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Abstract 

This article examines the main directions of development of modern visual navigation technologies and highlights achievements and 

problems in this area. The article also considers popular VSLAM (Visual Simultaneous Localization and Mapping) frameworks and 

their main characteristics. Additionally, several indoor datasets are reviewed to highlight the importance of different testing 

environments when evaluating VSLAM frameworks. In the experimental part of the work, we compared three prominent VSLAM 

frameworks: ORB-SLAM 3, Basalt, and OpenVSLAM. For experimental study, 20 image sequences from the EuRoC and TUM-VI 

dataset were used. The study pays special attention to complex cases in indoor navigation, particularly those involving insufficient 

scene illumination, which poses significant challenges to the accuracy of VSLAM frameworks. The last part of this work provides a 

comparison of error estimates, including the absolute trajectory error and its variation throughout the entire estimated trajectory.  

1. Introduction

The current pace of technology development in the field of 

unmanned vehicles is extremely high. This is due to the fact that 

autonomous transport systems have potential applications in 

many areas of human activity. There is a list of problems 

associated with the implementation of such technical systems in 

real business processes. The main one is to ensure guaranteed 

sufficient accuracy and speed of positioning and navigation of a 

robotic vehicle. 

This problem has two aspects: hardware and algorithmic. From 

the point of view of engineering, it is necessary to develop and 

implement high-precision sensors and inertial positioning 

systems capable of autonomous and uninterrupted operation 

under various external operating conditions with the least 

systematic error.   

However, organizing a continuous stream of high-quality data is 

not the ultimate goal, as it must be processed to extract useful 

information. An important part of this process is the application 

of sophisticated VSLAM frameworks, which allow drones to 

determine their location and create maps of the environment in 

real time. These frameworks must be resistant to dynamic 

changes in the environment, including meteorological ones, and 

not depend on the spatial features of the area.  As follows from 

the above, localization and simultaneous mapping frameworks 

remain an actively researched area, due to the constant 

development of hardware and software. It is necessary to carry 

out regular systematization and evaluation of available solutions 

based on available data sets. Selective testing helps to identify 

advantages and limitations of specific VSLAM frameworks, 

which is important for both developers and application specialists 

seeking to choose the best existing solution. 

One of the first publications on the implementation of VSLAM 

frameworks was (Davison et al., 2007), which presented Mono-

SLAM (Figure 1). Mono-SLAM is an indirect framework based 

on the use a monocular camera and is able to estimate the camera 

motion using the extended Kalman filter (EKF) algorithm. The 

main disadvantage of Mono-SLAM is the lack of mechanisms for 

optimizing the global trajectory of movement.  

In 2013, as shown in Figure 1, the SLAM++ system (Salas-

Moreno et al., 2013) was presented, which is one of the first 

frameworks to leverage semantic information. Unlike Mono-

SLAM, SLAM++ can work with RGB-D cameras that provide 

dense depth estimation. SLAM++ employs RGB-D sensor 

outputs and performs 3D camera pose estimation and tracking to 

form a pose graph. A pose graph is a graph in which nodes 

represent poses (positions and orientations of a camera at 

different time steps), and edges represent spatial 

constraints/measurements between the poses. The predicted 

poses are optimized by merging the relative 3D poses obtained 

from semantic objects in the scene. Thus, it becomes possible not 

only to detect loops, that is, to return to already known points in 

space, but also to minimize errors along the entire trajectory. An 

alternative to using RGB-D cameras is the use of stereo images 

obtained from two synchronized monocular cameras.  

In (Forster et al., 2014), a first semi-direct visual odometry 

(SVO) algorithm was proposed, which uses two parallel threads: 

one thread is used to estimate the camera motion (motion 

estimation thread) and the other is used to map environment 

(mapping thread). This separation allows fast and constant-time 

tracking in one thread, while the second thread extends the map. 

Motion estimation thread implements the proposed semi-direct 

approach to relative-pose estimation, which eliminates the need 

of costly feature extraction and robust matching techniques for 

motion estimation. The SVO approach allows the use of 

monocular and stereo cameras. The main disadvantage of SVO 

is a short-term data association and the inability to perform loop 

closure detection and, as a result, the lack of global optimization. 

