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Abstract 

 

This paper is devoted to the study of the efficiency of using neural networks for filtering satellite images. The authors propose the 

use of convolutional noise suppressing autoencoders in order to minimize the filtering error variance. As part of the study, the 

architecture of the autoencoder was developed, optimal hyperparameters were selected and the resulting neural network model was 

trained. In addition, the paper compares the effectiveness of the proposed approach with traditional filtering algorithms such as 

Kalman filter and Wiener filter. Our models provide filtering efficiency gains of 3-4% at low noise levels (Signal-Noise-Ratio, SNR 

is 4 or more). The authors also investigated the effect of using data augmentations on improving the filtering quality. Experimental 

results showed that neural network models are able to outperform classical filters in terms of accuracy in processing real satellite 

images. Additionally, the paper studied the dependence of the filtering error variance on the number of training epochs of the neural 

network. The obtained results demonstrate that the developed neural network filter can be effectively applied for noise suppression 

on satellite images. 

 

 

1. Introduction 

 

The state-of-the-art capabilities of neural networks ensure their 

increasing application in image processing (Andriyanov et al., 

2022 and Dosovitskiy et al., 2021) and, especially, in satellite 

image processing (Zhu et al., 2022). A number of studies show 

that the robustness of convolutional neural networks is under 

great question even when simple attacks are used (Andriyanov 

et al., 2021 and Lebedev et al., 2018). Therefore, one of the 

most important steps in data preprocessing is image filtering 

(Rubis et al., 2016). Indeed, removing noise in the preliminary 

stage leads to an improvement in the quality of the subsequent 

image processing, regardless of the problem to be solved. It is 

shown in (Vasiliev et al., 2017) that pre-filtering improves the 

efficiency of signal detection in images. Various regression 

filters are the most widely used. For example, the Kalman filter 

(Kalita and Lyakhov, 2022). Working with the frequency 

representation of the processed signal is given by Wiener filter 

(Chen et al., 2023).  

 

The Kalman filter is an optimal linear recursive algorithm for 

estimating the state of dynamic systems in the presence of 

measurement noise and process noise. From a mathematical 

point of view, the Kalman filter is an algorithm based on the 

theory of optimal filtering, which allows to obtain optimal 

estimates of the internal states of a dynamic system described 

by a linear state equation in discrete time, in the presence of 

Gaussian white noise in measurements and process. The main 

property of the Kalman filter is its recursiveness. The main 

advantage of the Kalman filter is its ability to process noisy 

data, suppressing the noise and restoring the true state of the 

image. 

 

Wiener filter or Wiener-Hopf filter is an optimal linear filter for 

processing stationary random signals based on the theory of 

optimal filtering. For regression-formed signals, the results of 

the Wiener filter cannot be worse than those of the Kalman 

filter. However, stationary and homogeneous images are rarely 

found in practice. Mathematically, the Wiener filter is a 

convolution of the input signal with the impulse response of the 

filter, which is determined on the basis of the correlation 

characteristics of the input and desired signals. In this case, the 

optimum is achieved in the sense of the minimum filtering 

variance error. It should be noted that the Wiener filter has more 

stringent requirements to the statistical properties of signals 

compared to the Kalman filter, which can work with non-

stationary signals. In particular, its doubly stochastic 

modification was developed for the Kalman filter (Andriyanov 

et al., 2019). 

 

At the same time, in real images, many different factors come 

into play, and the requirements that are necessary for successful 

filtering are often not met. Modifications of adaptive filters 

(Kleefeld et al., 2015), Gaussian (Wang et al., 2014) and 

median filters (Mursal et al., 2020) are used for this purpose. 

But they also cannot provide good results on heterogeneous data 

with high probability.  Doubly stochastic filters (Dementyiev et 

al., 2020) occupy a special place in filtering images with 

complex structure. They provide parameter estimation with 

different filtering coefficients at different points of the image, 

which makes such filters more flexible. 

 

Thus, image filtering is one of the most important tasks in 

image processing and computer vision, which is necessary for 

different applied tasks: from improving image quality to 

creating special effects on an image. At the same time, the 

capabilities of neural network-based image filtering are 

currently poorly understood. In this paper we propose to 

investigate the filtering efficiency of the autoencoder and 

compare the results with known models. 

 

2. Data and Experiments 

A dataset with satellite images was chosen for the study because 

the analysis showed that filtering is quite often applied to such 

data. The Kaggle dataset (Arjun Tyagi, 2020), was used. The 

image database contains satellite images belonging to several 

classes, including those from the surface of Mars and the Moon. 

