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Abstract

Recently, aquatic ecosystems have captured the interest of the international scientific community, spurring the development of new 
instruments and methodologies to explore, monitor, and preserve these environmental systems. In this context, the detection of  
shapes  in  shallow  waters  (either  in  submerged  or  semi-submerged  scenarios)  constitutes  an  intriguing  research  topic.  Our  
investigation is  framed within the multimedia  photogrammetry domain,  which aims to  retrieve geometric  information of  static  
objects  submerged  or  semi-submerged  in  a  liquid  (usually  water),  with  one  or  more  cameras  placed  outside  the  liquid  itself.  
Performing a photogrammetric survey of objects in shallow waters with above-water cameras remains an open research field in the  
domain of Optics, presenting several theoretical problems and technical bottlenecks, starting with the study of refraction behaviour.  
Our goal is to develop an automatically applicable methodology to estimate a priori (and correct a posteriori) the effects of refraction 
on camera behaviour when capturing images of submerged or semi-submerged objects under certain conditions. We therefore tested 
the behaviour of the cameras in a controlled environment, through different depth levels and water motion conditions, and then 
elaborated a mathematical model of the optical distortion phenomenon encountered. Feature extraction presents many bottlenecks,  
mainly due to the particular optical conditions defined by multimedia acquisition and the eventual perturbations present if the liquid  
is in a condition of turbulence. This paper focuses on such technical problems, presenting part of the qualitative and quantitative  
results obtained at this stage of our research and the approach used to resolve some detection limitations.

1. INTRODUCTION

The  research  presented  in  this paper  focuses  on  surveying 
geometric shapes in water using optical cameras out of water. In 
detail,  the  experimentation  explores  multimedia 
photogrammetry,  a  3D  acquisition  methodology  devoted  to 
capturing geometric information of static objects immersed in a 
liquid  or  in  semi-submerged  conditions,  with  one  or  more 
cameras outside the liquid itself. This field is connected to the 
macro-domain  of  applied  metrology  for  the  analysis  and 
knowledge of the aquatic world, creating the basis for a new 
acquisition approach based on passive sensing techniques for 
shape detection in shallow waters.
The  project  presents  a  robust  multi-disciplinary  connotation, 
because  it  involves  multiple  domains  of  research:  from 
mathematical analysis to the development of computer scripts in 
Python  language,  from  the  study  of  projective  geometry  to 
instrument optics, and from metrology to hydraulics. Integrating 
these fields allows us to deal with innovative technological and 
instrumental  solutions  capable  of  solving  and  optimising  a 
complex problem by acquiring data inside water. 
As delved into the  State of the  Art, information acquisition in 
water, especially shallow waters, is a fascinating domain that is 
the  focus  of  numerous  projects  at  national  and  international 
scales. In fact, the aquatic world represents the newest and most 
enormous frontier of study in multiple application domains.
In order to study it, reliable surveying instruments capable of 
acquiring information within water are necessary. Several active 
and  passive  instruments  can  acquire  information  when 

immersed within the liquid, thus working in a coherent media. 
However,  there  is  still  a  great  deal  of  unexplored  space  on 
sensing techniques that work on different media, such as water 
and air. Using optical instruments out of water requires a priori 
knowledge  of the  light  rays'  behaviour  within  the  water. 
Besides, it is essential to discover how this behaviour can be 
corrected by surveying shapes inside the liquid and introducing 
automatic processes to extract metrical information. 
Therefore,  our research1 aims to suggest a first answer to this 
need.  It  follows  up  on  analysing  and  refining  the  first 
experimental  results  obtained  in  a  controlled  environment, 
introducing an innovative 3D passive technique for multimedia 
aquatic surveying in shallow waters. The project aims to model 
the geometric distortion due to the refraction effect and define 
the  correct  geometry  in  multimedia  photogrammetric 
applications.

