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Abstract 

 

Accurate animal pose estimation in the wild is potentially useful for many downstream applications such as wildlife conservation. 

Currently, the main approach to assessing animal poses is based on identifying keypoints of the body and constructing the skeleton. 

However, a direct application of frameworks to human pose estimation is not successful due to the features of the skeletal structure 

of humans and mammals. In this study, we propose a two-stage method: coarse-tuning with animal detection using a bounding box, 

as is done in most similar methods, and fine-tuning with semantic segmentation of animal. The YOLOv8 Pose Estimation and Pose 

Keypoint Classification model was chosen as the base model for keypoint extraction. Extensive training experiments were conducted 

using the AwA2 dataset (with a small number of samples from own dataset), the AP-10K dataset, and the Tiger-Pose dataset. The 

trained model was tested on own dataset collected from camera traps in the Ergaki National Park, Russia. Experimental results show 

that the proposed algorithm using additional semantic segmentation increases the accuracy of animal pose estimation by 3.6-4.8% on 

samples of the Ergaki dataset. 

 

 

1. Introduction 

Animal pose estimation is a key step for understanding animal 

behaviour. It can be considered as a branch of the well-studied 

human pose estimation. The vast variation between each 

species, non-rigid deformations, small datasets, and limited 

models make it difficult to reliably and accurately estimate 

animal pose. At the same time, this task plays an important role 

in learning of animal behaviour, understanding of wildlife 

migration, and even protecting endangered species. Animal 

pose estimation has many challenges, one of which is small 

datasets, especially for the wild animals. In addition, huge 

differences in physical characteristics between animal species 

cause large discrepancies, and networks trained on one species 

cannot generalize to another species with good accuracy, 

although some studies with generalization ability on the unseen 

animals have been conducted. 

 

Over the past few years, the situation has improved and various 

models have been developed to estimate 2D and 3D animal 

poses, and new publicly available animal pose datasets have 

become available (Yu et al., 2021). There are two approaches to 

training models: transfer between human and animal poses, and 

using pose models that are specific to animals due to differences 

in the “bones” of quadruped mammals (we are not talking about 

more specialized species here). Taxonomy for animal pose 

estimation models includes (Jiang et al., 2022): 

1. 2D animal pose estimation as single animal pose 

estimation for animal recognition, multiple pose estimation 

to analyzing and understanding the social interaction 

between animals, and video-based pose estimation for 

animal behaviour prediction 

2. 3D animal pose estimation as monocular 3D pose 

estimation (an unsolved problem), multi-view pose 

estimation using multiple cameras to simultaneously 

capture multiple photographs of animals, and 3D mesh 

reconstruction using data collected from RGBD cameras 

and 3D scanners 

3. 3D animal mesh recovery, which is usually based on 

parameterized deformable templates 

 

The choice of model depends significantly on the initial data. In 

the case when a camera trap captures several photographs (the 

so-called “session”) every 3-5 s, a reasonable solution is to use 

2D models for single animal pose estimation. The camera trap is 

triggered by any movement, be it an animal, a person or 

branches swaying under the influence of a strong wind The 

selection of informative images is a complex and crucial task, 

especially when the set of images has been collected for more 

than half a year in the camera trap's storage device (Favorskaya 

and Buryachenko, 2019). The main sources of uninformative 

images are shooting artifacts caused by complex lighting and 

weather conditions in the wild, as well as artifacts related to the 

shape of animals, depending on the location relative to the 

camera trap. Informative scores based on production rules help 

to classify raw images into eleven classes, with some images 

accepted without processing, some images required 

enhancement using traditional digital image processing methods 

or even deep learning methods, and some images excluded from 

consideration (Favorskaya and Natalenko, 2024). 

 

However, the selected images usually have a cluttered 

background, making it difficult to estimate the animals' poses. 

Our contribution is two-folded: 

1. We propose a two-stage method: coarse-tuning with 

animal detection using a bounding box, as is done in most 

similar methods, and fine-tuning with semantic 

segmentation of animal. Semantic segmentation is 

preferable when the vast majority of images used for 

training represent a single animal. In case of multiple 

animals, instance segmentation should be used 

2. The proposed method was tested on the following 

datasets: the AwA2 dataset (Xian et al., 2019), the AP-10K 

dataset (Yu et al., 2021), the Tiger-Pose dataset (Tiger-

Pose Dataset, 2024), and own dataset collected from 

camera traps in the Ergaki National Park, Russia, as well as 

on open source images. It has been shown that semantic 
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segmentation improves the quality of pose estimation, 

especially in complex cases 

 

The paper is structures as follows. Section 2 describes the 

related work. Section 3 provides the proposed method in detail. 