In (Mur-Artal et al., 2015), ORB-SLAM was presented, which is 

a feature-based SLAM system, where specific ORB (Oriented 

FAST and Rotated BRIEF) features are used for solution of all 

SLAM tasks: tracking, mapping, relocalization, and loop closing. 

ORB features provide real-time performance without GPUs, and 

exhibit good invariance to changes in viewpoint and illumination. 
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In 2017, ORB-SLAM 2 was released, which includes stereo 

mode support and loop closure tracking. The problem with ORB-

SLAM 2 is the instability of the framework in the case of 

significantly darkened frames, texture-less frames, and frames 

with repeating patterns. 

 

The most recent version to date is ORB-SLAM 3, proposed in 

2021 (Campos et al., 2021). It added support for RGB-D cameras, 

as well as the ability to work with different types of lenses, 

including support for ultra-wide angle (fisheye) lenses. 

Moreover, ORB-SLAM 3 became to provide improved pose 

estimation куыгдеы. 

 

 

Figure 1. SLAM development history 

 

In 2017, a Direct Sparse Odometry (DSO) framework was 

proposed, which uses a direct approach and sparse reconstruction 

to extract the highest intensity points in image blocks (Engel et 

al., 2018). DSO is based on continuous optimization of the 

photometric error over a window of recent frames, taking into 

account a photometrically calibrated model for image formation. 

Thus, it can be say that DSO can only provide perfect accuracy if 

photometrically calibrated cameras are used, and does not allow 

for high-precision results when using regular cameras. 

 

The ORB-SLAM and DSO approaches were combined in the 

OpenVSLAM framework (Simikura et al., 2019) that supports 

different types of cameras and lenses (OpenVSLAM can accept 

images captured with perspective, fisheye, and equirectangular 

cameras). OpenVSLAM pays special attention to the elaboration 

of mechanisms for saving and uploading the received maps, 

which became a reference for other projects.   

 

In (Usenko et al., 2020), it was proposed a novel two-layered 

visual-inertial mapping approach that integrates keypoint-based 

bundle-adjustment with inertial and short-term visual tracking 

through non-linear factor recovery. This approach was realized 

in the Basalt framework. The combination of cameras and inertial 

measurement units (IMU) makes the Basalt framework more 

accurate and robust. In particular, compared to alternative 

frameworks that use preintegrated IMU measurements between 

keyframes Basalt shows better pose estimates. 

 

All above-mentioned frameworks are actively supported by their 

developers and are updated. However, ORB-SLAM 3, 

OpenVSLAM and Basalt are currently of the greatest interest for 

various research purposes, because they are the most promising 

and have been cited more frequently in recent year publications.  

 

In this article, ORB-SLAM 3, OpenVSLAM and Basalt 

frameworks are subjected to an experimental study to identify 

which framework is more suitable for indoor navigation. This 

study pays special attention to complex cases in indoor 

navigation, especially those related to insufficient scene 

illumination, which poses significant challenges to the accuracy 

of VSLAM frameworks. To perform the experimental study of 

the frameworks and verify their claimed characteristics, the 

publicly available EuRoC MAV and TUM-VI indoor datasets 

were used, which are relevant and satisfy various shooting 

scenarios. 

 

 

2. Data and methods 

The classic formulation of the SLAM (Simultaneous 

Localization and Mapping) problem is to determine the position 

of a robotic system in the external environment based on sensor 

data measuring speed and direction of movement. If cameras are 

used as input devices, they talk about visual methods of 

simultaneous localization and mapping (VSLAM).  

 

The number of cameras and their type may vary, which 

significantly affects the data processing methods. The following 

VSLAM operating modes are distinguished: 

● Monocular mode (only one camera is used). 

● Stereo mode (two synchronized monocular cameras 

are used). 

● RGB-D (depth cameras are used to measure the 

distance to objects, as well as determine their depth). 

 

The use of certain types of sensors significantly affects the final 

positioning accuracy. Thus, a monocular camera does not require 

the use of complex pre-calibration algorithms and allows to 

significantly reduce the cost of the system. However, with this 

camera, the absolute distance to the objects is unknown. It is 

necessary to estimate only the relative distance between objects 

using parallax (distant objects will have a smaller offset in the 

image than close objects). The trajectory and map obtained by the 

monocular VSLAM will differ from the real trajectory and map.  

