCAD (Figure 1) is a simple yet efficient approach which
automatically creates 2D vector drawings using an instance

segmentation algorithm e.g., YOLOv8 (Jocher, Chaurasia and

Qiu, 2023) which has been trained exploiting the layers created

by experts in CAD format. Although InCAD uses YOLO v8 for
instance segmentation, the presented methodology is compatible

with any instance segmentation algorithm.

In fact, deep learning algorithms require vast amount of

annotated data to be trained on. Meanwhile, orthophotographs are
manually vectorized by experts, to create architectural drawings,

especially in the cultural heritage domain. However, the 2D CAD

data remains underexplored as a source of training data for deep

learning algorithms.
In this paper, the use of 2D CAD drawings as training data for

automated creation of architectural vector drawings is

investigated. InCAD uses the YOLOv8 algorithm to create vector

drawings in .dxf format. YOLOv8 was trained on CAD data
created by experts, which was first transformed into a suitable

dataset for training deep learning algorithms.

To sum up the contributions of this paper are:

• The proposed methodology which transforms 2D CAD

drawings to deep learning datasets (CAD2DLD).

• The automatic creation of 2D vector drawings using
instance segmentation algorithms trained on

CAD2DLD data, with promising results.

2. RELATED WORK

In this effort we investigate the creation of 2D vector drawings

using instance segmentation deep learning algorithms trained

using CAD data. Many efforts presented so far aim to automate

the creation of 2D-3D vector drawings. In fact, many of them
incorporate 2D and 3D edge detection techniques, because the

edges could be easily transformed into vectors. Hence, the related

work is organized as follows. Firstly, a brief analysis of instance

segmentation algorithms is presented. Finally, a brief analysis of
2D – 3D vector drawing creation, using edges and novel

computer vision techniques, is included.

2.1 2D Instance Segmentation

Image pixels could be grouped into sets of pixels with similar

characteristics performing a segmentation of the image.

However, segmenting an image does not include a semantic

meaning about the groups. Semantic segmentation techniques
(Long, Shelhamer and Darrell, 2015; Chen et al., 2018) have

been proposed to assign a meaning to pixels using informative

labels like “car”, “person” etc. In fact, some of the semantic

categories, for example the “car”, could have multiple instances

in the image while others like “sky” could not. Semantic

segmentation techniques cannot distinguish the instances of each

category. To achieve this, object detection techniques (Girshick
et al., 2013; Ren et al., 2017), are combined with semantic

segmentation techniques to mask the instances of each class,

performing an instance segmentation of the image (Hariharan et

al., 2014). Hafiz and Bhat, 2020 present a review of instance
segmentation algorithms. In this effort, the YOLOv8 (Jocher,

Chaurasia and Qiu, 2023) algorithm, created by Ultralitics is

used. YOLO is a family of algorithms used for object detection,

instance segmentation etc. (Bochkovskiy, Wang and Liao, 2020;
Jocher, Chaurasia and Qiu, 2023). Redmon et al., 2016 presented

the first YOLOv1 algorithm for object detection. Specifically,

YOLOv1 divides the given image into a grid. Then, for each grid

cell a set of bounding boxes is predicted. Each bounding box has
a confidence score. The confidence score is crucial for YOLO

because based on that and the class probabilities the algorithm

assesses the predicted boxes.

2.2 2D – 3D vector drawing creation

Various 2D edge detection operators have been proposed so far

e.g., Canny (Canny, 1983), Prewitt (Prewitt et.al, 1970) etc.

These methods exploit the convolution operation to extract the

2D edges. Nowadays, deep learning algorithms for 2D edge

detection have been proposed, solving some of the limitations of

the traditional methods.