Rich experimental results are presented in Section 4, and 

Section 5 concludes the paper. 

 

2. Related Work 

In the past, traditional animal pose estimation methods were 

highly specialized and required manual intervention to correct 

errors. In contrast, deep learning methods achieve near human-

level accuracy in almost any computer vision scenario. And this 

task is no exception. The use of CNNs for animal pose 

estimation began in 2018–2019 (Mathis et al., 2018), when 

markerless pose estimation based on transfer learning was first 

used to track different body parts of several species across a 

wide range of behaviors. A weakly- and semi-supervised cross-

domain adaptation  scheme was proposed to estimate poses of 

domestic four-legged mammals, including dogs, cats, horses, 

sheep, and cows (Cao et al., 2019). The pose-labeled animal 

and human samples together improved supervised keypoint 

estimation while minimizing the total loss as the sum of the 

losses in animal pose estimation and human pose estimation. 

 

The main idea of omni-supervised joint detection and pose 

estimation for kangaroos in various poses was to extract training 

samples from unlabeled data using a “teacher” model, with the 

“student” model acting as a pose detector or classifier model 

(Zhang et al., 2020). As a result, the authors received an 

extended annotation for each image, indicating the position of 

the kangaroo (front, back, right, and left) without constructing a 

skeleton. 

 

In (Kim et al., 2022), a pre-trained style transfer model was 

proposed to bridge the gap between human and animal domains. 

A “Mean Teacher” architecture was used to generate robust 

pseudo-labels and train on an unlabeled target region. However, 

unlike humans, there is a huge variety of animals with different 

bone lengths, number of joints and additional body parts. 

Therefore, transfer learning objectively cannot provide adequate 

results for estimating the pose of most animals. Since the 2020s, 

several datasets have been created with real (AP-10K) and 

synthetic (PASyn) annotated data for animal pose estimation, as 

well as a family of animal pose estimation and tracking (APT-

36K, APTv2) datasets. 

 

A lightweight and efficient stacked hourglass network model for 

animal pose estimation was proposed in (Zhang et al., 2023b). 

This network optimized the balance of model computation and 

accuracy based on lightweight efficient channel attention 

modules and lightweight dual-branch fusion module that 

integrated high-level semantic information and low-level 

detailed features. 

 

Recently proposed MAPoseNet (animal pose estimation 

network via multi-scale convolutional attention) (Liu et al., 

2023) utilized both semantic and spatial information by 

obtaining the animal's bounding box and then estimating the 

pose. This model was trained on the AP-10K dataset and tested 

on animal poses from the Macaque Pose and Animal Pose 

datasets, demonstrating the generalizability. ViTs were used to 

model the relationships between different key points or to 

directly extract high-resolution features. An original approach 

to estimating animal poses in the wild is based on an annotated 

dataset of 3D animal poses, which was used to refine 2D animal 

pose estimation (Dai et al., 2023). The cross-modal animal pose 

estimation (CLAMP) paradigm effectively uses prior language 

knowledge, such as text prompts (right eye, right knee, nose, 

etc.) to predict the available pose of an animal (Zhang et al., 

2023a). The ScarceNet model, based on pseudo labeling using 

scarce annotations, adopted the following training strategy (Li 

and Lee, 2023). First, the animal pose estimation network was 

trained on a small set of labeled data, after which pseudo labels 

were created for the unlabeled images. Second, high-loss 

unlabeled samples were refined based on the agreement check. 

Third, the student-teacher network was trained with the reusable 

sample relabeling and a consistency constraint. This approach 

was evaluated on the AP-10K dataset and tested on the TigDog 

dataset. 

 

One of the challenges of 2D pose estimation is the limited 

training data. There are three possible solutions: synthetic data 

augmentation, use of unlabeled real data with pseudo-labels, 

and transfer learning from existing animal or even human 

datasets. In this study, the last solution was applied. 

