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Abstract

This paper presents a navigation system for unmanned aerial vehicles (UAVs) operating in urban environments, where the main
challenges include changes to the city layout that may not be reflected on existing maps. To effectively address this issue, we have
employed semantic segmentation algorithms based on deep convolutional neural networks, which enable accurate identification and
classification of urban objects from visual data. This segmentation plays a crucial role in real-time environmental perception, allow-
ing UAVs to distinguish objects such as buildings and vehicles. Initial routes are calculated using an enhanced Dijkstra’s algorithm,
which determines the shortest path through the urban landscape. However, these routes may require adjustments due to the absence
of certain objects on the maps. Along with semantic segmentation and the enhanced Dijkstra’s algorithm, reinforcement learning
methods are utilized to adjust the navigation routes generated by the algorithms. The reinforcement learning model continuously
learns from the UAV’s interactions with the environment, optimizing the route by considering safety and efficiency factors. The
training and debugging of the algorithm were conducted in a developed synthetic 3D scene. Through simulation and testing in the
constructed scene, the proposed navigation system demonstrated improvements in route safety and adaptability compared to routes
generated by the enhanced Dijkstra’s algorithm.

1. Introduction

In today’s world, the speed of information or goods delivery sig-
nificantly enhances business efficiency and the quality of life for
ordinary residents. The use of ground infrastructure for deliv-
ery has reached its natural limits, necessitating the development
of new modern approaches that do not rely on the overcrowded
infrastructure of cities. One of the most promising directions is
the development of aerial goods transportation.

In recent years, unmanned aerial vehicles have found increas-
ingly wide applications across various fields, from logistics and
delivery to security. However, despite their advantages, nav-
igating UAVs in urban environments presents a complex chal-
lenge due to high building density, dynamic obstacles, power
lines, and a variety of architectural structures. These factors
limit the feasibility of traditional navigation methods based on
static maps and require the development of more sophisticated
solutions. One potential solution to this problem is the applica-
tion of deep learning methods, particularly semantic segmenta-
tion algorithms based on convolutional neural networks. These
technologies enable high accuracy in object recognition, which
is critically important for UAVs operating in densely populated
areas. Semantic segmentation helps to partition visual data into
various object classes, including buildings, roads, and vehicles,
thus enhancing overall situational awareness.

However, semantic segmentation is just one part of a compre-
hensive solution. An important aspect of navigation is also the
ability of UAVs to adapt their routes in real-time. To address
this challenge, the implementation of reinforcement learning
methods is proposed, allowing UAVs to optimize their routes
based on experience and interaction with the environment. These
methods enable the system to self-learn, making it more resili-
ent to changes in flight conditions.

Thus, the goal of this research is to develop an integrated nav-
igation system for UAVs that combines semantic segmentation,

reinforcement learning, and public access maps. The scheme of
the developed framework is shown in Figure 1 and described in
detail in the next sections.

The proposed approach will not only enhance flight safety and
efficiency but also expand the applicability of UAVs in urban
environments, opening new horizons for various sectors such
as emergency services, delivery, and urban infrastructure mon-
itoring.

2. Related work

In contemporary research, various approaches exist for address-
ing UAV navigation tasks, with a particular emphasis on naviga-
tion within urban environments. Presently, a wealth of continu-
ously updated electronic cartographic data is available, which
enables more precise route planning.

The approach proposed by (Castelli et al., 2016) involves
loading GIS data of the flight area to subsequently ascertain
the shortest path, facilitating the formation of pre-flight tasks
aligned with cartographic data.

A notable example of automatic terrain navigation is a solution
that applies neural network analysis of camera information for
UAV control (Amer et al., 2019).

The system described by (Padhy et al., 2018) is designed for the
autonomous navigation of quadcopters in corridor conditions,
aiming to replicate the decision-making capabilities of a human
pilot in real-time contexts.

(Xiao, 2023) analyzes tree height imagery to determine dis-
tances to the trees and measures the width of the space between
them to identify the widest passage.

The publication (Soares and Soares, 2016) presents the imple-
mentation of an evolutionary algorithm for the control of a robot
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Figure 1. The framework for trajectory correction operation

with autonomous navigation that avoids obstacles. A simulator
was developed for testing the algorithm and its configurations
within an environment containing a set of barriers detected by
sensors.

The use of partially observable Markov decision processes
(POMDP) allows for reducing errors associated with GPS sig-
nal loss. (Vanegas Alvarez and Gonzalez, 2016) achieved such
results concerning the use of unmanned aerial vehicles cap-
able of safely navigating obstruction-free environments through
ground control stations that plan routes via a set of GPS co-
ordinates.