The data distribution is presented in Table 1.  

 

Because it will be necessary to obtain restored data it is 

interesting to compare different models on relative mean square 

error (MSE) and Structural Similarity Index (SSIM) metrics. 
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Class Number of images 

Beach 100 

Ice 73 

Mars 100 

Moon 100 

Mountain 100 

Ocean 100 

River 100 

Table 1. Class distribution in the dataset 

 

Figure 1 shows examples of images of the beach and Mars, 

moon and ocean respectively. 

 

 
Beach 

 
Mars 

 
Moon 

 
Ocean 

Figure 1. Examples of images in dataset. 

 

From the presented figures, it can be seen that the classes are 

quite different from each other. Usually the presented dataset is 

used for the classification task. However, we are going to solve 

the noise suppression task. Since it can be seen that the original 

images are quite clean, since the data collection is done in 

Google Earth Pro imaging conditions, we need to develop a 

noise addition model. In this case, we will evaluate errors 

separately within classes. 

 

To obtain the noisy observations, we write down the following 

expression: 

 

),,(),,(),,( cjiNcjiIcjiZ  ,           (1) 

 

where Z  is observed color image; I  is original image before 

noise addition (reference image); N  is white Gaussian noise 

with zero mean and arbitrary variance ; ),,( cji  is the set of 

functional parameters: pixel coordinate by row, pixel coordinate 

by column, color channel in accordance with RGB color 

scheme. 

 

Thus, using expression (1), different models of noisy images 

can be obtained. At the same time it is possible to control the 

noise level in order to compare the quality of the developed 

filters in different conditions. 

 

An autoencoder model (Bartlett et al., 2023) is proposed to 

solve the noise suppression problem. The autoencoder is trained 

by minimizing the error between the input and output images. In 

fact, for each image, it is necessary to match a pair of images: 

with and without noise. This allows the autoencoder to learn to 

extract meaningful features and suppress noise. For the 

comparison to be adequate, then several networks of the 

encoder must be trained for different levels of noise variance. 

After all, in Kalman filtering, it is assumed that the 

characteristics of the communication channel are known. 

 

The process of noise suppression using an autoencoder can be 

visualized as follows: 

 

Step 1. Encoding.  

During this stage the first part of the autoencoder (directly 

encoder) works. Usually when working with images it is better 

to use convolutional layers that take into account spatial 

structure of images. At the input of the autoencoder there is an 

image with noise. The encoder part compresses this image into 

a compact low-dimensional representation in the form of a 

latent vector. 

 

Step 2. Noise reduction.  

It is achieved during training by selecting the weights of the 

encoder and decoder in such a way that the generated latent 

space allows the output image to be as close to the original 

image as possible. 

  

Step 3. Decoding. 

During this stage, the decoding part (decoder) converts the 

latent vector back to the output image, where the noise will 

already be suppressed. Thus, after training the model, only the 

decoder part is required to perform filtering of the new images. 

The architecture of the described neural network is presented in 

Figure 2. In fact, the autoencoder is a generative model and can 

be used to increase the training samples (Chen and Guo, 2023). 
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Figure 2. Autoencoder architecture. 

 

Finally, Figure 3 shows an example of noisy images with 

relative noise variance of 10% and 50%. 

 
Relative Noise Variance is 

10% 

 
Relative Noise Variance is 

50% 

Figure 3. Examples of noisy images. 

 

Figure 3 shows that an image with a relative noise variance of 

10% visually looks undistorted, but at a noise level of 50% a 

strong deterioration of quality is already noticeable. Further we 

will give the results of autoencoder operation and compare it 

with other models. 

 

3. Investigation of Image Filtering Efficiency 

Let the relative variance of the filtering error will be the main 

estimation metric. First, let's calculate the absolute variance of 

the error using the following equation: 

 

 



N

k

kkE cjiIcjiI
N 1

2 ),,(ˆ),,(
1

 ,        (2) 

 

where N is number of images for processing, ),,(ˆ cjiI k
 is 

filtering result of the k-th image. 

 

The calculation of the error variance (2) can be used to 

determine the relative error variance: 
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where 2

I  is image brightness variance, k  is image index 

(number). 

 

It should be noted that efficiency estimation will be produced on 

20% test data. And rest 80% of dataset was used for training. 