 

Another branch of investigation is to overcome the limitations 

of image-based animal pose estimation by leveraging prior 

knowledge of animal poses in the language modality. The 

contrastive language-image pre-training (CLIP) model (Radford 

et al., 2021) based on a text encoder and an image encoder 

enables collaborative training in both modalities. This idea was 

developed in (Hu and Liu, 2024) for animal pose estimation, 

where text prompt templates and image feature conditional 

tokens are used to construct dynamic conditional prompts. Text 

prompts contain key points and corresponding descriptions of 

animal poses. Image feature conditional tokens transformed by a 

fully connected non-linear network are embedded into these 

prompts, generating so called dynamic conditional prompts. 

However, the limitations of this approach are the need to 

prepare text prompt templates and train a more complex neural 

model. In (Hu and Liu, 2024), a multimodal collaborative 

training and contrastive learning model were utilized to estimate 

animal poses. Multimodal training was based on text prompt 

templates and image feature conditional tokens using prior 

knowledge of animal poses in language modalities. The 

experiments were conducted on the AP-10K and Animal Pose 

datasets. 

 

Additionally, it can be noted that modifications of the YOLO 

model are used in related tasks. For example, the WilDect-

YOLO model was proposed in (Roy et al., 2023) as an accurate 

model for automated endangered wildlife detection. The 

WildARe-YOLO model (Bakana et al., 2024) is positioned as a 

lightweight wild animal recognition. 

 

In summary, a brief overview shows that the wide variety of 

animal species encourages the development of more specialized 

deep learning models and datasets for pose estimation only, as 

well as for pose estimation and tracking for subsequent animal 

behaviour analysis. 

 

3. The Proposed Method 

Animal pose estimation faces challenges such as limited 

training data, extensive annotation requirements, and non-rigid 

projections, among others. However, estimating animal poses in 

the wild has additional challenges, such as cluttered background 

and various meteorological effects. Also, the colour of animals 

often correlates with the colours of the environment, which 
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makes it difficult to correctly determine the animal's posture. 

This means that semantic segmentation is an important stage in 

pose estimation. 

 

A visual description of an animal can be presented at different 

levels of detail depending on the problem statement: at the 

bounding box level, at the structured level (point level, skeleton 

level) and at the pixel level (segmentation, semantic 

segmentation, instance segmentation, and panoptic 

segmentation as a combination of semantic and instance). 

Examples of segmentation types are shown in Figure 1. 

 

 
 a      b       c 

Figure 1. Different levels of animal description: a bounding 

box, b point level, c semantic segmentation. 

Many previous studies have described only one type of animal. 

However, the difficulty of estimating the pose of animals in the 

wild, especially those living in the forests of Russia, requires a 

different approach. We decided to test not only direct training 

of the YOLOv8 model for animal pose estimation using an 

annotated dataset (coarse-tuning), but also a two-stage method 

when we first use a semantic segmentation model and then 

apply a pose builder (fine-tuning). For this purpose, the re-

trained YOLOv8 Pose Estimation was applied. 

 

We analyzed several deep semantic segmentation models such 

as FCN, DeepLab, and U-Net. All of them have an encoder-

decoder architecture that provides different segmentation results 

depending on the complexity of the model, the computational 

cost of training and the state of the input images. At the same 

time, there are several frameworks and deep learning models for 

human pose estimation such as: 

1. OpenPose is one of the most popular open-sourced 

frameworks for real-time and multi-person pose estimation 

2. TensorFlow Pose Estimation is optimized for low-

power edge devices 

3. High-Resolution Net is a neural network for human 

pose estimation with high-resolution representations, used 

for human pose detection in televised sports 

4. DeepCut is used for detecting the poses of multiple 

people in videos or images with multi-persons/objects 

5. Regional Multi-Person Pose Estimation is used for 

detecting poses in the presence of inaccurate human 

bounding boxes 

6. DeepPose and PoseNet are human pose estimators 

that use of deep neural networks 

7. DensePose is a pose estimation technique for 

mapping 2D human pixels to the 3D surface of the human 

body 

8. DeepLabCut is a toolbox for markerless 2D and 3D 

animal pose estimation 

9. YOLOv8 Pose Estimation and Pose Keypoint 

Classification is an advanced technology that identifies and 

displays human body keypoints, suitable for various pose 

estimation tasks. 

 

However, not all known pose estimation software tools are 

suitable for animal pose estimation. Thus, for experiments, we 

decided to use YOLOv8 Pose Estimation and Pose Keypoint 

Classification as animal pose estimators. An illustration to the 

proposed approach is depicted in Figure 2. 

