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Abstract

Violent forces such as earthquakes or human interaction can damage or demolish objects of cultural heritage. Many architectural
masterpieces have survived only in a few photos or drawings. Moreover, often interior decorations of buildings such as stucco or
paintings are destroyed by fire. Therefore, an automatic 2D-to-3D reconstruction that can assists architecture historians in process of
restoration of original 3D shape of a lost site of culture heritage is required. An automatic in-paint method can assists restoration of
partially destroyed stucco and paintings. We present an end-to-end framework that receives a single image of an object and predicts
its vector of the exterior orientation parameters. The main objective of a present work is reconstruction of 3D model of a partially
destroyed 3D object and it 3D in-painting. As the initial and prerequisite phase of this framework we propose a new generative
model for estimation of the exterior orientation parameters for a given input image using a Diffusion model ( DiffusionBAS ).

1. Introduction

Lost in the field. It is hard to imagine a more striking picture
of abandonment and depressure. Still, an existing physical part
of destroyed 3D object holds multiple traces of the original ap-
pearance. The task of reconstruction of completely destroyed
objects of cultural heritage is much more challenging. Indeed,
a method capable of reconstruction a partially destroyed build-
ing from a single photo must solve two non-determined tasks
simultaneously:

1. Reconstruction of existing complete destroyed 3D building
from a single view;
2. Reconstruction of the original 3D appearance of a destroyed
building.

While single-photo 3D reconstruction had become an estab-
lished technology in recent time, generation of 3D model of
original shape of partially destroyed building remains challen-
ging. This task is also commonly called 3D shape inpainting.
Recently a NeRFiller model was proposed. NeRFiller model
leverages two off-shelf available models to solve a challenging
task of forecasting the appearance for lost parts of an object
basing on its photograph.

It should be noted, that authentic recovering of the informa-
tion about 3D scene is possible if accurate estimation of camera
exterior orientation is performed. Traditional photogrammetric
methods of determining of camera exterior orientation use a set
of 3D points with known 3D coordinates. These points serve as
reference information for the estimation procedure.

With the advances in developing data-driven methods new ap-
proaches based on machine learning have been proposed. This
study addresses the problem of of blind external orientation
parameters estimation from a single input image that is needed
for accurate and holistic recovering the appearance of partly lost
objects of cultural heritage.

The 2D and 3D in-painting techniques created the background
for virtual reconstruction of the lost or damaged parts of im-
ages (scenes). Firstly, the NeRF (Mildenhall et al., 2020) neural

network model is trained using available observations of a given
3D object. After that missing regions are masked by an operator.
After that a diffusion model is used to perform a 2D inpainting
of masked regions. After that the NeRF model is trained using
the updated dataset.

We aim developing a new DiffusionBAS model capable to pre-
dict external orientation parameters for given input image. The
DiffusionBAS solves the problem of bundle adjustment by ma-
chine learning methods. We hypothesize, that there is a correl-
ation between a reference image in a multi-view stereo set and
its exterior orientation, that can be learned by neural diffusion
model. Specifically, we train an autoencoder model to encode
the input image and its exterior orientation parameters into a
latent code Z and to reconstruct it back to exterior orientation
parameters for given image.

After that, we train an image encoder that provides a mapping
from the input image in image setA ∈ Ii to a latent code Zi that
encodes the exterior orientation vectors for the image setA. Us-
ing the latent code Zi and the matrix decoder D, we reconstruct
the the vector of exterior orientation parameters for input image.

Our key idea is to predict the vector of exterior orientation para-
meters from input image. Specifically we use a Stable diffu-
sion model (Rombach et al., 2022) as a starting point for our
DiffusionBAS model. We modify Stable Diffusion architecture
to encode the input image and its exterior orientation parameters
into a latent code and reconstruct it back to exterior orientation
parameters for given image.

The main contributions of the study are the following:

• the framework for estimation of the exterior orientation of
the single image based on a diffusion neural network model

• creation of the dataset for the proposed framework training
and evaluation

• evaluation of the proposed framework on created dataset
and baselines
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2. Related work

Reconstruction of a complete 3D model from a limited or cor-
rupted information is a challenging problem that has been ana-
lyzed by a scientific community for a long time. First ap-
proaches leveraged a combination of classical photogrammetry
and analytic approximation (Mizginov and Kniaz, 2019, Kniaz
et al., 2019). Photogrammetry reconstruction provided a de-
tailed 3D model of the survived elements of a partially destroyed
3D object. The structure of the original (undestroyed) object
was decomposed into a number of 3D primitives. Parameters
of the primitives were optimized using linear least squares with
an objective of minimizing surface distance between the surface
of a primitive and fragment of a surface from photogrammetric
reconstruction. More than ten years ago a rapid rise of neural
networks had begun. Models was trained using a deep learning
framework with an increased GPU performance and revolution-
ary architecture with convolution layers.