Xie and Tu, 2015 proposed HED a convolutional neural
network for 2D edge detection, build upon a modified VGGNet

(Simonyan and Zisserman, 2015) architecture. For example, they

“trimmed” the last pooling and fully connected layers of VGG to

create fine 2D edge maps and to reduce the complexity of the
algorithm. Poma, Riba and Sappa, 2020 proposed DexiNed an

architecture composed of multiple learning layers for 2D edges

detection. During inference DexiNed creates a series of edge

maps which are finally combined to the final output.
Bazazian, Casas and Ruiz-Hidalgo, (2015) presented a 3D

edge detection technique method which uses the covariance

matrix of point neighborhoods. Firstly, the kNN algorithm is

applied to define the neighborhood of each 3D point. Afterwards
the covariance matrix of each neighborhood is calculated. At the

end, the points are classified as “edge points” or “other” based on

the eigenvectors and eigenvalues of the covariance matrix of their

neighborhood. The performance of the method was evaluated
using different metrics e.g., Precision, Recall and F1-score.

Dolapsaki and Georgopoulos, (2021) proposed a method which

detects 3D edges using digital images with known exterior

orientation. More precisely, they first define the 2D edge on the
digital images and define the plane on which the perspective

center of the image and the 2D edge lay. Inevitably, the 3D edge

points of the 2D edge lie on the same plane and hence could be

extracted. Betsas and Georgopoulos, (2022) proposed 3DPlan a
3D edge detection and vectorization framework. 3DPlan first

segments the given images using 2D edge detection techniques

creating 2D edge maps. Then, the RGB images are enriched with

the 2D edge maps creating four-channel images. Afterwards, the
enriched images are fed into SfM-MVS algorithms to extract the

3D edges points. The output of 3DPlan is a .dxf file with the

vectorized 3D edges.

Apart from the edge detection techniques, novel computer
vision algorithms could be used for automatic architectural vector

drawing creation. Agrafiotis, Talaveros and Georgopoulos,

(2023) presented a method for automated creation of architectural

drawings using conditional generative adversarial networks
(cGANs). The input of their approach is an orthophoto. Then

cGAN uses the given orthophoto and tries to create the 2D

architectural drawings by mimicking the CAD drawing. The

trained algorithm was evaluated diversly. Firstly, a visual
evaluation using different orthophotos was made with promising

results. Also, informative conclusions were drawn by sending a

questionary to end user experts in which they tried to distinguish

the ground truth from the cGAN, drawings.

3. METHODOLOGY

Creating an instance segmentation dataset using CAD
drawings has multiple benefits for many applications. In this

paper the created dataset is used to train the YOLOv8 algorithm

to automatically generate 2D CAD drawings of stones. Firstly, a

CAD drawing to Deep Learning Dataset (CAD2DLD) pipeline is
presented, which is used to create the training dataset. At the

inference step i.e., when the trained algorithm is applied on new

images, the generated instance masks should be transformed to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

66

CAD drawings (IS2CAD), creating the final products of InCAD

algorithm. The following paragraphs describe the CAD2DLD

and IS2CAD workflows.
The scope of CAD2DLD step is to transform the CAD drawing

to a suitable training dataset for deep learning algorithms. First

and foremost, the CAD drawing is stored in “.dxf” format. Then

the orthophoto and the CAD vectors are imported to a GIS
software using the local coordinate system of the CAD drawing.

In this effort the QGIS software is used. Afterwards the line

vectors are transformed to polygons using the built-in QGIS

algorithm “lines2polygons” creating a new file in “.shp” format.
InCAD aims to use the created polygons as instance

segmentation masks of the underlying orthophoto. However, the

coordinates of the polygons which are referenced to the local

projective coordinate system should be transformed to pixel
coordinates in order to be used as masks of the orthophoto.

Additionally, the created orthophoto is a 74022 x 11194 pixels

image which cannot be used directly into the training and

inference procedure of the deep learning algorithm because most
of them are fed with smaller images, for example 640x640 pixels.

Thus, the created polygons and the orthophoto should be cropped

into patches and each polygon transformed to the coordinate

system of each patch.
Firstly, the boundary of the orthophoto is calculated using the

QGIS software. Afterwards, a grid with the desired image

dimensions e.g., 512x512, 640x640 etc. is created. Finally, the

orthophoto and the polygons are cropped to multiple patches
simultaneously, using each cell of the grid as crop boundary. The

cropped image patches are stored in “.tif” while the cropped

polygons patches to “.geojson”, format. The polygons’

coordinates into the “geojson” files, are referenced to the local
coordinate system of the CAD drawing and so they should be

transformed to pixel values using the following equations:

 𝑋𝑝 =
 𝑋𝐶− 𝑋𝑅

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
 ; 𝑌𝑝 =

𝑌𝑅− 𝑌𝐶

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
 (1)

where 𝑋𝑝, 𝑌𝑝 = Polygons Pixel Coordinates.