 

 
  a             b 

 
 c   d        e 

Figure 2. Proposed approach: a initial image, b bounding box 

and image cropping, c semantic segmentation mask, d result of 

semantic segmentation, e 2D pose. 

Finally, the obtained coordinates of the corresponding animal 

keypoints are compared with representative examples from the 

pose database to determine active actions. 

 

4. Experimental Results 

The AwA2 dataset (Xian et al., 2019) was used for the 

experiments. It includes 10,052 images of 35 animals. However, 

some of these images are not suitable for our task, since giraffes 

and elephants are not wild inhabitants of Siberian forests. As a 

result, some of the images were deleted or replaced with images 

from a dataset taken by camera traps in the Ergaki National 

Park, Russia. In total, this training dataset included 4,051 

images, of which 3,251 was responsible for training and 800 for 

validation. It should be noted that the variety of classes in the 

resulting data set allow to test the proposed method in working 

with different species of wild animals. A complete list of all 

animal classes is presented in Table 1. 

 

№ Name of 

animal 

class 

Number 

of images 

№ Name of 

animal 

class 

Number 

of images 

1 Antelope 283 8 Moose 302 

2 Boar 100 9 Otter 294 

3 Bobcat 304 10 Rabbit 315 

4 Deer 295 11 Squirrel 313 

5 Fox 315 12 Tiger 296 

6 Bear 601 13 Weasel 202 

7 Maral 135 14 Wolf 296 

Table 1. List of animal class 

All images were annotated accordingly, according to a scheme 

using 39 key points. Each of the points was responsible for 

certain parts of the animal’s body. The way points are labeled 

and presented follows the YOLO format. A complete list of key 

points is presented in Table 2. 

 

During the training process, five pre-trained models of the 

YOLOv8 family were used: nano, small, medium, large and x-

large. All listed networks were trained under the same 

conditions, using the previously designated data set. All 

networks were trained for 75 epochs, with the amount of data 

fed to the model equal to 16. The plots of accuracy data when 

training each network are shown in Figure 3, and the plots of 

the loss data are presented in Figure 4. 
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        a     b           c 

 
    d           e 

Figure 3. Accuracy plots: a nano model, b small model, c medium model, d large model, e x-large model. 

 
        a     b           c 

 
    d           e 

Figure 4. Training loss plots: a nano model, b small model, c medium model, d large model, e x-large model.

 

№ Name of keypoints № Name of keypoints 

1 Nose 21 Back end 

2 Upper jaw 22 Back middle 

3 Lower jaw 23 Tail base 

4 Mouth end right 24 Tail end 

5 Mouth end left 25 Front left shoulder blade 

6 Right eye 26 Front left knee 

7 Right ear base 27 Front left paw 

8 Right ear end 28 Front right shoulder blade 

9 Right antler base 29 Front right paw 

10 Right antler end 30 Front right knee 

11 Left eye 31 Back left knee 

12 Left ear base 32 Back left paw 

13 Left ear end 33 Back left shoulder blade 

14 Left antler base 34 Back right shoulder blade 

15 Left antler end 35 Back right paw 

16 Neck base 36 Back right knee 

17 Neck end 37 Belly bottom 

18 Throat base 38 Body middle right 

19 Throat end 39 Body middle left 

20 Back base   

Table 2. List of keypoints 

 

Three datasets that can be found in open sources were used for 

the experiments. As the first dataset, we used pre-filtered data 

from the AwA2 dataset. Although the presented images are less 

representative of the reality of Siberian forests, they still have 

the most suitable annotation structure, thanks to which all 39 

keypoints can be checked for accuracy. 

 

The second dataset for testing is AP-10K. The full dataset 

contains 10,015 images collected from 60 animal species, 

annotated with 17 keypoints presented in Table 3. Although this 

dataset does not cover all the necessary points, it nevertheless 

has similarities in many places. 

 

№ Name of keypoints № Name of keypoints 

1 Left eye 10 Right Elbow 

2 Right eye 11 Right Front Paw 

3 Nose 12 Left Hip 

4 Neck 13 Left Knee 

5 Root of Tail 14 Left Back Paw 

6 Left Shoulder 15 Right Hip 

7 Left Elbow 16 Right Knee 

8 Left Front Paw 17 Right Back Paw 

9 Right Shoulder   

Table 3. List of AP-10K keypoints 
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The third testing set is one of the official Ultralytics network 

training sets. This is a relatively small set of tiger images 

annotated with 12 keypoints presented in Table 4. 