(Ali and Sadekov, 2023) explores methods for UAV naviga-
tion in GNSS-denied environments using computer vision. The
algorithms involve image matching using various approaches,
such as pixel-by-pixel matching and neural networks.

Another object analysis approach is described by (Lalak and
Wierzbicki, 2022), focusing on object detection and the determ-
ination of their geometric characteristics through dense point
clouds derived from low-altitude images.

The article (Tanchenko et al., 2020) discusses an original
autonomous correction algorithm for the UAV navigation sys-
tem, based on the comparison of images of the terrain ob-
tained using an onboard machine vision system and vector to-
pographic maps.

The study (Wicaksono and Shin, 2023) proposes a global po-
sitioning system (GPS) that supports visual simultaneous loc-
alization and mapping (SLAM), named GO-SLAM, for adapt-
ive navigation of unmanned aerial vehicles (UAVs). The GO-
SLAM system utilizes a GPS sensor and a camera to implement
visual SLAM, providing local positioning information for UAV
navigation.

The study (Knyaz and Kniaz, 2020) proposes the approach for
UAV navigating in complex environment based on single cam-
era observations. The proposed technique exploits the deep
learning approach for image segmentation and depth map es-
timation using an image of the observed scene. The developed
convolutional neural network model is capable to predict depth
map of the observed scene along with scene segmentation ac-
cording the predefined object classes.

(Back et al., 2020) implemented a convolutional neural network
(CNN)-based system to govern UAV movement along a spe-
cified path while maintaining its position near the center of that
path.

The proposal by (Amer et al., 2017) introduces a novel concept
termed ”Deep Urban Signatures,” employing deep convolu-
tional neural networks to compute unique characteristics of

urban squares or districts based on their architectural and land-
scape visual perceptions.

(Moteir et al., 2019) presents an intelligent urban navigator for
drones that employs a convolutional neural network (Faster R-
CNN).

(Cabrera Ponce and Martinez-Carranza, 2022) discuss the util-
ization of popular CNNs to tackle the geolocation problem
based on a single aerial photograph, comparing top-performing
CNN architectures in this domain and introducing a compact
architecture to expedite inference without degrading estimation
accuracy.

In the work of (Konovalenko et al., 2015), a modified method
for bias-free pseudo-range estimation is proposed for evaluating
UAV positioning. Based on this estimate, a control algorithm
was developed to ensure tracking of the reference trajectory in
the presence of external perturbations and angular measurement
errors.

3. Algorithm

The task of the algorithm is to navigate the unmanned aerial
vehicle from the starting position to the destination point. The
input data for this task includes OpenStreetMap maps (Fig-
ure 2), as well as the coordinates of the start and destination
locations. Based on this input, an optimal route trajectory is
generated.

The resulting route may contain errors, as because OSM maps
may not contain information about all objects or may contain
outdated data. To address this issue, a camera is installed on the
UAV, which analyzes the environment through semantic seg-
mentation. The output data from this process, along with the
optimized route trajectory obtained from the OSM maps and
the current coordinates and altitude of the UAV are fed into a
secondary neural network that performs route correction.

3.1 Algorithm for optimal path search

A crucial characteristic of the information collection process
is the availability of sources that must contain the necessary
and sufficient amount of information for subsequent processing.
Given the nature of the task, which requires constructing the
shortest route in an urban area, the availability of such data un-
der limited access conditions may be confined to open sources.
This work utilizes ”OpenStreetMap” (OSM), with the condition
that the UAV cannot fly over the rooftops of buildings.

OSM maps provide information regarding the location of urban
infrastructure elements, object heights, number of floors, as
well as the position of roads and green spaces.
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(a) The polygon describing the area of interest (b) Data processing stage of OSM (extraction of
navigation-relevant objects)

Figure 2. (a) area of interest (Strogino, Moscow, Russia) in OSM interface and (b) OSM data processing.

For the debugging phase, the selected area is Strogino, Moscow,
Russia. An area of interest, as shown in Figure 2(a), is delin-
eated that reflects the necessary diversity for training the neural
network and testing the algorithm.

The next step involves preparing data for subsequent processing
and searching for the shortest flight route for the UAV from
point A to point B. To this end, the data for the area is uploaded
into Python, where the OSMnx library is utilized to extract ob-
jects that potentially influence navigation within urban settings,
as it is shown in Figure 2(b).