We will consider two types of autoencoders. The first one is 

based on fully connected neural network layers, the second one 

is based on convolutional layers. Table 2 shows the results of 

comparison of different models at different noise levels. The 

relative variance of error is in the table cells depending on 

model and noise level. Table 3 provides results using SSIM 

metric. 

 

Algorithm 
Noise, 

10% 

Noise, 

20% 

Noise, 

50% 

Noise, 

70% 

Noise,  

100% 

Kalman Filter 0.076 0.138 0.372 0.640 0.842 

Wiener Filter 0.099 0.194 0.388 0.638 0.826 

Median Filter 0.108 0.210 0.340 0.712 0.992 

 

Gaussian 

Filter 

0.104 0.197 0.418 0.695 0.975 

 

Doubly 

Stochastic 

Filter 

 

0.082 0.097 0.257 0.571 0.862 

Fully 

Connected 

AutoEncoder 

0.073 0.095 0.262 0.582 0.878 

 

Convolutional 

AutoEncoder 

0.031 0.062 0.199 0.513 0.641 

Table 2. Comparison results for different filters (relative MSE) 

 

Algorithm 
Noise, 

10% 

Noise, 

20% 

Noise, 

50% 

Noise, 

70% 

Noise,  

100% 

Kalman Filter 0.971 0.968 0.903 0.816 0.748 

Wiener Filter 0.969 0.963 0.901 0.812 0.752 

Median Filter 0.947 0.933 0.844 0.764 0.691 

 

Gaussian 

Filter 

0.951 0.949 0.832 0.712 0.632 

 

Doubly 

Stochastic 

Filter 

 

0.971 0.969 0.906 0.822 0.747 

Fully 

Connected 

AutoEncoder 

0.969 0.964 0.912 0.836 0.794 

 

Convolutional 

AutoEncoder 

0.982 0.978 0.958 0.949 0.892 

Table 3. Comparison results for different filters (SSIM) 

 

From the presented tables we can conclude that the 

convolutional autoencoder outperforms the other algorithms. 

This is due to the complexity of the data and the significant 

amount of time and computational power for training compared 

to the Kalman and Wiener algorithms. At the same time, the 

doubly stochastic filter slightly outperforms the full-link 

autoencoder due to its universal structure. Furthemore, results 

for noise level 50% and more are only test results, because they 

are quite worse and in practice there is no usually such images. 

 

Thus, the results show that convolutional autoencoders exhibit 

the best noise suppression ability at different noise levels.This is 

due to the fact that convolutional networks are able to 

efficiently extract meaningful features from images while 

suppressing the noise component. However, the fully connected 

encoder is only ranked third in terms of error metric, which may 

be due to insufficient training that requires significant 

computational resources. 
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Figure 4 shows examples of noise reduction for autoencoders. 

On the top  is the noisy image, followed by noise suppression 

by a fully connected model, then noise suppression by a 

convolutional model is presented third. Figure 5 shows the 

original image. 

 
Noisy image 

(25%) 

 
Fully Connected 

Model 

 
Convolutional 

Model 

Figure 4. Results of denoising. 

 

 
Figure 5. Source image. 

 

Figure 6 shows the effectiveness of filtering on different classes 

for a convolutional autoencoder on training data. 

 

 
Figure 6. Filtering efficiency by class. 

 

From Figure 6 it is possible to conclude that all encoders are 

quite effective at low noise levels (up to 0.2), and then the 

filtering error starts to grow sufficiently. At the same time, the 

algorithm adapted worst of all to Mars images, which is 

probably due to its surface. 

 

4. Augmented data processing 

The use of data augmentations (Buslaev et al., 2020) is an 

important aspect of training autoencoders for image filtering 

tasks. The augmentations allow to expand and diversify the 

training sample, which helps to improve the generalization 

ability of the neural network model. 

 

In this study, we proposed the use of different types of 

augmentations to improve the filtering performance of satellite 

images. For example, transformations such as random rotations, 

scaling, shifts and reflections of images have been applied. Such 

augmentations allow the neural network to better generalize the 

patterns of noise and artifacts found in real satellite images and 

improve the filtering quality accordingly. 

 

Experimental results demonstrated that the application of data 

augmentations significantly improves the performance of the 

developed autoencoder compared to models trained without the 

use of image transformations. The authors note that the 

selection of optimal types and parameters of augmentations is 

an important step in the design of neural network filters for real-

world applications. Competent use of augmentations can 

significantly improve the efficiency of filtering satellite images 

using autoencoders. 

