
Unsupervised iris image segmentation

Elizaveta Maksimenko, Elena Pavelyeva

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
elizaveta.a.maksimenko@gmail.com, pavelyeva@cs.msu.ru

Keywords: Iris segmentation, Neural networks, Image processing, W-Net, Computer vision, Biometrics.

Abstract

Iris biometrics is considered one of the most accessible and effective biometric characteristics due to its unique patterns and sta-
bility over the time. This paper presents a neural network method based on W-Net architecture for iris image segmentation. The
use of Daugman’s integro-differential operator enhances the precision and effectiveness of iris image segmentation. The W-Net
architecture, utilizing deep learning, accurately isolates the iris region, while the Daugman’s operator ensures robust boundary de-
tection. The model is trained on the CASIA-IrisV4-Interval dataset and effectively handles challenges such as eyelash occlusions.
This method opens new possibilities for developing more reliable and accurate biometric identification systems with applications in
access control and identity verification.

1. Introduction

Nowadays the world is facing a growing need for security
and protection of personal data. In this context, biometric
technologies play an increasingly important role. Iris biomet-
rics is one of the most promising biometric technologies, which
allows to identify a person by unique iris characteristics (Bhat-
tacharyya et al., 2009). Its advantages include the uniqueness of
each iris, its invariability throughout life, non-invasive biome-
tric data collection, high accuracy and ease of use. Due to
these advantages, iris biometrics can be integrated into various
devices such as smartphones and laptops, making it convenient
to use in daily life. The technology uses infrared light to cap-
ture the iris image. Infrared light passes through the pupil and
reflects off the iris. Since infrared radiation has wavelengths
that are outside the visible light spectrum, the dependence on
eye color is eliminated. In order to use the iris as a biome-
tric characteristics, it is necessary to accurately extract the iris
from the eye image (Fig. 1). Iris segmentation is the process

Figure 1. Structure of the eye.

of extracting an iris region from an eye image by defining its
outer and inner boundaries while excluding glares, eyelashes,
eyelids and other details that may be present in the eye image.
Iris image segmentation is a crucial step in iris recognition sys-
tems, significantly affecting the overall accuracy and reliability.
Despite the effectiveness of current iris-based human recogni-
tion methods, their accuracy is highly dependent on the quality
of segmentation, as evidenced by many studies. So the deve-
lopment of iris image segmentation algorithms is an important

task to achieve higher accuracy and reliability in biometrics.

The most common methods for solving the iris boundary
extraction problem are the following approaches.

1. Machine learning methods: these methods use a dataset to
train machine learning algorithms, which can then classify
pixels as iris or background.

2. Geometry-based methods: these methods use geometric
properties of the iris to segment the iris. For example, the
iris boundary can be described as a circle or ellipse.

3. Active contour methods: in these methods, the iris contour
is determined by minimizing the energy associated with
the contour.

Generally, the simplest and most effective methods to localize
iris boundaries are to find circular regions in the image using
the Hough transform (Illingworth and Kittler, 1988) and the
integro-differential Daugman’s operator (Daugman, 1993).

The main difficulties in iris segmentation are as follows.

1. The presence of elements that partially conceal the iris
(eyelids or eyelashes).

2. The iris may vary in width and shape depending on the
lighting and viewing angle.

3. Noise, reflections, and other artifacts may appear in the iris
image.

4. In images taken with an infrared camera, the iris may not
be very different in intensity from the sclera.

In light of these limitations, neural network architectures such
as convolutional neural networks (CNNs) and deep neural net-
works (DNNs) provide a promising solution for iris segmen-
tation. Deep neural networks have become a key component
in many computer vision tasks, including unsupervised learn-
ing for semantic image segmentation (Badrinarayanan et al.,
2017). They have the ability to automatically extract high-level
features from images, allowing them to efficiently adapt to dif-
ferent textures, illumination, and eye structure. Unlike classical
methods, neural network architectures minimize the need for
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manual parameter selection and tuning, providing a flexible and
more accurate means for iris segmentation under a variety of
imaging conditions. This becomes especially critical in modern
biometric systems where accuracy plays a key role in successful
personal identification.

2. Iris extraction method based on Daugman’s
integro-differential operator and Hough transform

Images from the (CASIA Iris Image Database, n.d.) database
containing 2639 iris images of 280x320 pixels (Fig. 2) were
used to implement the neural network method.

Figure 2. Examples of CASIA-IrisV4-Interval dataset images.