Subsequently, all coordinates of the object vertices are recorded
into a separate array (for simplification, it is assumed that all
corner points have angles no less than 90 and no more than 175
degrees), marked with a special ID denoting belonging to the
same object and information regarding the connection sequence
between points.

The acquired data about navigation-significant objects is
transferred to a specifically prepared array a[n][n], where
a[i][j].lat represents latitude, a[i][j].long represents longitude,
and a[i][j].f lag denotes a value (0 for absence of an intersec-
tion object, 1 for presence of an intersection object). In this
array, the points a[0][0], a[0][n], a[n][0], anda[n][n] represent
the coordinates of the extreme (corner) points that describe the
polygon of the area of interest (Figure 2(a)) and are filled with
the corresponding coordinates at a pre-defined interval (varied
based on the dimensions of the matrix n× n).

The next step involves filling the resulting object contours with
a subsequent ”inflation” of the object size by a specific (con-
stant for all objects) increment. This is executed to create a
safety zone and avoid situations where the UAV flies too close
to objects (an optimal safety zone width is 2 m from the ob-
ject). Cells not corresponding to navigation-influencing objects
are filled with 0.

This array of structures, representing a coordinate grid synthet-
ically created in Unreal Engine 5, allows for visualization in
three-dimensional space during various debugging stages. The
area of interest is subdivided such that a change in coordinates

corresponds to the movement of the quadcopter by 0.5 m. Con-
sequently, the step between adjacent cells of the matrix (neigh-
bouring coordinates) corresponds to a step of 0.5 m.

The next step involves applying an enhanced Dijkstra algorithm
(A*) (Sipayung et al., 2023, Wang et al., 2024). The core
concept of the A* algorithm is the determination of two val-
ues for each vertex in the graph: V (n) – the path length from
the starting vertex to the current vertex n. E(n) – a heuristic
estimate of the length from the current vertex n to the target.
At each step, the A* algorithm (Algorithm 1) selects the vertex
with the smallest sum of V (n) + E(n) and explores its neigh-
bours. This process continues until the algorithm reaches the
final goal, as it is shown in Figure 3. The heuristic component
utilizes the dimensions of the matrix, allowing for analysis of
distances by correlating it with geographic coordinates.

Algorithm 1: Dijkstra’s Algorithm
Input: Graph G(V,E), source vertex source
Output: Distance array dist, predecessor array prev
for each vertex v ∈ V do

dist[v]←∞;
prev[v]← null;

dist[source]← 0;
Q← V ;
while Q 6= ∅ do

u← vertex in Q with the smallest dist[u];
Q← Q \ {u};
for each neighbor v of vertex u do

alt← dist[u] + length(edge(u, v));
if alt < dist[v] then

dist[v]← alt;
prev[v]← u;

return dist, prev;

After determining the shortest distance between the two points,
the sequence of coordinates defining the path is recorded in
a separate one-dimensional array and subsequently converted
into a GeoJSON file for future transmission of flight tasks to
the quadcopter.
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Figure 3. ”Obstacle” matrix with visualization of shortest
distance A-B

3.2 Semantic segmentation

Semantic segmentation of objects in an image necessitates a
high-quality and extensive database. To collect an appropriate
dataset within the Unreal Engine 5 environment, an algorithm
has been developed that in real-time captures a stream of frames
from a camera mounted on the UAV, along with segmented im-
ages, which are depicted in Figure 4, and annotation text files.
The camera on the UAV captures images at a resolution of
640 × 640. The objects present in the scene are categorized
into 14 classes: buildings, street and road lighting, soil, con-
crete/roads, electrical/telephone wires, public transport stops,
passenger vehicles, freight vehicles, buses, billboards, naviga-
tion signs, tram tracks, and sky.

Figure 4. Images for the semantic segmentation training dataset

The selected urban area is divided into two parts: one part is
used for collecting the training database, and the other for test-
ing, as shown in Figure 5.

For the task of semantic segmentation, the YOLOv8s neural
network architecture has been chosen as a compromise between
speed and accuracy.

3.3 Real-time Trajectory Correction

To address the problem of flying around objects with inaccurate
locations or complete absence in OSM maps, a reinforcement
learning-based algorithm has been developed to adjust UAV
movement.

The algorithm (Figure 1) receives as input: the optimal route
based on OSM maps, the current coordinates and altitude of the

Figure 5. The orange outline indicates the testing area, while the
green outline represents the area for collecting the training

database

UAV, and the output of semantic segmentation. The output is
the direction of UAV movement.