 𝑋𝐶 , 𝑌𝐶 = Polygons Local Coordinates.

 𝑋𝑅 , 𝑌𝑅 = Local Coordinates of the center of the patch
 upper left pixel.

 pixel size = Orthophoto pixel size.

InCAD uses the YOLOv8 instance segmentation algorithm
which requires mask coordinates from 0 to 1. So, a coordinates

normalization procedure is followed the transformation in pixel

coordinates step, using the following equations:

 𝑋𝑁 =
 𝑋𝑃

𝑤
 ; 𝑌𝑁 =

𝑌𝑃

ℎ
 (2)

where 𝑋𝑁 , 𝑌𝑁= Normalized Coordinates.

 𝑋𝑃, 𝑌𝑃= Pixel Coordinates.

 w , h = Image Width and Height.

Finally, the normalized values should be stored in COCO

format to be accessible from the YOLOv8 instance segmentation

algorithm. To be more specific, each created patch is

accompanied by a “.txt” file. Each row of the file contains a label-

mask pair in “𝐿 𝑋𝑁1, 𝑌𝑁1, 𝑋𝑁2, 𝑌𝑁2, … , 𝑋𝑁𝑛, 𝑌𝑁𝑛, 𝑋𝑁1, 𝑌𝑁1”

format, where L is the label number and the rest is the normalized

values of the mask.
In fact, the creation of CAD drawings using the instance

segmentation masks, during inference, is the opposite workflow

of the CAD2DLD workflow. Firstly, the orthophotos are fed into

the InCAD algorithm resulting in a set of instance masks for each
image which finally transformed to the 2D vector drawings. To

be more specific, the normalized coordinates of each mask are

firstly transformed to pixels and then to the local projective

coordinate system of the CAD drawing, using the equations
included in eq. 1 and eq. 2. Thus, 2D drawings for each

orthophoto are created in “.dxf” format which is the main product

of the InCAD algorithm. A detailed analysis of the performance

of the algorithm under different training schemes using an
orthophoto of a fortification wall is presented in Section 4.

4. EXPERIMENTS AND RESULTS

InCAD algorithm was trained on CAD2DLD data in order to
automate the creation of 2D vector drawings of stones. In general,

instance segmentation algorithms are not pretrained on classes

like “stones”, “mortar”, “wood”, “columns” etc. but in

completely different ones like “cars”, “person” etc. and so a
retraining exploiting the new dataset should be performed by

initializing the YOLOv8 with the provided weights. YOLOv8

algorithm has five different versions (n, s, m, l, x). Each version

has a different number of parameters, execution time, metrics and
floating-point operations per second (FLOPs). Hence, the first

step is to select the appropriate version for the current

application. In this effort the “m” version is selected, as the

version with average complexity. There is no need for real-time
execution of the InCAD algorithm and also by testing the “m”

version we could roughly estimate if the application needs a more

complicated i.e., “l”, “x” or a simpler i.e., “n”. “s” version of

YOLOv8. The following subsections describe the CAD dataset
used during the experiments and the assessment of the YOLOv8

and InCAD algorithms.

4.1 CAD and Training Datasets

 In our experiments we use a dataset of a fortification wall from

Chios, Greece, acquired during its geometric documentation by

the Laboratory of Photogrammetry SRSGE NTUA in 2016

(Tapinaki et al., 2019). The CAD dataset contains an orthophoto
74022 x 11194 pixels and a drawing in “.dwg” format (Figure 2).

Figure 2: The CAD dataset used for training and testing the

InCAD algorithm. (a) Orthoimage, (b) Close view of the

Orthoimage, (c) CAD drawing, (d) Close view of the CAD

drawing

Vectorizing an orthophoto is a tedious process which could be

performed only by the supervision of specialists like architects.

Each category in the created orthophoto is represented using a
different layer e.g., “stones”, “mortar” etc. in the CAD drawing.