 

№ Name of keypoints № Name of keypoints 

1 Nose 7 Front right shoulder blade 

2 Neck base 8 Front right paw 

3 Back base 9 Back left shoulder blade 

4 Back end 10 Back left paw 

5 Front left shoulder blade 11 Back right  shoulder blade 

6 Front left paw 12 Back right paw 

Table 4. List of Tiger-Pose keypoints 

To validate the method, images from previously described 

datasets were used. Verification was performed by comparing 

three types of images: a manually annotated original image, an 

image without using segmentation, and an image using 

segmentation. 

 

№ Average standard deviations, % 

nano small medium large x-large 

1 0.67/0.61 0.73/0.57 1.24/0.57 1.31/0.54 1.25/0.51 

2 0.39/0.32 0.46/0.58 0.74/0.35 0.58/0.39 0.39/0.47 

3 0.57/0.81 0.59/0.63 0.61/0.25 0.57/0.36 0.55/0.41 

4 0.57/0.48 0.17/0.22 0.35/1.60 0.33/1.71 0.42/1.84 

5 0.35/0.38 0.20/0.19 0.60/0.35 0.61/0.40 0.57/0.43 

6 0.42/1.55 0.21/0.23 1.02/0.78 1.08/0.96 1.11/1.04 

7 0.33/1.02 0.47/0.17 0.94/0.49 0.77/0.47 0.56/0.42 

8 1.93/0.46 1.90/1.88 1.26/3.82 1.54/3.18 1.54/3.18 

9 0.60/2.12 0.61/0.36 1.15/1.05 1.44/1.32 1.49/1.35 

10 0.64/1.61 0.98/0.64 1.09/0.57 0.98/0.88 0.98/0.88 

11 0.92/1.15 0.25/0.51 1.02/0.78 0.87/0.59 0.87/0.53 

12 0.89/1.02 0.41/0.54 0.94/0.49 1.49/1.44 1.49/1.44 

13 2.53/2.61 1.70/1.14 1.93/2.75 1.72/2.75 1.73/2.76 

14 0.85/1.06 0.34/0.39 0.29/2.03 1.16/3.28 1.23/3.16 

15 1.61/3.01 1.49/1.46 1.24/1.72 1.33/1.82 1.36/1.94 

16 0.72/0.40 0.74/0.63 1.26/2.01 1.01/1.58 1.15/1.67 

17 0.33/1.56 0.76/0.74 0.87/0.72 0.87/0.72 0.84/0.72 

18 1.57/1.12 0.79/1.50 0.09/1.29 0.16/1.22 0.22/1.18 

19 1.05/0.80 1.21/1.11 1.44/0.82 1.11/1.05 1.28/1.16 

20 0.12/1.46 0.83/0.71 0.49/1.87 0.93/2.74 1.44/2.93 

21 2.46/2.21 1.68/2.18 3.25/2.43 3.51/2.52 3.25/2.43 

22 1.16/0.44 0.75/0.88 0.42/1.83 0.29/1.40 0.41/1.29 

23 2.51/4.61 1.40/2.53 1.79/2.90 1.79/2.90 2.36/4.33 

24 3.26/3.31 1.40/2.53 1.39/1.68 1.01/1.38 1.11/1.17 

25 1.15/2.66 2.45/1.91 0.67/1.55 0.46/1.95 0.76/2.16 

26 3.11/3.30 2.40/2.49 1.37/3.11 1.07/3.41 1.07/3.22 

27 9.80/9.73 7.60/7.61 5.46/7.39 6.14/7.05 5.58/6.97 

28 1.14/0.89 1.48/1.04 2.03/1.14 1.83/1.53 1.89/1.63 

29 7.34/9.71 8.13/7.43 5.53/7.98 6.77/8.21 6.77/8.21 

30 2.38/2.13 1.67/1.88 0.94/0.80 0.94/0.80 0.91/0.72 

31 1.89/3.74 4.77/3.62 1.36/3.78 1.26/3.84 1.32/3.89 

32 3.86/3.55 4.39/4.20 1.97/4.30 1.67/4.69 1.44/4.03 

33 3.71/3.82 2.48/3.80 4.50/4.43 4.32/4.57 4.06/4.75 

34 0.86/1.19 2.06/1.83 0.89/0.67 0.89/0.67 0.93/0.87 

35 2.51/2.69 4.23/6.06 2.97/4.30 2.67/4.44 2.83/4.55 

36 4.72/6.66 6.57/4.96 4.93/6.00 4.63/6.09 4.36/6.14 

37 2.13/0.74 0.51/1.15 1.33/0.95 1.41/1.15 1.17/1.31 

38 0.73/1.89 1.37/0.74 0.29/1.38 0.17/1.39 0.18/1.41 

39 1.05/2.32 0.45/0.46 0.39/1.74 0.51/2.24 0.37/2.04 

Table 5. Average standard deviations results for the AwA2 

dataset 

 