It has been decided to set a target flight altitude of 15m for the
UAV. This helps avoid certain obstacles, such as billboards and
public transport stops, and eliminates the possibility of colli-
sions with vehicles and pedestrians. The UAV may operate at
a different altitude, but the further and longer it remains at that
altitude, the greater the penalty it incurs in the reinforcement
learning algorithm.

The UAV continuously compares its coordinates with the op-
timal route based on OSM maps. If it deviates from the route
by more than a few meters, it begins to incur penalties. It is
assumed that the UAV always accurately knows its current alti-
tude and coordinates.

In Figure 6, the optimal route constructed based on OSM maps
is shown as a red line, with the area highlighted in yellow rep-
resenting a building.

Figure 6. Optimal route according to OSM maps and necessary
route correction

The blue area indicates the zone where the UAV does not re-
ceive penalties for deviating from the route, and the red dashed
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Figure 7. Reinforcement learning training process

line represents the actual shortest route the UAV should take to
avoid obstacles. As the UAV deviates further and longer from
the OSM-based route, penalties increase, making it necessary
to implement an additional incentive zone. This zone is marked
in green in Figure 5. When the UAV first enters this area, it
can recuperate the penalties accrued while navigating around
an obstacle, allowing it to proceed. This mechanism is crucial
to ensure that when navigating multiple obstacles, the total pen-
alties do not hinder the learning process.

The result of semantic segmentation from the UAV’s camera
is fed into the algorithm, reducing the probability of collisions
with objects that are absent in OSM maps. If a collision does
occur during the learning process, the UAV receives a signi-
ficant penalty. In the Unreal Engine 5 scene, multiple UAVs
function concurrently (Figure 7), providing real-time data to the
reinforcement learning algorithm.

4. Results

Throughout the project, a system was created that enables
UAVs to plan routes from point A to point B, utilizing publicly
available OSM map data. Additionally, a specialized execut-
able program was developed to process this data for use with
the enhanced Dijkstra’s algorithm.

To build the database and refine the system, a synthetic 3D
scene was created, which served to compile a dataset of images
for training the neural network based on semantic segmentation.
The dataset consists of 12,033 training images and 1,500 test-
ing images. It contains 14 classes of interest, the distribution of
which is presented in Figure 8.

A neural network with the YOLOv8s architecture was trained
on the collected dataset of urban objects. The training results
are not without artifacts, as shown in Figure 9. Most recognition
errors occur when defining the boundaries of the ”sky” class and
do not impact the performance of the reinforcement learning
algorithm for obstacle analysis.

Reinforcement learning was conducted on the developed scene
for the UAV control neural network. The neural network
analysis of the video stream received from the UAV’s cam-
era enabled route adjustments made by the Dijkstra algorithm,

Figure 8. Distribution of labels for each class in the database

thereby reducing the frequency of collisions with infrastructure
and environmental objects absent from the mapping data. Out
of 18 trials where motion correction was needed due to objects
not represented on the maps, 11 flights were successfully adjus-
ted.

5. Conclusion

A comprehensive navigation system for unmanned aerial
vehicles has been developed to enhance navigation efficiency in
urban environments. This system utilizes advanced deep learn-
ing technologies, such as semantic segmentation, along with an
improved Dijkstra algorithm and reinforcement learning meth-
ods. Research has demonstrated that this system is capable of
real-time adaptation of UAV routes.

Significant attention has been devoted to creating an extensive
database for training the neural network and conducting experi-
ments in a synthetic three-dimensional environment, which has
shown improvements in the safety and adaptability of routes.
Despite the successes achieved, further work is necessary to
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Figure 9. Example of semantic segmentation of a frame from the 3D scene

address remaining artifacts in the segmentation algorithms and
to expand the system’s capabilities to enhance its reliability in
real-world conditions.

Additionally, the general open access cartographic data plays
a negative role, as the OpenStreetMap database is publicly
available, allowing any user to add or modify existing objects,
which introduces issues related to the validity of both entire ob-
jects and the accuracy of their positioning. At this stage, the
curvature of the Earth has not been considered, which also re-
quires further refinement.

The approach presented in this work may serve as a foundation
for further research and development in the automation of UAV
navigation, thereby contributing to more efficient and safer util-
ization of unmanned technologies in urban settings. Test results
confirm the system’s effectiveness, opening new opportunities
for the application of UAVs in areas such as delivery, urban in-
frastructure monitoring, and emergency services.
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