2. STATE OF THE ART

2.1 Underwater projects

The aquatic ecosystem is  an extensive field of  research.  The 
vastness and the crucial role of the aquatic area have led to the 
discovery of new instruments and methodologies to explore the 
contents  and  monitor  the  ecosystem  to  preserve  it.  The 
emerging  national  and  international  projects  demonstrate 
growing  interest.  Among  them,  we  would  remind  the 
conferences  "ACQAE,  Il  futuro  è  nell'oceano" 
(http://aquae.cnr.it)  and  the  "MaGIC2  project" 
(https://www.protezionecivile.gov.it/en),  which  delved  into 

1 The authors participated equally in the experimental phase. In writing the article, M.R. was responsible for the Introduction and  
Conclusions, A.P. for paragraph 2 (State of the Art), R.R. for paragraph 3 (Methodology), and L.M. for paragraph 4 (Experiments 
and Results).
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areas with depths ranging from 0 to 50 metres. At the European 
scale,  some research activities and projects  are related to the 
topic,  such  as  the  "Our  Ocean  Conference" 
(https://ourocean2019.no/),  which  introduces  an  ocean 
monitoring  system.  At  the  research  level,  the  project  "i-
MareCulture" (https://imareculture.eu) is aimed at opening the 
digitalisation  of  Underwater  Cultural  Heritage  (UCH)  to  the 
public,  "NAUTILOS"  (https://www.nautilos-h2020.eu),  which 
aims to obtain a wide range of seafloor data with dense spatial 
resolution,  "TECTONIC"  (https://www.tectonicproject.eu), 
aimed at safeguarding UCH.

2.2 Underwater research

Research on surveys in the water domain started long ago with 
monitoring  oil  platforms  and  large  vessels  in  the  1950s 
(Leatherdale and Turner, 1983). In the last decade, an ISPRS 
Commission  (Underwater  Data  Acquisition  and  Processing  - 
ISPRS WG II/7) has been devoted to the topic, promoting many 
conferences  and  activities  mainly  related  to  integrating 
acquisition  instruments  and  testing  data  processing  pipelines. 
Many  articles  have  been  proposed  to  analyse  the  in-water 
acquisition with active and passive sensors (Menna et al., 2018), 
showing different applications, as in the volume 3D Recording 
and Interpretation for Maritime Archaeology (Springer) or the 
Special Issue Underwater 3D Recording & Modelling (MDPI). 
A state-of-the-art  can be found in (Song et  al.,  2022).  Some 
research highlights the problem of detecting shapes in shallow 
waters,  whose  conditions  limit  the  application  of  submerged 
instruments.  The  application  of  cameras  out  of  the  water 
demonstrates an implicit reduction in the instrumental working 
distance,  but  it  can  expand  both  the  typology  of  optical 
instruments  no  longer  adapted  to  aquatic  conditions  and  the 
application  scale  to  satellite  (Lyzenga,  1978;  Stumpf  et  al., 
2003),  airborne/drone  (Agrafiotis  et  al.,  2019),  or  terrestrial 
levels. Several studies have explored the geometry of projective 
rays  passing through different  gas  or  liquid  materials  (Maas, 
2015;  Menna  et  al.,  2018),  finding  a  field  of  application  in 
seabed analysis (Mandlburger, 2018). Besides, recent research 
has  shown how the  introduction  of  Machine  Learning  (ML) 
algorithms  can  improve  the  extraction  of  geometric  features 
(Mohamed et  al.,  2020).  The topic  of  combined above-water 
photogrammetry remains an open field of research, containing 
several  challenges  and  extraordinary  potential  to  unveil  new 
UCH, starting with the study of refraction behaviour (Skarlatos 
and  Agrafiotis,  2018).  This  issue  is  cogent  today,  given  the 
importance  of  monitoring  seafloor  change  or  carrying  out 
morphological analysis.

3. METHODOLOGY

The experiment presented in this paper presents a follow-up of 
the first experimentation phase (Russo et al., 2024) which was 
carried  out  in  the  Hydraulics  Laboratory  of  the  Sapienza 
University of Rome, using a tank measuring 80×80×50 cm with 
1  cm thick  transparent  glass  walls.  The tank is  framed by a 
metal structure equipped with a millimetric movement system 
positioned on the top of the structure. Two pulleys allow the 
precise moving of a central plate. This latter has been used to 
fix  a  customised metal  profile  and position the cameras in  a 
predefined  set-up,  rotating  the  cameras  with  a  precise  angle 
(15°). The glass walls and the tank's base were covered with 0.5 
mm thick white  PolyVinyl  Chloride (PVC) sheets fixed to the 
glass with silicone sealant. A fixed taper has been positioned 
vertically in a corner to check the height of the water in real-
time up to 45 cm depth. Some additional white cardboard has 
been  added  to  reduce  water  reflection  due  to  uncontrolled 
lighting conditions (Fig. 1).