 

In stereo mode, data is obtained from two synchronised 

monocular cameras located at a known distance from each other, 

which allows (due to the stereo effect) to calculate the three-

dimensional position of each pixel. However, stereo pair 

matching requires a lot of computing resources. 

 

RGB-D cameras use infrared radiation to determine the distance 

to an object. Thus, using the physical data of the signal, you can 

save computing resources compared to stereo cameras. However, 

such technology is expensive and extremely sensitive to noise 

and therefore requires precise calibration for specified 

conditions.  

 

In general, the main stages of data processing by VSLAM 

frameworks can be distinguished: 

1. Receiving sensor data and their preprocessing; 

2. Estimating camera movement between adjacent frames 

and creating an approximate local map; 
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3. The application of data verification procedures and 

error minimization. At this stage, data on the camera 

position at different time points and loop closing data 

are compared, and then the trajectory and map are 

calculated; 

4. Loop detection. The procedure determines whether the 

robot has returned to its previous position in order to 

minimize the accumulated distortion. If a loop is 

detected, information is transmitted to further optimize 

the trajectory; 

5. Reconstruction of the map of the external environment. 

A map is being created based on the estimated 

trajectory of the camera. 

2.1 Basic SLAM model 

The mathematical model underlying SLAM frameworks is 

fundamental for enabling an autonomous system to 

simultaneously determine its own location and map key 

landmarks within an unfamiliar environment based on sensor 

measurements. In this scenario, true values of parameters — such 

as the robot's position and positions of landmarks — are 

unknown, and measurements obtained from the environment are 

often subject to noise and errors. 

 

Let's denote the position of the robot at time t by xt. Thus, the 

sequence of counts, starting from the moment of the beginning 

and up to the moment t, can be written as: 

 

  𝑋𝑡 = {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑡} .   (1) 

The movement parameters between the specified observation 

points can also be recorded: 

 

  𝑈𝑡 = {𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑡}.   (2) 
 
However, relying solely on the movement data Ut  at time t may 

not be sufficient to accurately estimate the new position of the 

robotic system. In real-world scenarios, challenges such as wheel 

slippage, uneven terrain, and other environmental factors can 

introduce errors into the robot's photometric measurements, 

leading to inaccuracies in localization. These errors necessitate 

the continuous integration of data from multiple sensors to ensure 

accurate localization. The data collected from these various 

sensors at each time step can be represented as: 

 

  𝑍𝑡 = {𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑡}.   (3) 
 
This collection of data forms a statistical dataset that can be used 

to estimate the state of the system, which includes both the robot's 

position and the map of the environment. The estimation process 

can be described by the probability distribution: 

 

        (𝑥𝑡, 𝑚 |𝑢𝑡, 𝑧𝑡),   (4) 

 

where P represents the probability of the robot's position xt and 

the map m, given the movement data ut and sensor measurements 

zt. 

 

The assessment requires the creation of a motion model and 

observations that establish a relationship between the position of 

the xt autonomous system, ut odometry and zt measurements. The 

observation model and the motion model can be reduced to the 

form: 

 

 𝑃(𝑥𝑡 , 𝑚 |𝑥𝑡−1, 𝑢𝑡).  (5) 

 

On the other hand, the observation model provides information 

about the robot's surroundings, including the location of 

landmarks, the parameters of the robot's movement, and the 

unique identifiers of each landmark, denoted as m. The 

observation model can be described by the following expression: 

 

   𝑃(𝑧𝑡  |𝑥𝑡, 𝑚).      (6) 

The observation model provides the robot with information about 

where the landmarks are located, what are the parameters of the 

robot's movement and the unique identifiers of each landmark, 

designated m. The observation model described by equation (6) 

based on statistical data estimation methods is given the form 

 

  𝑁(ℎ(𝑥𝑡 , 𝑚), 𝑄𝑡) ,    (7) 
 

where N = normal distribution 

           Qt = noise covariance matrix 

           h = function for estimating the measurement of the 

current position of the robot. 

 

Then the motion model can be obtained by applying a normal 

distribution and some function to calculate the new position of 

the autonomous system: 

 

 𝑃(𝑥𝑡  |𝑥𝑡−1, 𝑚) =  𝑁(𝑔(𝑥𝑡−1, 𝑢𝑡), 𝑅𝑡),   (8) 

 

where  𝑔(𝑥𝑡−1, 𝑢𝑡) = function for calculating xt 

            𝑅𝑡 = noise covariance matrix. 