In order to avoid artifacts such as backlight reflection, glares
and noise, morphological operations were applied to grayscale
images in several stages (erosion and delatation). Further,
taking into account the limited size of the pupil and its probable
location in the image, an image of the size (h · 0.2;h · 0.7) ×
(w · 0.2;w · 0.7), where h and w are the height and width of
the image, respectively, and the Canny edge detection operator
is applied. Then the Hough transform (Illingworth and Kittler,
1988) was applied to search for the inner boundary circle, and
the radius and coordinates of the center of the pupil were obtai-
ned (Fig. 3).

(a) (b) (b)

Figure 3. (a) Pre-processed image; (b) pre-processed image after
applying the Canny operator; (c) results of pupil boundary

extraction.

The outer boundary was searched using the Daugman’s
(Daugman, 1993) integro-differential operator:

max
r,x0,y0

∣∣∣∣∣∣Gσ(r) ∗
∂

∂r

∫
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣∣∣ , (1)

where Gσ(r) =
1√

2πσ2
e
− r2

2σ2 = Gaussian function
I(x, y) = iris image intensity function
s = contour of a circle
(x0, y0) = assumed coordinates of the circle center
r = assumed radius of the circle
σ = standard deviation of the Gaussian function
∗ = convolution operation

The algorithm searches for circular regions in the image. It
calculates the mean sum of intensity values lying on the circle
as the radius changes.

Since often the centers of the inner and outer iris borders do
not coincide, the search for the radius and center of the outer
border was performed within 10 pixels from the pupil center.
Also, knowing that

1.25r < R < 5r, (2)

where r = radius of the pupil
R = radius of the outer iris boundary

we applied integration only over the right and left arcs, which
are divided into two parts. The size of each arc is calculated
using the formula:

γ =
I × 90◦∑

i

Ii
, (3)

where i ∈ {1, 2, 3, 4}
Ii = average intensity of the image in the
corresponding region

In this way, the overlap of eyelashes and eyelids on the iris
image is taken into account, and the regions containing them
are less involved in the integration (Fig. 4).

Figure 4. Definition of the outer border of the iris.

The method creates a mask that covers not only the iris, but also
parts of eyelashes and eyelids (Fig. 5). This problem may in-
crease the probability of personal identification errors in biome-
tric authentication systems.

(a) (b) (c)

Figure 5. Result of Daugman’s method: (a) input image; (b)
mask resulting from the method; (c) segmentation result.

3. W-Net architecture

W-Net (Xia and Kulis, 2017) is an autoencoder that is formed
by the composition of two networks of the U-Net architecture,
namely, the encoder UEnc and the decoder UDec. In a stan-
dard autoencoder configuration, the encoder creates a compact
representation of the features of the input image, while the de-
coder is responsible for reconstructing the original image from
this encoded representation. In W-Net, the encoder maps each
pixel of the input image into a pixel in the segmentation layer,
and the image dimensions do not change during the conversion
process. For experiments, the images are scaled to a size of
320x320x1, so the outputs of the encoder are 320x320xK and
contain predictions of the probability of each pixel belonging to
a class k ∈ {1, 2, 3, . . . ,K}.
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Figure 6. W-Net architecture.

3.1 Modules

The whole architecture consists of 18 modules, highlighted in
the image by red rectangles. The first 9 modules belong to
the UEnc encoder, the rest belong to the UDec decoder. Each
of these modules consists of two 3x3 convolutional layers fol-
lowed by a ReLU activation function and packet normalization.

The structure of the two networks of the U-Net architecture
represented in the W-Net architecture is almost identical. In
general, it is divided into a compressive path and an extens-
ible path (hence the term U-Net). In the compressive path, the
modules are connected by 2x2 subsampling layers and the num-
ber of channels is doubled at each step of size reduction. In
the expanding path, the size increase is performed using 2x2
inverse convolution, which increases the size of each pixel by
taking into account the pixel values in the neighborhood. In
doing so, the number of channels is halved when moving from
one module to another. Finally, to reduce the loss of spatial
information due to size reduction, the input of each module in
the compressive path is combined with the output of the corres-
ponding module in the expanding path (skip layers).