Figure 1. Experimental set-up.

Figure 2. The experiments under consideration within the entire research project.
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Beyond the first step (Russo et al., 2024), devoted to testing the 
camera's  behaviour  in  different  acquisition  conditions,  the 
experimental phase described here focussed on evaluating the 
optical  camera's  capacity  to  recognise  automatic  tags  in 
different water conditions using a stereo-photogrammetry set-up 
(Fig. 2). The target distribution of the first experimental phase 
was preserved on the bottom and two sides of the box.

3.1 Instruments

In the testing phase, two compact DSC-HX60 cameras (Sony) 
were  used  in  stereo  configuration,  dividing  the  acquisition 
sessions  into  two  groups:  1)  those  with  optical  axes  of  the 
cameras oriented perpendicular  to  the bottom of  the tank;  2) 
those with optical axes of the cameras oriented at angles of 15° 
to  the  zenithal  axis.  Table  1  presents  the  main  camera 
parameters.  The  cameras  were  calibrated  before  their 
applications.
The targets applied belong to the family of AprilTag (Olson, 
2011; Wang and Olson, 2016; Krogius et al.,  2019), a visual 
fiducial  system  commonly  used  in  robotics  and  specifically 
designed to be efficiently detected with automatic algorithms. 
Their uses range from camera calibration and ground truthing to 
object detection and tracking (Wang and Olson, 2016). 

Lens Sony G
Sensor CMOS Exmor R - 7,76 mm (1/2,3")
CMOS Dimension 5184x3456 px (6.03 x 4.62 mm)
Working Distance 1360 mm (to the base of the tank)
GSD 0.4 mm

Table 1. Camera parameters and working set-up.

AprilTag markers are characterised by a standard layout. It is 
based on a square border surrounding a unique pattern of data 
bits  (Krogius et  al.,  2019) and integrated by a  fast  detection 
algorithm. In this experimentation, we used the tag36h11 family 
and the most recent version of the AprilTag detection algorithm, 
AprilTag  3  (AprilRobotics.  AprilTag  3),  implemented  in  the 
pupil-apriltags  open-source  Python  library  (Pupil-labs.  pupil-
apriltags).  This  version  includes  a  faster  detector,  improved 
detection  rate  on  small  tags,  flexible  tag  layouts,  and  pose 
estimation  capabilities  (AprilRobotics.  AprilTag  3). For  both 
cameras  in  every  dataset  obtained  in  each  experiment,  we 
measured the optical distortions, caused by the water and found 
in  the  images  captured  at  350  Dots  Per  Inch  (DPI),  by 
comparing  the  changes  in  position  of  the  marker  vertices 
detected  in  every image  with  respect  to  a  reference  image 
captured with the tank empty.
Our  approach  stems  from  the  Barrel  Distortion  model.  We 
indeed  modelled  the  effects  of  the  refraction  on  the 
displacements  Δ of  the markers  using a  radial  distortion law 
where  the  modulo  of  the  displacements  increases  with  the 
distance  d from a  central  distortion  point,  i.e.  the  distortion 
centre  C (xC,  yC) (Fig.  3).  The  marker  displacements  indeed 
encode  the  optical  distortion  caused  by  the  refraction  of  the 
optical rays due to the presence of water with increasing levels 
(Fig.  3).  For marker displacement  Δ,  we mean the Euclidean 
distance  PP’ between  the  distorted  position  P’(xP′,  yP′) 
(expressed in  terms of  image coordinates,  Fig.  3)  of  the  i-th 
marker at the k-th filling step of the tank (water level equal to 
5∙k cm with k ≥ 1) and the undistorted position P(xP, yP) of the 
same marker at the first filling step of the tank (no water: water 
level equal to 0 cm, Fig. 3). The equation of the proposed model 
is  thus  the  following:  Δ=K  d⋅ X,  where  the  displacements 
represent the observations and the four unknown parameters are 
the  coordinates (xC,  yC) of  the  distortion centre,  and the  two 
parameters K and X.

Figure 3. Distortion scheme and displacements.