This motion model, as described in equation (8), is quite flexible 

and does not impose specific constraints on the types of sensors 

used or the methods for obtaining data. It can accommodate 

various types of sensors and data acquisition methods, as well as 

different types of landmarks used to construct the map.  

 

This generality makes the motion model adaptable to different 

SLAM scenarios and sensor configurations, enabling its 

application across a wide range of environments and conditions. 

2.2 Accuracy Evaluation 

The data obtained through SLAM is inherently formed within a 

specific local coordinate system. Concurrently, the reference 

coordinates of objects, which are typically obtained from sources 

external to the SLAM framework, are represented within a 

different coordinate system. This discrepancy creates a challenge 

in determining the appropriate transition parameters between 

these coordinate systems. 

 

To accurately align these two systems and evaluate the precision 

of the alignment, several key parameters must be determined: 

● Translation Vector. This vector describes the shift 

needed to align the origin of one coordinate system 

with the other. 

● Rotation. The rotational transformation necessary to 

align the orientations of the two coordinate systems. 

● Scaling Coefficient. A factor that adjusts the size of one 

coordinate system relative to the other. 

 

To compute the rotation, the Kabsch-Umeyama algorithm is 

frequently employed. This algorithm is particularly useful for 

calculating the Absolute Trajectory Error (ATE), as it determines 

the optimal rotation matrix that minimizes the Root Mean 

Squared Deviation (RMSD) between two sets of corresponding 

points. 
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Despite its widespread use in software packages due to its 

convenience, this method has its limitations. Specifically, it can 

contribute to an underestimation of the actual error, leading to a 

situation where the true error might be greater than the computed 

value. Therefore, it’s crucial to not only focus on the overall 

absolute magnitude of the error along the trajectory but also to 

assess the range of error, including the minimum and maximum 

deviations. 

 

In essence, when evaluating SLAM frameworks, it is important 

to consider the worst-case scenario for point positioning along a 

trajectory. This worst-case value can serve as a critical basis for 

assessing the robustness and reliability of specific SLAM 

frameworks in practical applications. 

2.3 Datasets 

Despite the increase in the variety of available datasets for SLAM 

validation, review publications mainly compare SLAMs based 

on some basic datasets. This is due to the fact that these datasets 

are checked for compliance with the stated accuracy and metrics 

calculated on such datasets can be compared. 

The criterion for choosing between verified datasets is the type 

of camera used, the availability of IMU data, and the specific 

shooting conditions are taken into account. Table 1 shows the 

most frequently used indoor datasets, which are supported by 

default by ORB-SRAM 3, OpenVSLAM, Basalt. 

It is important to note that dataset data can be represented in 

different formats and have different metadata descriptions. Each 

dataset contains several independent shooting image sequences, 

which are accompanied by trajectory files with high-precision 

coordinate measurements. The standard term gt (Ground Truth) 

is used to denote such trajectories. 

TUM RGB-D (Sturm et al., 2012) consists of 39 sequences of 

gray images and depth maps. The RGB-D camera was the 

Microsoft Xbox Kinect, providing 30 frames per second. The gt 

data was obtained using a motion capture system with eight high-

speed tracking cameras. All image sequences cover the 

experimental room.  

 

Dataset 
TUM 

RGB-D 

EuRoC 

MAV 
TUM VI 

Year 2012 2016 2018 

Type 
indoor + + + 

outdoor - - + 

Mode 

mono - + + 

stereo - + + 

RGB-D + - - 

IMU + + + 

Table 1. Dataset overview 

The EuRoC MAV (Burri et al., 2016) consists of 11 sets of visual 

inertial data collected using UAVs. It consists of synchronized 

stereo images collected by the Aptina MT9V034 sensor at 20 

frames per second, backed up by data from the ADIS16448 

inertial measurement system. The true values of the labels are 

provided for each sample of the trajectory. Additionally, the data 

necessary for camera calibration is provided. 

 

TUM VI (Schubert et al., 2018) represents the most complete set 

of data is the most comprehensive dataset  from the point of view 

in terms of shooting conditions, since it is carried out both 

indoors and outdoors (additionally, some data were created 

obtained in low light conditions for stress testing of frameworks). 