The differences between the encoder and decoder are as fol-
lows: U-Enc is terminated with a 1x1 convolution layer that
maps each 64-component feature vector into a vector of K com-
ponents, where K is the number of classes for image segmen-
tation. The softmax layer ensures that the values are in the range
(0,1) and sum to give 1. U-Dec is completed with a 1x1 convo-
lution layer that maps 64-component feature vectors into vec-
tors of 3 components to return an output of the same size as the
images in the training set. The goal of W-Net is to generate high
quality image segmentations without the presence of labeled
data. To achieve this goal, two loss functions are jointly mini-
mized during training to train the network without a teacher. We
propose to realize the method based on a convolutional neural
network W-Net (Fig. 6) trained without a teacher, using an
integro-differential Daugman’s operator.

3.2 Soft Normalized Cut Loss function

The output of UEnc is a normalized dense prediction of size
320 × 320 × K. By using the argmax operation, the prediction
for each pixel in K classes is obtained. The global criterion for
segmentation is NcutK(V ) (Shi and Malik, 2000) is calculated
as follows:

NcutK(V ) =

K∑
k=1

cut(Ak, V −Ak)

assoc(Ak, V )
, (4)

cut(Ak, V −Ak) =
∑

u∈Ak,v∈V −Ak

w(u, v), (5)

is the sum of weights of all edges that connect vertices inside
the subset Ak with vertices outside this subset;

assoc(Ak, V ) =
∑

u∈Ak,t∈V

w(u, t), (6)

where Ak = set of pixels in the segment k
V = set of all pixels
w(u, v) = weight between the pixels u and v

However, since the argmax function is non-differentiable, it is
not possible to compute the corresponding gradient during error
back propagation. Instead, a Soft Normalized Cut Loss function
is defined that is differentiable so that the gradients during error
back propagation can be updated.

Jsoft N-cut(V,K) =

K∑
k=1

cut(Ak, V −Ak)

assoc(Ak, V )

= K −
K∑

k=1

∑
u∈V

∑
v∈V w(u, v)p(u = Ak)p(v = Ak)∑

u∈V p(u = Ak)
∑

t∈V w(u, t)
,

(7)

where p(u = Ak) = probability that pixel u belongs to
class k ∈ {1, 2, 3, . . . ,K}

The weight wij is defined by the following expression:

wij = e
− ∥F (i)−F (j)∥22

σ2
I ·

e
− ∥X(i)−X(j)∥22

2σ2
X , ∥X(i)−X(j)∥22 < r

0, otherwise
(8)

where F (i), F (j) = latent representation values for pixels
i and j
X(i), X(j) = coordinates of pixels i and j
σ2
I ,σ2

X = dispersion parameters
r = threshold value chosen empirically

The weights take into account both the intensity functions of
the pixels and their spatial location, which allows us to determ-
ine the degree of interaction between them in the context of an
image processing task.

3.3 Reconstruction Loss Function

The Reconstruction Loss function trains the encoder to gene-
rate representations that contain as much information as pos-
sible about the input image. It does this by minimizing the dis-
tance between the source image X and the decoder output.

Reconstruction Loss Jreconstr is given by the formula:

Jreconstr = ∥X − UDec(UEnc(X;WEnc);WDec)∥22 (9)

where X = original input image
UEnc = encoding function
UDec = decoding function
WEnc = encoder parameters
WDec = decoder parameters

In our work, W-Net was trained in two ways:
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1. Sequential minimization Jsoft-N-cut and Jreconstr

2. Minimization of functionality

F1 = α · Jsoft-N-cut + Jreconstr (10)

where α = 0.01
K

4. Realization

Images were transformed to the size of 320x320x1 and fed to
the input of the neural network. Results are shown in Fig. 7.

(a) (b) (c) (d) (e)

Figure 7. Segmentation results without additional loss: (a) input
image; (b) segmentation map with minimization 1, K=2; (c)

segmentation map with minimization 2, K=2; (d) segmentation
map when minimizing 1, K=16; (e) segmentation map when

minimizing 2, K=16.

Successive minimization of loss functions slows down the con-
vergence rate significantly. Moreover, the recovery accuracy
decreases and the image is almost not recoverable (Fig. 8). In
addition to the iris, eyelashes and other side elements are iso-
lated.

(a) (b)

Figure 8. Reconstructed image: (a) with minimization 1; (b)
with minimization 2.

4.1 Additional loss function

To improve the segmentation quality, it was proposed to add
an additional loss function based on the Daugman’s integro-
differential operator.

Binary iris mask images obtained by applying the method
described above were prepared for the experiments. Examples
of the images are presented in Fig. 9.

Figure 9. Source images and their corresponding masks.