In this experiment we only use the “stones” layer and so the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

67

InCAD algorithm automatically creates the 2D drawing of them.

As described in Section 3 the CAD dataset should be transformed

to the training dataset.
Firstly, the orthophoto and the polygons are cropped

simultaneously, to create the patches. Based on the size of the

grid, the number of the images varies in the generated dataset. In

this effort 640x640 images are created for training. which is the
default image dimensions of YOLO. The idea behind the

selection of 640x640 grid is the assessment of InCAD

performance using the default dimensions and altering only some

of the model hyperparameters like the learning rate (LR), the
training epochs and the optimizer e.g., Adam (Kingma and Ba,

2014) or Stochastic Gradient Descent SGD (Ruder, 2017).

Almost 2000 patches were created by cropping the given

orthophoto, using its boundary, into patches of 640x640 pixels.
Some of them do not have valuable information e.g., only

background info, due to the orthophoto boundary calculation.

Hence, around 1700 images were finally used into the training

dataset. After the patches’ generation, the 90%, 5% and 5% i.e.,
1530, 85 and 85, of them were grouped randomly into the “train”,

“validation” and “test” sets, respectively (Table 1).

 Images Train Validation Test

Percentage (%) 100 90 5 5

Numb. of Imgs. 1700 1530 85 85

Table 1: Train, Validation and Test sets of the created Dataset.

Finally, the computers’ specifications used for training are

presented in Table 2.

Asus ROG

Zephyrus G15

CPU GPU RAM

Ryzen 9 NVDIA
GeForce

RTX 3060

(6GB)

16 GB

DDR5
6900HS Z3+

3,3 GHz

Table 2: The Computer Specifications

4.2 Evaluation Metrics

After the training, using different schemes, the YOLOV8
algorithm was applied on the test set to assess its performance

using Accuracy, Precision, Recall, F1-score and intersection over

union (IoU) metrics using the following equations:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁

(5)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(6)

𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛

(7)

4.1 YOLOv8 Training Scenarios for Instance Segmentation

In this subsection, the training scenarios of the YOLOv8

algorithm using different combinations of hyperparameters are

presented. Although Ultralitics, the creators of YOLOv8, provide

many hyperparameters for tuning purposes, the assessment

conducted during this endeavor was made only by changing the

optimizer, the number of epochs and the learning rate (lr) ones
which are some of the “main” hyperparameters for training

purposes. The performance of the instance segmentation

algorithm is in relationship to the effectiveness of InCAD

algorithm. However, an in-depth analysis of YOLOv8
performance it is out of the scope of this paper. So, YOLOv8 and

other instance segmentation algorithms will be further analyzed

in future in combination with modern computer vision

techniques. In this paper, six different scenarios were evaluated
to improve the products of InCAD algorithm and to investigate

the future improvement of YOLOv8 performance. Table 3

displays the different scenarios used during training assessment

of the YOLOv8 algorithm using the CAD2DLD data described
in Subsection 4.1.

Scenario Optimizer Epochs Learning Rate

1 (default)

SGD

100 0.01

2 100 0.003

3 100 0.001

4 (default)

ADAM

100 0.001

5 100 0.003
6 130 0.003

Table 3: The Different Training Scenarios

Firstly, YOLOv8 is trained on the “train” set of images using

the ground truth annotation data and then it is evaluated on the

“validation” set of images to estimate its performance. Based on

the calculated metrics of each epoch, YOLOv8 tries to improve
the next epoch performance. When the algorithm trained for the

entire set of epochs, the weights of the best epoch are stored as

the final model for each scenario. The metrics calculated during

training are good indicators in order to improve the performance
of YOLOv8, by tuning the hyperparameters and not assessing the

performance of the model to unseen images. Thus, an objective

assessment of the performance of YOLOv8 should be performed.

4.2 YOLOv8 Objective and Subjective Evaluation and Best

Model Selection for the InCAD algorithm.