It includes 28 trajectories captured on two synchronized IDS 

uEye UI-3241LE-M-GL cameras at 20 frames per second, 

complemented by inertial measurements with BMI160 3-axis 

acc/gyro.  

3. Experimental Study 

In our experimental study, we compared three prominent 

VSLAM systems: ORB-SLAM 3, Basalt, and OpenVSLAM. For 

the experimental study, the EuRoC MAV and TUM-VI datasets 

were selected. These datasets are relevant and satisfy several 

shooting scenarios, including: 

● Navigation of unmanned systems in enclosed spaces 

(indoor navigation); 

● Navigation of unmanned systems in low light 

conditions; 

● Navigation of unmanned systems in the conditions of 

illumination of the frame. 

 

The VSLAM frameworks were studied under the WSL shell with 

Ubuntu 22.04.2 LTS installed. The testing was carried out with 

the following computer parameters: AMD Risen 9 7900x 

processor, 64 GB RAM, 5200 MHz clock frequency, data was 

pumped from a hard disk with an interface bandwidth of 5 Gbit/s. 

3.1 Metrics 

To assess the quality of compared VSLAM frameworks, the ATE 

metric was used. ATE allows to estimate the global consistency 

of the estimated SLAM trajectory. To calculate ATE, the 

estimated and gt trajectories, which are usually specified in 

arbitrary coordinate frames, are first aligned. This can be 

achieved using the Umeyama alignment method (Umeyama, 

1991), which finds a transformation matrix S. Then the absolute 

trajectory error matrix at time step  𝑖 ∈ [1, 𝑛]                        (n is 

the number of time steps) is defined as: 

 

            𝐸𝑖: = 𝑄𝑖
−1𝑆𝑃𝑖 ,   (9) 

 

where 𝑄𝑖 ∈ 𝑆𝐸3  = poses from the ground truth trajectory 

           𝑃𝑖 ∈ 𝑆𝐸3 = poses from the estimated trajectory. 

 

The ATE is defined as the root mean square error from error 

matrices 𝐸𝑖 (Prokhorov et al., 2019): 

 

  ATE = √
1

𝑛
∑ ||𝑡𝑟𝑎𝑛𝑠(𝐸𝑖)||

2𝑛
𝑖=1 . (10) 

 

Thus, ATE (also denoted as ATErmse) provides the average 

deviation from ground truth trajectory per frame.  

 

To estimate and visualize ATE evaluation results, EVO package 

was used (https://michaelgrupp.github.io/evo), which is a Python 

package for the evaluation of odometry and SLAM. To obtain 

more reliable estimates, ATE values were obtained by averaging 

three runs of each VSLAM algorithm.  

3.2 Results 

The results of the experimental study are presented in Tables 2-

4. Figures 2-3 show examples of trajectories recovered by the 

three compared VSLAM frameworks and superimposed on gt-

trajectories.  
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E 

u 

R 

o 

C 

Sequence ORB-SLAM 3 OpenVSLAM Basalt 

MH01 0.035 0.043 0.027 

MH03 0.031 0.043 0.062 

MH05 0.049 0.044 0.145 

V101 0.038 0.087 0.043 

V102 0.036 0.065 0.045 

V103 0.098 0.081 0.054 

V201 0.089 0.061 0.039 

V202 0.055 0.061 0.05 

V203 0.453 0.257 0.229 

T 

U

M 

- 

V 

I 

Cor 1 0.012 0.234 0.184 

Cor 2 0.016 0.287 0.369 

Cor 3 0.010 0.308 0.373 

Cor 4 0.173 0.276 0.198 

Cor 5 0.011 0.323 0.373 

room 1 0.011 0.096 0.106 

room 2 0.011 0.071 0.078 

room 3 0.009 0.088 0.128 

room 4 0.009 0.034 0.063 

room 5 0.010 0.101 0.137 

room 6 0.005 0.075 0.029 

Table 2. ATE (m) 

Table 2 displays ATE in meters, which quantifies the overall 

discrepancy between the estimated and actual trajectories. Table 

3 presents the minimum value of ATE (ATEmin) in meters, 

highlighting the smallest deviation observed in the trajectory 

estimates. This value represents the best-case performance of the 

algorithm, where the estimated trajectory most closely aligns 

with the ground truth. Table 4 shows maximum values of ATE 

(ATEmax) in meters, indicating the largest deviation observed. 