The input of the neural network is the original image and its
mask. Since WEnc produces a segmentation map for K classes,

we can attribute the iris class to the first class and consider the
loss function at the output of the encoder between the first class
and the mask. We will call this loss function DLoss.

The first attempt was to add DLoss to Jsoft-N-cut with weight β
to minimize sequentially

Jsoft-N-cut + β ·DLoss, then Jreconstr (11)

where β ∈ (0, 10] = empirically selected coefficient

To compute DLoss, the following loss functions were con-
sidered to evaluate the degree of match between predicted and
true masks:

1. Categorical Cross Entropy (CCE)

H(y, p) = −
∑
i

yi · log(pi), (12)

where y = vector of true labels
p = vector of predicted probabilities for each
category
i = index by category

2. Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (13)

where n = number of observations (sample size)
yi = true value for the i-th observation
ŷi = predicted value for the i-th observation

3. Binary Cross-Entropy Loss with Logits (BCEWithLo-
gitsLoss)

− 1

N

N∑
i=1

(yi · log(σ(ŷi)) + (1− yi) · log(1− σ(ŷi)))

(14)
where N = number of items in the batch

yi = true label for item i
ŷi = raw values that the model generates
before deciding on class membership using
the activation function for item i
σ = sigmoidal activation function

For K = 2 and any loss function, the network is overfitted and
images close to binary masks are obtained (Fig. 10), i.e., part
of the eyelashes and part of the eyelid are misclassified as iris.

(a) (b) (c)

Figure 10. K = 2 and Categorical Cross Entropy: (a) input
image; (b) β = 1; (c) β = 0.1.

It was concluded that the number of classes K = 2 is insufficient
for this task, and that it will work better at K > 2 with the sub-
sequent possibility of combining some classes. We empirically

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W5-2024 
International Workshop on “Photogrammetric Data Analysis” – PDA24, 7–9 October 2024, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W5-2024-115-2024 | © Author(s) 2024. CC BY 4.0 License.

 
118



chose K = 16. Therefore, we modified the loss function 2 and
the problem is reduced to minimization of the functional

F2 = α · Jsoft-N-cut + β ·DLoss + Jreconstr (15)

Segmentation results when minimizing 15 in are shown in Fig.
11.

.

(a) (b) (c) (d)

Figure 11. Demonstration of results when K = 16, β = 0.5 and
minimizing 15: (a) input image; (b) CCE; (c) BCEWithLogits;

(d) MSE;

BCEWithLogits performed better than other loss functions for
this task while minimizing (15), partially separating the eye-
lashes from the iris, while CCE and MSE lead to overfitting
and large segmentation errors. In order to increase the accuracy
of the model it was necessary to use fine-tuning tools.

4.2 Fine-tuning

Fine-tuning is a neural network training method that adapts a
pre-trained model to a new task. This method is particularly
useful when a limited amount of training data is available for
a new task. In its basic form, advanced customization involves
two key steps:

1. Pre-training: the model is trained on a large dataset that
may not fully fit the target problem.

2. Additional tuning: Some layers of the network are
frozen while others are actively trained to fine-tune model
parameters to meet specific requirements.

The following three works have been considered to realize the
additional customization. In (Amiri et al., 2020) additional
tuning significantly improved results compared to a model
trained on natural images alone. The specificity was to modify
the initial layers, which capture more general features, and to
freeze deeper layers targeting more specific details. This ap-
proach showed that early layers contribute more to the success
of medical image processing because of their ability to high-
light unique textural features. In (Baur et al., 2017) the use of
semi-supervised learning improved the model’s adaptation to
the task of segmenting multiple sclerosis lesions in MR images.
The use of random inclusion of additional features in combi-
nation with additional tuning allowed more efficient use of un-
labeled data to improve the generalization ability of the model.
The additional adjustment was applied to the last layers of the
model, which improved the accuracy of lesion localization. The
(Li et al., 2019) examines the use of pseudo-labels for semi-
supervised learning. The model was first trained in fully super-
vised mode and then adapted with additional tuning to a larger
set of unlabeled data. Pseudo-labels generated by the model it-
self were used to further refine the parameters during iterative
training. This approach showed a significant improvement in
performance over traditional training methods, especially when
the amount of labeled data was limited. Based on research, it
was decided to further train W-Net to recognize eyelash class.

4.3 Fine-tuning for W-Net

First, the data was carefully prepared for training. Data aug-
mentation including rotations, luminance changes, and reflec-
tions was performed, which greatly increased the volume and
variety of the training dataset and improved the generalization
ability of the model.