In this subsection, an assessment of the best models of each

scenario of the YOLOv8 algorithm is presented, applied on the
test set of the created dataset to select the optimal model for the

InCAD experiments. Stone instance segmentation is a binary

class segmentation problem i.e., the pixels should be categorized

as stones or background. Thus, the mean value of each metric in
Table 4, e.g. mAcc, is the mean value of the metrics calculated

for the images of the test set, and not the mean metric e.g., mAcc

between the different classes. Table 4 presents the mean

Accuracy (mAcc), mean Precision (mPrecision), mean Recall
(mRecall), mean F1-Score and mean Intersection Over Union

(mIoU) metrics for each scenario applied on the images of the

test set.

Sc. mAcc mPrecision mRecall mF1 mIoU

1 82.40 84.75 88.02 87.85 76.84
2 82.38 84.44 89.33 85.68 77.18

3 83.17 84.28 90.95 86.42 78.34

4 78.67 83.95 82.48 84.42 71.95

5 78.95 83.88 83.38 82.42 72.58
6 81.29 84.65 86.16 86.78 75.44

mScs. 81.14 84.32 86.72 85.59 75.38

Table 4: The Evaluation Metrics of YOLOv8 algorithm applied

on the Test set for each Scenario. Where mScs: mean value for

each metric taking into account all the scenarios, Scenario 3 was

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

68

selected as the instance segmentation model of InCAD algorithm

(Light Gray)

Often, a safe conclusion about the trained model could be

drawn by examine each calculated metric. In fact, the assessment

of the performance of a model it is a more complicated process

including objective and subjective analysis i.e., the metrics
calculations and visual comparisons, among others. Also, the

assessment process should take into account the specific

application with its particularities. For example, in this

application most of the pixels of the patches included in the
created dataset are “stone” rather than “background” pixels and

thus the accuracy, precision, recall and F1-score metrics may not

be a true indicator of the model’s performance. However, the

calculated metrics are not so high i.e., over 90%, hence the
complexity involved in the automatic creation of 2D architectural

vector drawings of stones and in general, is confirmed.

Furthermore, the intersection over union (IoU), which is the main

evaluation metric for semantic, instance and panoptic
segmentation tasks due to the “spatial” criteria involved in the

calculation, gives promising results. Apart from the objective

analysis of each scenario a subjective analysis i.e., visual

comparisons, is included to select the optimal instance
segmentation model for the InCAD algorithm. For a fair

comparison between the scenarios, some of the worst (first line)

and some of the best (second line) predictions for each scenario

are displayed in Figure 3.

Scenario 1

The Predicted Instance Segmentation Masks

Scenario 2

The Predicted Instance Segmentation Masks

Scenario 3

The Predicted Instance Segmentation Masks

Scenario 4

The Predicted Instance Segmentation Masks

Scenario 5
The Predicted Instance Segmentation Masks

Scenario 6

The Predicted Instance Segmentation Masks

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

69

Figure 3: Subjective Evaluation of Training Scenarios. The first

row presents some of the worst instance segmentation results

while the second some of the best instance segmentation results.

In general, the most difficult predictions are those including

mortar areas and small stones. On the one hand the instance

segmentation algorithm struggles to find the stones that are

surrounded by mortar areas and especially the small ones. On the
other hand, it achieves high quality results in demanding images

as depicted in the second row of Figure 3. To sum up, after the

quantitative and qualitative analysis of the training scenarios the

scenario 3 gives the most promising results, especially at the most
difficult cases (blue rectangle Figure 3). Thus, the best model of

scenario 3 was chosen as the YOLOv8 instance segmentation

model of InCAD algorithm.

In fact, the instance segmentation algorithm is a crucial part of
InCAD algorithm. However, a subjective and objective analysis

of the InCAD main products should be performed, using the

selected YOLOv8 model. In Figure 4 the architectural vector

drawings of some of the worst and best predictions of the training
scenario 3 are presented.

InCAD Architectural Vector Drawings

Figure 4: 2D Vector Drawings in .dxf format created using the

InCAD algorithm. Orthophotos patches (left), generated 2D
vectors in CAD format (right).

5. DISCUSSION OF RESULTS

In general, the InCAD algorithm gives promising results as
depicted in Figure 3 and Figure 4, and analyzed in detail in the

previous sections. However, a critical analysis of the results and

the development of InCAD algorithm should be performed for a

fair assessment of the algorithm. First and foremost, YOLOv8
algorithm was trained using the CAD data depicted in Figure 2.