This metric is crucial for understanding the worst-case scenario 

in the framework's performance, providing insights into the 

potential maximum error under certain conditions.  

 

E 

u 

R 

o 

C 

Sequence ORB-SLAM 3 OpenVSLAM Basalt 

MH01 0.001 0.001 0.002 

MH03 0.001 0.002 0.009 

MH05 0.002 0.002 0.052 

V101 0.004 0.02 0.006 

V102 0.001 0.015 0.01 

V103 0.005 0.005 0.013 

V201 0.009 0.01 0.007 

V202 0.009 0.01 0.003 

V203 0.043 0.028 0.085 

T 

U

M 

- 

V 

I 

Cor 1 0.001 0.010 0.032 

Cor 2 0.004 0.007 0.015 

Cor 3 0.001 0.006 0.033 

Cor 4 0.024 0.005 0.022 

Cor 5 0.001 0.005 0.068 

room 1 0.001 0.001 0.007 

room 2 0.001 0.002 0.001 

room 3 0.001 0.001 0.002 

room 4 0.001 0.001 0.001 

room 5 0.006 0.001 0.001 

room 6 0.001 0.001 0.002 

Table 3. ATEmin (m) 

 

E 

u 

R 

o 

C 

Sequence ORB-SLAM 3                                                              OpenVSLAM Basalt 

MH01 0.121 0.17 0.165 

MH03 0.096 0.099 0.126 

MH05 0.16 0.132 0.252 

V101 0.106 0.162 0.084 

V102 0.368 0.121 0.073 

V103 0.374 0.187 0.11 

V201 0.278 0.111 0.072 

V202 0.498 0.171 0.102 

V203 1.535 0.496 0.613 

T 

U

M 

- 

V 

I 

Cor 1 0.036 0.905 0.634 

Cor 2 0.038 1.143 1.280 

Cor 3 0.026 1.370 1.143 

Cor 4 0.329 1.232 0.572 

Cor 5 0.035 1.408 1.017 

room 1 0.029 0.131 0.267 

room 2 0.027 0.102 0.202 

room 3 0.033 0.156 0.284 

room 4 0.028 0.095 0.189 

room 5 0.029 0.143 0.332 

room 6 0.020 0.109 0.076 

Table 4. ATEmax (m) 

 

For each of the estimated trajectories, the lowest error estimates 

(best results) are highlighted with bold font in Tables 2-4. 

 

The analysis of the obtained results allows us to draw the 

following conclusions: 

- on the TUM-VI dataset, ORB-SLAM 3 demonstrates higher 

positioning accuracy compared to OpenVSLAM and Basalt; 

- Basalt is the least sensitive to blur caused by fast camera 

movement (see sequences V103, V202, V203); 

- OpenVSLAM is the least sensitive to a decrease in the scene 

illumination level (see sequences MH01, MH03 and MH05); 

- for sequences characterized by long trajectory length (Cor 1-5 

and Room 1-6), the best accuracy is demonstrated by ORB-

SLAM 3, and the worst by OpenVSLAM; 

 

E 

u 

R 

o 

C 

Sequence ORB-SLAM 3 OpenVSLAM Basalt 

MH01 3638 3682 3682 

MH03 2631 2700 2700 

MH05 2221 2273 2273 

V101 2871 2700 2912 

V102 1671 1692 1710 

V103 2094 1692 2149 

V201 2154 2280 2280 

V202 2309 2348 2348 

V203 1690 1794 1921 

T 

U

M 

- 

V 

I 

Cor 1 927 988 1039 

Cor 2 1282 1370 1420 

Cor 3 1095 1197 1197 

Cor 4 1045 1050 1052 

Cor 5 776 1250 1703 

room 1 2706 2730 2764 

room 2 2545 2591 2591 

room 3 2511 2511 2511 

room 4 2319 2438 2445 

room 5 2779 2834 2834 

room 6 2552 2591 2591 

Table 5. The average number of keypoint pairs 
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- values of ATE metrics calculated using VSLAM for all 

sequences are in most cases correlated with the average number 

of pairs of keypoints (Table 5) recognized in the sequence images 

(see, for example, sequences Cor 5 and V203). 