To train W-Net to recognize eyelash and pupil class, binary
masks for 2100 images were trained. For this purpose, the
previously written Daugman’s method was used to find the cen-
ter and radius of the pupil, and the intensity threshold was
automatically adjusted according to the iris intensity. Then the
image was cut out at a size h

2
× w, which was subjected to

a binarization process based on the intensity threshold, which
was necessary for eyelash extraction. Next, the pupil mask was
superimposed on the obtained binary image with eyelashes. As
a result, the original image and its corresponding eyelash and
pupil mask were input to the model (Fig. 12).

Figure 12. Source images and their corresponding masks.
.

Training occurred only for WEnc, resulting in a segmentation
map for K classes. The first class was still the iris class, the
second class was the eyelash and pupil class. The loss function
was computed for the predicted second class and the prepared
mask using the formula:

α · Jsoft-N-cut + β · LLoss, (16)

where LLoss = loss calculated according to equation (14)

Training resulted in predictions of the “eyelash and pupil” class
and predictions of the iris class (Fig. 13). The remaining
14 classes were unsupervised and the model predicted them
automatically.

(a) (b) (c)

Figure 13. (a) Original image; (b) prediction for iris class; (c)
prediction for eyelash and pupil class.

5. Post-processing

Once the predictions were obtained, it was necessary to perform
subsequent processing in several steps:

1. The predicted segmentation for the eyelash and pupil class
was subjected to morphological processing (erosion and
dilatation in several steps) to remove falsely segmented
elements from the lower half of the image and noise. The
resulting image was then reduced to binary form.
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2. Predicted segmentation for the iris class was similarly
morphologically processed to remove falsely segmented
elements on the iris region.

3. The inverted mask of the eyelash and iris class and super-
imposed on the binary mask of the iris.

The post-processing process is shown in Fig.14.

.

-

(a) (b) (c) (d) (e)

Figure 14. (a) Original image; (b) binary prediction for iris
class; (c) inverted image b); (d) binary prediction for eyelash and

pupil class; (e) final result.

Examples of segmentation results can be seen in Fig. 15.

Figure 15. Examples of segmentation results.

6. Iris Normalization

After iris segmentation, the iris image is normalized for sub-
sequent calculation of the iris proximity measure. For this pur-
pose, a pseudo-polar coordinate system centered at the pupil
center is introduced (the circles formed by the iris boundaries
are non-concentric). In most identification methods, the iris is
translated into a rectangular normalized image (Fig. 16).

.

Figure 16. Iris normalization.

The formula for converting an iris point (x, y) to polar
coordinates (r, θ) is given as follows:

x(θ, r) = xp + (R+ ri · (r −R)) · cos(θ) (17)

y(θ, r) = yp + (R+ ri · (r −R)) · sin(θ)

where xp, yp = coordinates of the pupil center
r = radius of the pupil
R = radius of the iris outer border
ri ∈ [0, 1]
θ ∈ [0, 2π]

Thus, the mask obtained after post-processing is overlaid on
the original image, the coordinates of the centers and radii of
the circles describing the pupil and iris are found, and then the
normalization process follows (Fig. 17).

(a) (b)

(c)

Figure 17. (a) Original image; (b) segmentation result; (c)
normalized iris image.

7. Segmentation Quality Assessment

For comparison, the articles (Pourafkham, 2024) and (Par-
isa Farmanifard, 2015) were reviewed. But in open databases
(Casia Iris v4 Interval, n.d.) there is only ground truth, which
does not take into account eyelashes, so there are no metrics.
To evaluate the segmentation quality, 53 images were manually
segmented. The results of the comparison are summarized in
the Table 1.

Metric Score
Accuracy 0.928
Precision 0.932
Recall 0.932
F1 Score 0.932
Dice Coefficient 0.851
Matthews Correlation Coefficient (MCC) 0.818

Table 1. Comparison results.

A comparison of the segmentation results with the manually
marked segmentation is shown in Fig. 18.

(a) (b) (c) (d)

Figure 18. The results of the proposed iris segmentation method:
(a) original image; (b) manually marked image; (c) segmentation
result; (d) the comparison of the proposed and manually marked

iris segmentation.

8. Conclusion

A neural network method for unsupervised iris segmentation
based on W-Net architecture has been developed. The best
results were achieved by introducing the Daugman’s integro-
differential operator into W-Net as a loss function and sub-
sequent fine-tuning for the eyelash class. The method is tested
on CASIA-IrisV4-Interval database images.
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