 

Figure 7 shows some augmentation examples for noise image of 

Mars. On the top the source noisy image is represented. 

 

 
Noisy original 

 
Crop 

 
Rotation 

 

Figure 7. Images obtained using augmentations. 

 

Table 4 shows the results of filtering with for autoencoders with 

and without augmentation. The noise level is 20% and 50%. 

Other experiment include test of filters for 20% impulse and 

white Gaussian noise. Table 5 shows the results for such 

comparison. The comparison metric is variance of filtering 

error. 

 

Algorithm Noise, 20% Noise, 50% 

 

Fully Connected 

AutoEncoder 

 

0.095 0.262 

 

Convolutional 

AutoEncoder 

 

0.062 0.199 

 

Fully Connected 

AutoEncoder + 10% 

Augmentation 

 

0.091 0.251 

 

Convolutional 

AutoEncoder + 10% 

Augmentations 

 

0.054 0.197 

 

Fully Connected 

AutoEncoder + 30% 

Augmentation 

 

0.089 0.252 

Convolutional 

AutoEncoder + 30% 

Augmentations 

 

0.052 0.196 

Table 4. Comparison results with augmenations 
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Algorithm 
Additive White 

Gaussian Noise 
Salt and Pepper 

Kalman Filter 0.138 0.204 

Wiener Filter 0.194 0.202 

Median Filter 0.210 0.067 

 

Gaussian 

Filter 

0.197 0.215 

 

Doubly 

Stochastic 

Filter 

 

0.097 0.138 

Fully 

Connected 

AutoEncoder 

0.095 0.154 

 

Convolutional 

AutoEncoder 

0.062 0.112 

Table 5. Comparison results for different type of noise 

 

From Table 4 we can see that augmentation provides a 

reduction in filtering error, but increasing the volume of 

augmented images from 10 to 30% results in almost no 

improvement in filtering quality. As for Table 5, the 

autoencoders was better again besides median filter. 

 

Another interesting case is the processing of aerial images from 

aircraft, including unmanned aerial vehicles (Knyaz et al., 

2024).  Distortions in such imagery can be related to the speed 

of the aircraft and the quality of the cameras used for imaging.  

 

Let us consider the work of the developed algorithm for such 

images. Figure 8 shows the original image, an observation with 

a noise variance of 0.7 of the signal variance, and the result of 

filtering using a convolution autoencoder. 

 

 
Source 

 
Noisy 

 
Filtered 

Figure 8. Filtering result of aerial survey data. 

 

Note that the lowest error was obtained using convolutional 

autoencoder and it amounted to 0.21, while Kalman filtering 

provided an error variance of 0.4 and Wiener filter provided the 

error variance of 0.32. Similar studies were conducted for 

images containing urban buildings. 

 

Figure 9 shows the results of processing such data. The first is 

original image, second is the noisy image, and then it is possible 

to see the result of processing using autoencoder and the last is 

processing using Kalman filter. It should also be noted that in 

addition to white noise with relative dispersion of 0.7, 

pixelization distortion was used. 

 
Source 

 
Noisy 

 
Autoencoder 

 
Kalman 

Figure 9. Processing of urban development images. 

 

For the presented images, the relative variance of the filtering 

error is 0.26 in the case of convolutional autoencoder processing 
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and 0.41 for Kalman filter processing. Also, an important result 

is that the convolutional autoencoder, due to its generative 

nature, performed much better in dealing with pixelization 

distortion. 

 

Thus, initial studies on the processing of single aerial images 

show the high potential of the proposed solution, but further 

studies on larger amounts of data are required for more accurate 

evaluations. 

 

5. Conclusions 

In this paper, a study on the application of autoencoders for 

image filtering is carried out. Experimental results showed that 

the convolutional autoencoder outperforms other known 

models. At the same time, the second place in terms of error 

variance was taken by the double stochastic filter. At low noise 

levels (up to 0.25), a noise variance error of less than 10% can 

be achieved. The classes of images to be filtered also affect the 

filtering performance. The best results (for mountains) have 

33% less error than the worst result (for Mars). Applying 

augmentation of noisy images and their clean pairs helps the 

autoencoders to slightly improve the filtering results, but this is 

achieved at levels as low as 1%. Result for SSIM metric are 

quite good too for autoencoder filtering approach, but the using 

of salt and pepper noise provides worse results in comparison 

with median filter. In the future, it is planned to test the 

proposed filtering method on city images and on aerial images. 
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