 

4. Discussion 

Based on the results of the work, it should be noted that the ATE 

estimates obtained during experimental study were highly 

dependent on the VSLAM framework used. For these reasons, it 

weree compared not only ATE estimates, but also the variation 

of ATE along the entire trajectory. Taking into account the above, 

the following conclusions were made. 
 

For long trajectories with many loops, as illustrated in Figures 2 

and 3, and in good lighting conditions, the Basalt’s optimization 

method demonstrated superior performance (particularly for the 

trajectories labeled V101-V203). One of the standout features of 

Basalt in these scenarios is its minimal variation in the maximum 

allowable error, indicating consistent accuracy even in complex 

trajectories. This suggests that Basalt is particularly well-suited 

for environments where long loop trajectories are common, and 

stable, precise error margins are critical. 

 

ORB-SRAM 3, as was found, has the best convergence rates 

according to the ATEmin criterion, when Basalt was traditionally 

inferior in terms of maximum allowable error. Due to this, it is 

achieved the best ATE results in straight-line driving conditions.  

 

 
Figure 2. MH01 trajectories recovered by Basalt, ORB-SLAM 3 

and OpenVSLAM (gt-trajectories are shown as dotted lines). 

The degree of warmth and coldness of the trajectory line color 

represents the ATE value. 

 

 
Figure 3. V202 trajectory recovered by Basalt (gt-trajectory is 

shown as a dotted line). The degree of warmth and coldness of 

the trajectory line color represents the ATE value. 

 

The performance of OpenVSLAM generally positioned it 

between Basalt and ORB-SLAM 3 in terms of the ATE metric. 

Its minimum error values were closer to those of ORB-SLAM 3, 

while its maximum error tended towards the values observed 

with Basalt. This intermediate performance suggests that 

OpenVSLAM provides a balanced trade-off, offering reliable 

results across a variety of conditions. It may serve as a versatile 

option when conditions are expected to vary, and neither 

precision nor speed is the sole priority. 

 

The study found that the number of keypoints detected and 

matched by the presented VSLAM frameworks did not differ 

significantly in a statistical sense. This suggests that while the 

frameworks may vary in terms of trajectory accuracy and error 

convergence, their ability to identify and match keypoints is 

relatively consistent. This consistency in keypoint matching 

indicates that differences in performance are more likely due to 

the frameworks' processing and optimization techniques rather 

than their basic feature detection capabilities.  

 

Conclusions 

 

In this article, ORB-SLAM 3, OpenVSLAM and Basalt 

frameworks were subjected to an experimental study on EuRoC 

MAV and TUM-VI datasets to identify which framework is more 

suitable for indoor navigation. As a result of the experimental 

study, it is established that each of the compared frameworks 

exhibits unique strengths, depending on the scenario and 

environmental conditions. ORB-SLAM 3 consistently delivers 

the highest accuracy, especially in straight-line driving scenarios, 

as reflected by its superior ATEmin values. On the other hand, 

Basalt demonstrates robustness in long looped trajectories with 

minimal variation in maximum error, making it particularly well-

suited for complex environments. OpenVSLAM provides a 

balanced performance between the two, offering reliable results 

across varying conditions. 

 

The study also highlights how specific conditions, such as blur 

from fast camera movement or changes in lighting, affect each 

framework differently. Basalt performs better in handling motion 

blur, while OpenVSLAM proves more resilient to low-light 

scenarios. Moreover, the correlation between ATE metrics and 

the average number of keypoint pairs detected suggests that the 

key differences in performance arise from the frameworks' 

optimization techniques rather than their ability to detect and 

match keypoints. 

 

Overall, ORB-SLAM 3 offers the best accuracy, particularly in 

straight-line conditions, Basalt excels in maintaining consistent 

performance in complex trajectories, and OpenVSLAM serves as 

a versatile middle ground with a balanced trade-off between 

accuracy and robustness. 

 

In summary, the testing showed that each VSLAM framework 

has distinct strengths, and the choice of framework should 

depend on the specific requirements of the task. ORB-SLAM 3 

excels in accuracy, Basalt in dynamic environments, and 

OpenVSLAM offers a balanced solution. These findings will 

help developers and practitioners select the appropriate VSLAM 

framework based on their specific application needs. 

 

Future testing with more diverse indoor datasets and under 

different environmental conditions may provide more detailed 

information on optimal use cases for each framework. 
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