Deep learning models had dramatically changed the landscape
of modern photogrammetry and 3D vision. In the field of pho-
togrammetry deep learning had drastically improved the quality
of feature point detection and matching (Yi et al., 2016a, Ono et
al., 2018, Li et al., 2020). Such an improvement allowed to fur-
ther densify the resulting point cloud. In the field of 3D vision
some qualitatively new approaches had appeared.

Firstly, new models for depth map estimation from a single
photo or a stereo pair (Zheng et al., 2018, Isola et al., 2017)
have been proposed and evaluated in single object and arbitrary
scene statements.

Secondly, a large number of neural network models for six de-
gree of freedom camera orientation have been developed (Kend-
all et al., 2015) that can predict camera orientation with the ac-
curacy suitable for qualitative task of machine vision.

Finally, new neural network models were designed for a single
photo 3D model reconstruction. Unlike photogrammetric al-
gorithms that required multiple views for generation of a com-
plete 3D model, neural models allowed generation of an all-
around 3D model from a single photo (Xie et al., 2019, Kniaz
et al., 2020, Wu et al., 2017, Knyaz, 2020). Still reconstruction
or 3D inpainting was challenging task for a regular volumetric
convolutional neural networks.

Only the invention of diffusion models allowed effective restor-
ation of missing data in 3D space. The NeRFiller model (Weber
et al., 2023) solved this challenging task using a combination of
a neural radiance field model (NeRF) (Mildenhall et al., 2020)
and a diffusion model (Rombach et al., 2022).

The problem is solved iteratively. Firstly an approximate NeRF
model is trained using available images of a 3D object. After
that novel views of object a rendered using the NeRF approx-
imation. After that diffusion model is used to reconstruct the
original object appearance in synthetic novel views. Finally a
new NeRF approximation is trained using original and new im-
ages.

Still NerFiller model requires multiple images to reconstruct
the missing parts of 3D object. Our aim is to develop a new
DiffusionBAS model capable of simultaneous 3D reconstruc-
tion and 3D in-painting of missing parts. At the current phase
of the study, we address the problem of robust and accurate ex-
terior orientation in the frame of whole recovering process. We

aim developing a mapping G : I → Z, where I is an arbitrary
image of an object of interest, Z is a latent code encoding the
vector of exterior orientation parameters.

Estimation of orientation parameters is one of the key elements
of accurate 3D reconstruction of a scene using photogrammet-
ric methods. In recent decades, various methods have been pro-
posed to solve this problem, which vary depending on the avail-
able technical means and current image acquisition conditions.

These techniques usually exploit information about spatial co-
ordinates of several reference scene points to estimate the para-
meters of image acquisition model, considering the images of
these points as observations. The identification of the reference
points in images firstly was performed manually by an operator,
and later, with advances in image processing methods, by auto-
matic detection algorithms. After establishing the correspond-
ence between scene 3D points and their images, the parameters
of imaging model are determined by bundle adjustment proced-
ure based on least mean squares estimation.

The development of robust feature descriptors allowed to match
corresponding features in different images, thus provided the
basis for solving the task of ”structure-from-motion” – finding
the camera orientation and reconstructing the 3D model from a
set of images with unknown orientation.

The problem of reliable estimation of the orientation parameters
attracted attention of the photogrammetric and computer vision
scientific society from the first steps of image based 3D recon-
struction (Hartley and Zisserman, 2004, Ozyesil et al., 2017,
Knyaz and Zheltov, 2017, Kniaz et al., 2022).

The estimation is typically based on detection of some object
(or a scene) points, that can be used as the reference data for
available observations. Several robust and accurate descriptors
such as Speed-Up Robust Features (SURF) or Scale Invariant
Feature Transform (SIFT) (Bay et al., 2006, Lowe, 2004) have
been developed, significantly improving the level of automation
in correspondence problem solution. With the era of deep learn-
ing a set of neural network models were developed to solve the
key-points detection problem (DeTone et al., 2018, Yi et al.,
2016b).