The adopted model is not linear, since: 1) the coordinates of the 
centre of distortion are within the distance d, which is given by 
Pythagoras'  Theorem (Fig.  3);  2)  X is  an exponent.  We thus 
applied the natural logarithm to both the sides of the equation 
(ln(∆)=ln(K)+X∙ln(d)), in order to obtain a simplified form for 
the linearization of the model, needed to use the standard non-
linear  Least  Squares  approach  –  which  employs  the  Gauss-
Newton iteration scheme – for the estimation of its parameters.

3.2 Experimental set-up

In the acquisition planning, we decided to test cameras with: 1) 
parallel-axes configurations and a 30 cm baseline (Fig. 4a); 2) 
converging-axes configurations arranged at 15° to the zenithal 
axis  and a 60 cm baseline (Fig.  4b). A mobile application was 
used to control the two cameras remotely, avoiding movements 
during the acquisition phase and trying to acquire the frames 
simultaneously.  For the targets inside the tank, three grids of 
markers of known size and structure were printed on different 
forex panels of 3 mm, covering almost entirely the bottom of 
the  tank and the  two sides.  Two 7×4 grids  were  glued with 
water-resistant  one-component assembly adhesive onto 4 mm 
plexiglass panels and then fixed on the two lateral sides with the 
same  adhesive.  The  7×7-grid  forex  on  the  bottom  was  first 
glued  onto  an  8  mm  plexiglass  panel  with  the  same  water-
resistant adhesive. Then, the forex was fixed to an additional 3-
mm-thick aluminium plate to increase the overall weight of the 
plate and prevent buoyancy and undesired movements.

Figure 4. Acquisition schemes with: a) parallel-axes cameras; 
b) converging-axes cameras.

All three grids used a 75-mm tag dimension. Eight smaller tags 
(40  mm)  were  positioned  on  the  tank's  border  to  define  the 
survey's  invariant  reference system. All  the tags used have a 
unique I.D. 
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Focal Length Shutter Speed ISO Diaphragm
4 mm 1/10 80 3.5

Table 2. Camera set-up

Once the whole system was set up, we organised the acquisition 
phase.  In  order  to  reduce  temporary  external  effects, 
experiments prior to  Test VI envisaged capturing three images 
with each camera for every survey state and selecting the best 
pair  from these triplets.  However,  as water motion states are 
influenced  by  temporary  external  factors,  for  Test  VI we 
analysed all three images of each triplet.  In order to define the 
Ground  Truth condition, we started  capturing  images without 
water in the tank. Then, we filled the tank with water at a 20 cm 
depth, capturing stereo images again with water in a still state. 
Next,  three pairs  of  images  were  collected  for  each  water 
motion  condition,  imposing  an  increasing  intensity  of 
movement on the liquid. Specifically, the first three levels of 
water movement in the tank were generated by a fan placed at 
the  tank's  border  at  three  different  intensity  levels.  The 
introduction  of  this  forcing  created  ripples  on  the  surface, 
intervening little along the water column. In contrast, adding to 
the  fan-generated  forcing  a  direct  stir  (caused  by  manually 
moving  a  body  within  the  water) generated  a  chaotic 
perturbation increasing as a function of the force applied.
Thanks  to  the  grids'  known  geometry,  each  camera's  3D 
position and orientation relative to the grids can be estimated. 
For each acquisition, we automatically tracked the position of 
the four corners of every tag, monitoring the displacement of 
the markers caused by the refraction of the optical rays due to 
the presence of water with increasing movement. The obtained 
marker displacement is represented as a quiver arrow in Fig. 5e, 
Fig. 6e, Fig. 7e, Fig. 8e, Fig. 9e, Fig. 10e.