For a fair comparison a test set of orthophotos was created.

During training the test of images was not involved in any step

and thus the quantitative (Table 4) and qualitative (Figure 3 and
Figure 4) evaluation provide a fair assessment of the workflow.

Figure 4 depicts some of the worst and the best results of InCAD

algorithm applied on the orthophotos of the test set. However, a

critical visual comparison between the created 2D vector
drawings (Figure 4 (right column)) and the ground truth CAD

drawings (Figure 2c, d) should be conducted (

Figure 5).

Ground Truth Drawings VS InCAD Drawings

0.30m

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

70

Figure 5: Comparison of ground truth vector drawings

(left) with the InCAD drawings (right). The different

colours in the left columns indicates different layers in

CAD i.e., mortar (pink) and stones which are covered by

mortar or are farther than most of the stones (green). Each

stone is depicted with different colour (right). The scale of

the depicted objects is given with orange.

By comparing the created 2D architectural vector drawings

with the ground truth vector drawings created by experts,
informative outcomes can be drawn. On the one hand the InCAD

algorithm miss to identify and vectorize stones (

Figure 5 blue rectangles). Additionally, misdetections in which

the InCAD algorithm identifies two stones instead of one, are
also occur (

Figure 5 red rectangles). On the other hand, the InCAD

algorithm gives very good results in many easy but also in very

demanding cases as depicted in
Figure 5. Finally, the execution time of InCAD algorithm,

without including the training phase, is less than 50 seconds for

80 drawings on a CPU. To sum up the InCAD algorithm gives

very fast high quality results.

6. CONCLUSION AND FUTURE WORK

In this paper, the InCAD algorithm is introduced, which aims

to contribute to the creation of 2D architectural vector drawings
automatically, using deep learning instance segmentation

algorithms e.g., YOLOv8. On the one hand deep learning

algorithms seek huge amount of data for training purposes. On

the other hand, the 2D CAD drawings created by vectorizing
orthophotographs are underexplored as training data for deep

learning algorithms. Hence, a methodology to transform 2D CAD

drawings into suitable deep learning datasets (CAD2DLD), is

presented.
In this effort, the InCAD algorithm was applied on a binary

instance segmentation problem. Thus, an application using

multiple classes could be performed in the future, to examine the

performance of InCAD in a problem with higher complexity.
Additionally, experiments using larger images with overlap or

using augmentation techniques, will be made in the future to

investigate the refinement of instance segmentation process.

Furthermore, experiments using different instance segmentation
algorithms could be conducted in future to find the best one for

the needs of InCAD algorithms. To conclude, many experiments

were conducted to evaluate the performance of InCAD algorithm

using the CAD2DLD data demonstrating the promising results of
the algorithm.

ACKNOWLEDGEMENTS

This work is funded by the European Union Funded project

euPOLIS ”Integrated NBS- based Urban Planning Methodology

for Enhancing the Health and Well-being of Citizens: the

euPOLIS Approach”, under the Horizon 2020 program H2020-
EU.3.5.2., grant agreement No. 869448. The content of this

publication is the sole responsibility of NTUA and does not

necessarily reflect the opinion of the European Union.

REFERENCES

Agrafiotis, P., Talaveros, G. and Georgopoulos, A. (2023)

Orthoimage-to-2D Architectural Drawing with Conditional

Adversarial Networks’, ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, X-M-1–2023,

pp. 11–18. Available at: https://doi.org/10.5194/isprs-annals-X-

M-1-2023-11-2023.

Bazazian, D., Casas, J.R. and Ruiz-Hidalgo, J. (2015) ‘Fast and

robust edge extraction in unorganized point clouds’, in 2015

international conference on digital image computing: techniques

and applications (DICTA). IEEE, pp. 1–8.

0.25m

0.18m

0.40m

0.18m

0.28m

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

71

Betsas, T. and Georgopoulos, A. (2022) ‘Point-Cloud

Segmentation for 3D Edge Detection and Vectorization’,

Heritage, 5(4), pp. 4037–4060. Available at:

https://doi.org/10.3390/heritage5040208.

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M. (2020)

‘YOLOv4: Optimal Speed and Accuracy of Object Detection’.

arXiv. Available at: https://doi.org/10.48550/arXiv.2004.10934.