Each image was resized into a special template, and the 

differences between the keypoints of the processed image and 

the annotated template were measured. Such differences were 

calculated pixel by pixel and normalized to standard deviations. 

The average standard deviations for 39 keypoints and all five 

YOLOv8 models (nano, small, medium, large, and x-large) 

trained on the images from the AwA2 dataset are presented in 

Table 5. In each cell, two values present the average standard 

deviations of the keypoints with/without segmentation. The 

same goes for Tables 6-9. 

 

As can be seen from Table 5, the nano model performed 

negatively, worsening post-processing results, while the x-large 

model performed better in terms of mean average standard 

deviations. In general, there is a tendency for results to improve 

when using a more accurate version of the model. Each 

subsequent model demonstrates higher accuracy, but with 

increased processing time. All models except nano showed 

positive results, that is, after applying segmentation, the average 

standard deviations relative to the templates decreased. The best 

result was shown by the x-large model. However, in all models, 

the keypoints of the muzzles and paws were shifted more 

strongly due to the implementation features of the network 

training. 

 

The average standard deviations for all 5 trained models on the 

images from the AP-10K dataset are presented in Table 6. 

 

№ Average standard deviations, % 

nano small medium large x-large 

1 1.12/0.87 0.99/1.49 0.63/0.83 0.57/0.80 0.58/0.77 

2 0.33/0.61 0.24/0.79 0.57/0.70 0.69/0.71 0.79/0.68 

3 1.80/1.33 1.29/2.29 0.87/1.11 0.98/1.19 0.95/1.39 

4 2.93/3.40 2.66/2.44 1.49/3.21 1.51/3.16 1.24/3.21 

5 1.11/0.46 0.56/0.74 1.10/0.78 1.46/0.89 1.66/1.02 

6 5.26/6.38 5.32/5.14 6.19/5.84 6.15/5.63 6.04/5.49 

7 5.45/5.93 6.09/5.74 7.03/6.79 7.29/6.77 7.17/6.81 

8 11.1/11.93 11.51/11.4 11.85/11.9 8.33/11.72 7.33/11.37 

9 6.15/6.20 6.44/6.16 5.86/7.10 5.86/6.95 5.47/6.89 

10 9.39/8.96 8.90/8.72 9.93/11.03 8.64/10.03 9.24/10.03 

11 13.2/13.05 11.47/13.2 12.70/14.8 10.59/13.7 9.99/13.74 

12 3.98/3.38 3.15/4.10 4.28/3.79 3.98/3.34 3.94/3.34 

13 9.40/10.36 8.87/9.49 8.86/10.66 8.90/10.08 7.86/10.66 

14 1.79/0.80 0.99/1.49 0.75/1.30 0.41/1.41 0.36/1.26 

15 1.15/1.17 0.87/1.89 1.89/1.41 1.17/2.22 1.35/2.13 

16 6.71/6.78 6.69/6.49 5.99/6.16 5.13/6.51 5.67/6.21 

17 5.35/4.81 2.61/3.92 1.42/3.85 1.74/3.19 2.22/3.91 

Table 6. Average standard deviations results for the AP-10K 

dataset 

As can be seen from testing 17 key points, the nano model again 

performed the worst results, while the x-large model showed the 

best results in terms of average standard deviations. The trend 

identified during the previous experiment continues. During the 

current experiment, all models except the nano and small 

models showed positive results. The most problematic areas, 

such as the muzzle and paws, remain the same. 