3.3 Data analysis and processing

Once the capture phase was completed, we organised the files 
containing the images by subdividing them by their respective 
test iteration number, source camera (left or right), and dataset 
(arrangement  with  parallel-axes  or  converging-axes  cameras). 
Each  pair  of  images  was  then  catalogued  on  a  spreadsheet 
in  .csv  format  where,  in  addition  to  the  aforementioned 
information, other data concerning the survey conditions were 
recorded: water depth, approximate time of acquisition, and – in 
the case of Test VI – also the state of motion of the water. For 
Test VI, we schematically distinguished 11 motion conditions: 
1) still water; 2) fan at slow speed; 3) fan at medium speed; 4) 
fan at maximum speed; 5) fan at maximum speed and additional 
mild stir; 6) fan at maximum speed and additional strong stir; 7) 
water  undergoing  stabilisation  after  6  minutes  since  the 
strongest manual stirring; 8) water undergoing stabilisation after 
9  minutes  since  the  strongest  manual  stirring;  9)  water 
undergoing  stabilisation  after  10  minutes  since  the  strongest 
manual  stirring;  10)  water  undergoing  stabilisation  after  11 
minutes  since  the  strongest  manual  stirring;  11)  water 
undergoing  stabilisation  after  12  minutes  since  the  strongest 
manual  stirring.  Once  these  metadata  were  entered,  the 
automated  analysis  was  performed  with  a  script  in  Python 
language, harnessing the Open Source Computer Vision Library 
(OpenCV). First of all, the program read the intrinsic orientation 
parameters  of  each  camera,  previously  calibrated,  then  it 
digitally reconstructed the Ground Truths associated with the 
marker  grids,  computing  the  3D  coordinates  of  the  markers 
based  on  the  known  geometry  of  the  grids.  To  increase 
performance  of  the  marker  recognition  algorithm  against 
shadows,  reflections,  and  water  movement  blur,  the  script 
converted  every  image  from  RGB  colours  to  grayscale  and 
individually applied some thresholding techniques.

From  our  experiments  so  far,  it  appears  that  the  combined 
application of  binary  and Otsu's  thresholding methods  (Otsu, 
1979) determines the best probability of automated detection.
The individual  AprilTag marker  is  detected by the dedicated 
library  when  its  sequence  of  36  bits  (black  or  white  square 
elements), its inner black bit frame, and its outer white bit frame 
are  recognizable  in  the  image  under  consideration 
(AprilRobotics. AprilTag 3). With these conditions satisfied, the 
script locates the four vertices of the marker and schematises the 
position of its centre as the intersection between the diagonals 
of a parallelogram having these same vertices. It then stores the 
image coordinates of these five significant points of the single 
AprilTag in an array associated with the analysed image.
With the marker detection concluded, the script calculated the 
extrinsic parameters of each camera independently through the 
Point-n-Perspective  (PnP)  approach  (Marchand  et  al.,  2016). 
For  each  tank  filling  stage,  we  divided  the  sets  of  image 
coordinates  of  the  significant  marker  points  between Ground 
Control Points (GCP) and Check Points (CP). This allowed us 
to  check  the  mean reprojection  error  by  using  the  estimated 
external  orientation  parameters,  reprojecting  the  known  3D 
coordinates of the markers under examination into the image 
reference frame of the considered image. By taking advantage 
of  the  independent  external  orientation  of  the  cameras,  we 
carried out an independent evaluation of the baseline – which 
we  calculated  as  the  Euclidean  distance  between  the  two 
estimated positions of the camera centres – and a comparison 
with  the  values  imposed  in  our  experimental  setup.  The 
estimated values of the baselines and angles between the two 
camera axes are then recorded in a spreadsheet in .csv format, 
together with their corresponding expected values.
To begin the modelling phase of each sequence of  n images 
captured  in  a  given  dataset  with  a  given  camera,  the  script 
compared  the  array  of  image  coordinates  of  the  significant 
marker points detected in a reference image (which had to be 
captured without any water in the tank) with the coordinates of 
the corresponding markers in all the other n-1 images. For each 
of  these  n-1 comparisons,  the  script  calculated  the  field  of 
geometric distortions, represented by the marker displacements, 
and graphically represented it as a ruled surface in the Cartesian 
Space  (Fig.  5c,  Fig.  6c,  Fig.  7c,  Fig.  8c,  Fig.  9c,  Fig.  10c). 
Without  any  powerful  perturbation,  the  field  of  optical 
distortions induced by water refraction tends to take the form of 
an  elliptic  pseudo-paraboloid,  which  is  a  function  of  image 
coordinates x, y, and observed Δ modulo values. Regarding the 
estimate  of  the  four  unknown  parameters  of  the  model,  we 
firstly applied a regularisation of the image coordinates of the 
markers to avoid numerical instability phenomena. The script 
then computes the approximate values of the coordinates of the 
centre of distortion, assuming it to coincide with the point of 
minimum of the displacement vector field, i.e. the point where 
the observed Δ modulo assumes the smallest value in the entire 
image.  In  the  3D  graph  of  the  optical  distortion  field,  the 
program represented such a point as a dark circle with a cross 
(Fig. 5c, Fig. 6c, Fig. 7c, Fig. 8c, Fig. 9c, Fig. 10c). 
To compute the approximate values of the parameters K and X, 
we  applied  the  RANdom  SAmple  Consensus  (RANSAC) 
(Fischler  et  Bolles,  1981)  algorithm to  robustly  estimate  the 
parameters  of  the  line  that  fits  the  observations  in  the  ln-ln 
domain  (ln(∆)=ln(K)+Xln(d)). Then we applied iteratively the 
non-linear  Ordinary  Least  Squares  (OLS)  according  to  the 
Gauss-Newton iteration scheme until satisfactory values of the 
coefficient of determination R2 and the  scale (sigma zero) σ0 are 
found. At the end of the iterative process, the optimal values of 
the 4 parameters of the model (xC,  yC,  K,  X) are found and the 
script plots two line fitting ln-ln plots (Fig. 5d, Fig. 6d, Fig. 7d, 
Fig. 8d, Fig. 9d, Fig. 10d), i.e., the RANSAC line used to find 
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Figure 5. From the parallel-axes dataset of Test III (left camera), comparison between images DSC02940.JPG (a) – no water – and 
DSC02964.JPG (b) – water depth: 40 cm –; c) distortion field graph; d) plot of log(Δ modulo) as a function of log(dapproximate), 