Canny, J.F. (1983) Finding Edges and Lines in Images.

Massachusetts Inst of Tech., Cambridge Artificial Intelligence

Lab.

Chen, L.-C. et al. (2018) ‘DeepLab: Semantic Image
Segmentation with Deep Convolutional Nets, Atrous

Convolution, and Fully Connected CRFs’, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 40(4), pp. 834–848.

Available at: https://doi.org/10.1109/TPAMI.2017.2699184.

Dolapsaki, M.M. and Georgopoulos, A. (2021) ‘Edge Detection

in 3D Point Clouds Using Digital Images’, ISPRS International

Journal of Geo-Information, 10(4), p. 229.

Girshick, R. et al. (2013) ‘Rich feature hierarchies for accurate
object detection and semantic segmentation’. arXiv. Available at:

https://doi.org/10.48550/arXiv.1311.2524.

Hafiz, A.M. and Bhat, G.M. (2020) ‘A survey on instance

segmentation: state of the art’, International Journal of
Multimedia Information Retrieval, 9(3), pp. 171–189. Available

at: https://doi.org/10.1007/s13735-020-00195-x.

Hariharan, B. et al. (2014) ‘Simultaneous Detection and

Segmentation’, in D. Fleet et al. (eds) Computer Vision – ECCV
2014. Cham: Springer International Publishing (Lecture Notes in

Computer Science), pp. 297–312. Available at:

https://doi.org/10.1007/978-3-319-10584-0_20.

Jocher, G., Chaurasia, A. and Qiu, J. (2023) ‘YOLOv8’.
Available at: https://github.com/ultralytics/ultralytics (Accessed:

20 April 2023).

Kingma, D.P. and Ba, J. (2014) ‘Adam: A method for stochastic

optimization’, arXiv preprint arXiv:1412.6980 [Preprint].

Lin, T.-Y. et al. (2015) ‘Microsoft COCO: Common Objects in

Context’. arXiv. Available at:

https://doi.org/10.48550/arXiv.1405.0312.

Long, J., Shelhamer, E. and Darrell, T. (2015) ‘Fully
convolutional networks for semantic segmentation’, in

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 3431–3440.

Poma, X.S., Riba, E. and Sappa, A. (2020) ‘Dense extreme
inception network: Towards a robust cnn model for edge

detection’, in Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision, pp. 1923–1932.

Prewitt, J.M. and others (1970) ‘Object enhancement and
extraction’, Picture processing and Psychopictorics, 10(1), pp.

15–19.

Ren, S. et al. (2017) ‘Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks’, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–

1149. Available at:

https://doi.org/10.1109/TPAMI.2016.2577031.

Ruder, S. (2017) ‘An overview of gradient descent optimization

algorithms’. arXiv. Available at: http://arxiv.org/abs/1609.04747

(Accessed: 11 January 2024).

Simonyan, K. and Zisserman, A. (2015) ‘Very Deep
Convolutional Networks for Large-Scale Image Recognition’,

arXiv:1409.1556 [cs] [Preprint]. Available at:

http://arxiv.org/abs/1409.1556 (Accessed: 22 April 2022).

Tapinaki, S. et al. (2019) ‘3D Image Based Geometric
Documentation of a Medieval Fortress’, The International

Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, XLII-2/W9, pp. 699–705. Available at:

https://doi.org/10.5194/isprs-archives-XLII-2-W9-699-2019.

Tzortzis, I.N. et al. (2022) ‘Automatic Inspection of Cultural

Monuments Using Deep and Tensor-Based Learning on

Hyperspectral Imagery’, in 2022 IEEE International Conference

on Image Processing (ICIP). 2022 IEEE International
Conference on Image Processing (ICIP), pp. 3136–3140.

Available at: https://doi.org/10.1109/ICIP46576.2022.9897527.

Xie, S. and Tu, Z. (2015) ‘Holistically-Nested Edge Detection’,

In Proceedings of the IEEE international conference on

computer vision (pp. 1395-1403).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W4-2024
10th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 21–23 February 2024, Siena, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-65-2024 | © Author(s) 2024. CC BY 4.0 License.

72