 

The average standard deviations results for all 5 trained models 

on the images from the Tiger-Pose dataset are presented in 

Table 7. As can be seen from testing 12 key points, the trend 

identified during previous experiments continues. During the 

current experiment, none of the presented models provided a 

negative result, which is most likely due to an explicit decrease 

in the number of keypoints. The best result was shown by the x-

large model. 
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№ Average standard deviations, % 

nano small medium large x-large 

1 0.92/1.29 1.36/1.63 2.21/1.39 1.31/2.07 1.27/2.05 

2 1.00/1.89 5.88/4.37 4.41/5.10 4.43/3.55 4.27/3.69 

3 1.81/3.47 1.90/3.16 3.44/2.45 2.37/3.87 2.24/3.89 

4 3.18/2.61 3.57/2.41 2.86/3.44 3.42/2.84 3.27/2.54 

5 2.70/2.23 3.30/2.77 2.68/2.52 1.26/2.61 1.41/2.58 

6 14.83/16.6 10.89/16.7 14.6/11.50 8.57/12.25 8.24/11.06 

7 5.39/6.87 4.98/6.02 7.18/5.64 5.88/7.43 5.72/7.61 

8 9.27/9.17 7.83/9.02 9.63/8.08 8.01/9.79 7.03/9.85 

9 3.44/4.63 5.26/4.14 4.09/4.70 5.29/4.19 5.13/4.22 

10 6.77/5.63 5.79/5.28 5.66/5.04 5.55/5.87 4.44/6.01 

11 8.42/8.89 6.07/8.45 7.37/6.33 3.73/4.84 4.49/5.97 

12 10.68/10.7 8.86/10.89 10.71/8.66 8.58/10.90 7.68/10.03 

Table 7. Average standard deviations results for the Tiger-Pose 

dataset 

The final testing results for all datasets and models are 

presented in Table 8. 

 

Dataset Average standard deviations, % 

nano small medium large x-large 

AwA2 1.87/2.29 1.81/1.83 2.12/1.54 1.57/2.25 1.57/2.29 

AP-10K 5.08/5.08 4.62/5.02 4.79/5.37 4.32/5.19 4.23/5.23 

Tiger-Pose 5.70/6.17 5.47/6.24 5.34/5.40 4.87/5.85 4.60/5.79 

Table 8. Final average standard deviations results 

A few images were randomly selected from all used datasets to 

visualize the results presented. The images depicted in Figures 

5-9 show positive examples, and the images depicted in Figure 

10 show negative example of keypoint detection. 

 

The dataset provided by the Ergaki National Park was used for 

pose estimation. Several of the most popular classes, such as 

deer, bear, and boar, were selected for pose estimation. The 

results are presented in Table 9. 

 

Animal pose Average accuracy of pose estimation, % 

Deer Bear Boar 

Standing 83.34/80.71 81.17/81.06 80.04/80.29 

Sitting – 66.71/65.91 60.36/59.88 

Lying down 76.24/74.05 77.42/76.22 75.30/73.08 

Moving 77.33/75.01 75.94/75,38 71.28/70.62 

Eating/Searching 63.45/63.20 62.57/62.81 62.57/62.11 

Table 9. Average accuracy of pose estimation. 

Thus, based on the results of testing on three datasets and visual 

observations, we can say that the method has a positive impact 

on the position accuracy of determining keypoints. This method 

is not able to improve the results of poorly trained or less 

accurate models. However, in the case of accurate models, such 

as the medium model and above, experiments show a stable 

positive result. 

 

5. Conclusions 

In this study, we solve the problem of estimating the pose of 

animals, which helps determine the behavior of an animal in the 

wild. We have proposed a method of sequential image 

processing based on semantic segmentation and estimation of 

the animal's pose based on accurate detection of keypoints. The 

analysis of frameworks and deep learning models for human 

pose estimation led to the selection of the YOLOv8 Pose 

Estimation and Pose Keypoint Classification model, starting 

from the medium model and above. Experimental results show 

that the proposed algorithm using additional semantic 

segmentation increases the accuracy of animal pose estimation 

by 3.6-4.8% on samples of the Ergaki dataset. 
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        a                b                c 

Figure 5. Visualized results of the nano model: a original template, b image without segmentation, c image with segmentation. 

 
        a                b                c 

Figure 6. Visualized results of the small model: a original template, b image without segmentation, c image with segmentation. 

 
        a                b                c 

Figure 7. Visualized results of the medium model: a original template, b image without segmentation, c image with segmentation. 

 
        a                b                c 

Figure 8. Visualized results of the large model: a original template, b image without segmentation, c image with segmentation. 
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        a                b                c 

Figure 9. Visualized results of the x-large model: a original template, b image without segmentation, c image with segmentation. 

 
        a                b                c 

Figure 10. Negative visualized results: a original template, b image without segmentation, c image with segmentation. 
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