Figure 1. Diffusion process in 3D

The invention of the diffusion neural networks allows to ap-
ply such approach for the various task of computer vision and
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3D reconstruction (Figure 1), such as image generation (Song
and Ermon, 2019, Ho et al., 2020) or 3D point cloud genera-
tion (Luo and Hu, 2021, Lyu et al., 2021, Melas-Kyriazi et al.,
2023) . The diffusion neural networks take their origin from
non-equilibrium thermodynamics (Sohl-Dickstein et al., 2015).
The learn to represent the distribution of analysed data by a
Markov Chain, performing iterative adding noise to the initial
data.

They demonstrate high performance in generating diverse high-
quality samples, that makes this kind of neural network models
to be an encouraging mean for direct exterior orientation estim-
ation.

3. Materials and Method

In this paper, we propose a new generative model for implicit
Bundle adjustment in the task of exterior parameters estimation.
Diffusion neural network model ( DiffusionBAS ) is proposed
as alternative to standard Bundle adjustment procedure.

The problem of the exterior orientation for a set of images of the
same scene can be formulated as follows. Let Ii ∈ R3×H×W

be a set of the images of the same scene. It is required to find a
set of corresponding vectors of exterior orientation parameters
veo for this image set.

Exterior orientation maps a 3D point pw ∈ R3 from world co-
ordinates to a 3D point pc ∈ R3 = gi(pw) in camera coordin-
ates

3.1 Bundle adjustment problem

Bundle adjustment problem consists in estimating a vector of
unknown parameters of the mathematical model used for de-
scribing the process of image formation on the sensor’s matrix.

The basic imaging model used in photogrammetry is co-
linearity equations. They formulate the fact of belonging to the
same ray the following points: the point of the scene S, the cen-
ter of the projection of C and the projection s of the point S in
the image plane:

xs − xp = −λR · (XS − XC) (1)

The next notations are used in Equation 1:

XC = (XC , YC , ZC)T – coordinates of the center of the projec-
tion,
XS = (XS , YS , ZS)T – coordinates of the scene point S ,
xs = (xs, ys,−c)T – the corresponding coordinates of the scene
point S in the image,
R – coordinate system rotation matrix,
xp – coordinates of the principal point,
λ – scale factor.

The coordinates of point S and of the center of projection C are
defined in object coordinate systemOXY Z (Figure 2), coordin-
ates of image point xs are defined in image coordinate system
Cxyz. The transition from object coordinate system to image
coordinate system is determined by the matrix R:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33,

 , (2)

and the elements rij of the matrix R are defined by Euler’s ro-
tation angles α, ω, κ.

Figure 2. Co-linearity condition

Equations 1 can be written in form:

xs − xp =

− cr11(XS −XC) + r12(YS − YC) + r13(ZS − ZC)

r31(XS −XC) + r32(YS − YC) + r33(ZS − ZC)

ys − yp =

− cr21(XS −XC) + r22(YS − YC) + r23(ZS − ZC)

r31(XS −XC) + r32(YS − YC) + r33(ZS − ZC)

The task of exterior orientation is to find the values of vector of
exterior orientation parameters veo = (XC , YC , ZC , α, ω, κ)T

for given image. With bundle adjustment technique this prob-
lem is solved as the task of estimating unknown parameters
basing on observations. The aim of the bundle adjustment pro-
cedure is to minimize the errors in calculating of the 3D co-
ordinates when applying the imaging model (Equation 1).

Figure 3. Data for Bundle Adjustment procedure.
xij are the image coordinates (observations of Xj) in ith image,
Xj are the spatial coordinates of object points, x̂ij(veoi ) are the

re-projected xij points.

This criterium can be written in different forms, depending on
available data. In the case, when reference 3D coordinates
{Xj , j = 1, . . . ,m} are given, the L3D metric is to be min-
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Figure 4. Diffusion BAS model architecture

imized:

L3D =

n∑
i=1

m∑
j=1

(Xj − X̂i,j(v
eo
i , xij))

2 (3)

If the information about 3D coordinates of the scene is not
available (as for structure from motion or simultaneous local-
ization and mapping problems), the criterium can be written as
re-projection error of some points of the scene

Lrp =

n∑
i=1

m∑
j=1

(xij − x̂i,j(veoi , xij))2 (4)

where xij are the images coordinates of object point Xj (ob-
servations), representing the jth 3D object point Xj in the ith
image. x̂i,j(veoi , xij) is defined by the non-linear transformation
of Equation 1.

3.2 Diffusion BAS framework overview

Recently proposed diffusion neural networks (Ho et al., 2020,
Sohl-Dickstein et al., 2015, Song and Ermon, 2019) can be con-
sidered as another way of the iterative estimation of exterior ori-
entation by bundle adjustment. They firstly learn the possible
distribution of the disturbed data by sequentially adding noise
to input data. At the inference phase the trained diffusion neural
network predicts the undisturbed data from given input sample
by reverse deniosing process.

We hypothesise that such approach can improve the bundle ad-
justment performance for arbitrary set of scene images, over-
coming the problem of poor convergence of bundle adjustment
procedure with ”bad” initial conditions.

The architecture of the proposed DiffusionBAS model is
shown in Figure 4. We modify Stable Diffusion (Rombach et
al., 2022) architecture to encode the input image and its exterior
orientation parameters into a latent code and reconstruct it back
to exterior orientation parameters for given image.

3.3 Camera External Orientation Estimation through Re-
verse Diffusion

We consider an estimation of camera external orientation para-
meters as a reverse diffusion process. We summarize our ap-
proach in the Algorithm 1.

Algorithm 1: Reverse Diffusion
Data: A set of images with known external orientation

I = {I0, I1, . . . IK}, a set of known ground control
points PGCP , an input image I for which an external
orientation should be found.

Result: X0 = DiffusionBAS(I)
Dmin ←∞ ;

while j < K do
Dj ← FID(Ij , I);
if Dj < Dmin then

Dmin ← Dj ;
jmin ← j;

Iref ← Ijmin ;
Xt ← Xjmin ;
t← T while t > 0 do

I ′t ← Plot(PGCP , It) ;
∆X ← DiffusionBAS(I ′t);
Xt−1 ← Xt + ∆X;
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Figure 5. Examples of annotated images in our Heritage3D dataset.

3.4 Dataset generation

Addressing the problem of recovering the appearance of cul-
tural heritage objects, we developed a new Heritage3D dataset
containing samples with 2D and 3D representation of partially
destroyed objects of cultural heritage located in central Russia.

Each sample includes the following data: an image of an ob-
ject and the ground truth camera external orientation paramet-
ers in the object coordinate system. Also we provide ground
truth 3D low polygonal models of objects generate by manual
processing of a rough 3D model produced by a structure-from-
motion pipeline.

Our dataset includes 4 objects of cultural heritage. For each ob-
ject we include 50 real images, and 5k images generated using
a NeRF trained from objects photos. Example images from our
dataset are presented in Figure 5.

4. Evaluation Results

We evaluated our DiffusionBAS model and standard bundle
adjustment procedure on our Heritage3D dataset in terms of
mean square error between the estimated camera external ori-
entation parameters and the ground truth ones. The results of
the evaluation are presented in Table 1.

Table 1 shows, that the developed DiffusionBAS frame-
work for exterior orientation by implicit bundle adjustment us-
ing diffusion-based machine learning outperforms the stand-
ard bundle adjustment technique and can compete with modern
neural 6DOF pose estimation models.

Mean error of external parameter estimation
Parameter Diffusiion BA Standard BA
X,m 0.0543 0.0621
Y,m 0.0371 0.0427
Z,m 0.0622 0.0918
αo 0.0327 0.0511
ωo 0.0271 0.0312
κo 0.0194 0.0302

Table 1. Results of DiffusionBAS evaluation.

5. Conclusion

We developed a new model for estimation of camera external
orientation with known interior orientation parameters. Our
DiffusionBAS model is capable of blind external orientation
parameters estimation from a single input image. Our model
leverage diffusion process. We trained an autoencoder model to
encode the reference images and exterior orientations from the
dataset into a latent code Z and then to reconstruct back the ex-
terior orientation vector from the latent code Z for given input
image.

We collected the new Heritage3D dataset containing 2D and 3D
samples for partially destroyed objects of cultural heritage. We
evaluated our model on our Heritage3D dataset. The evaluation
showed the our model outperforms hand crafted methods and
can compete with modern neural 6DOF pose estimation models.
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