obtained by the last iteration of the OLS Method; e) quiver plot of distortions.

Figure 6. From the parallel-axes dataset of Test III (right camera), comparison between images DSC01379.JPG (a) – no water – 
and DSC01403.JPG (b) – water depth: 40 cm –; c) distortion field graph; d) plot of log(Δ modulo) as a function of log(dapproximate), 

obtained by the last iteration of the OLS Method; e) quiver plot of distortions.

Figure 7. From the parallel-axes dataset of Test VI (left camera), comparison between images DSC06932.JPG (a) – no water – and 
DSC06949.JPG (b) – water depth: 20 cm –; c) distortion field graph; d) plot of log(Δ modulo) as a function of log(dapproximate), 

obtained by the last iteration of the OLS Method; e) quiver plot of distortions.

Figure 8. From the parallel-axes dataset of Test VI (right camera), comparison between images DSC04359.JPG (a) – no water – 
and DSC04376.JPG (b) – water depth: 20 cm –; c) distortion field graph; d) plot of log(Δ modulo) as a function of log(dapproximate), 

obtained by the last iteration of the OLS Method; e) quiver plot of distortions.
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Figure 9. From the converging-axes dataset of Test VI (left camera), comparison between images DSC06998.JPG (a) – no water – 
and DSC06989.JPG (b) – water depth: 20 cm –; c) distortion field graph; d) plot of log(Δ modulo) as a function of log(dapproximate), 

obtained by the last iteration of the OLS Method; e) quiver plot of distortions.

Figure 10. From the converging-axes dataset of Test VI (right camera), comparison between images DSC04426.JPG (a) – no water 
– and DSC04417.JPG (b) – water depth: 20 cm –; c) distortion field graph; d) plot of log(Δ modulo) as a function of log(dapproximate), 

obtained by the last iteration of the OLS Method; e) quiver plot of distortions.

Figure 11. a) plots of baseline values as functions of water levels in the parallel-axes dataset of Test III; b) plots of baseline values 
as functions of water motion conditions in the parallel-axes dataset of Test VI; c) plots of baseline values as functions of water 

motion conditions in the converging-axes dataset of Test VI.
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the approximate values of the K and X parameters, and the final 
optimal line whose parameters were estimated at the end of the 
Least  Squares  iteration  scheme.  Moreover,  the  script  plots  a 
quiver  plot,  where  the  optical  distortions,  i.e.  the  marker 
displacements  occurring  at  all  significant  points  of  the 
recognised markers, are represented as vectors (Fig. 5e, Fig. 6e, 
Fig. 7e, Fig. 8e, Fig. 9e, Fig. 10e).
Finally, the script plots the trends of the estimated values of the 
baseline, the angle with respect to the zenith axis, and the four 
model parameters (xC, yC, K, X) for each image which has been 
compared to the reference image. In Test III  these behaviour 
graphs included a plot of the baseline variation between various 
levels of tank filling at intervals of 5 cm, up to a maximum of 
45 cm. For each of the three grids (bottom-side, left-side, and 
right-side), an analysis was conducted which allowed a different 
trend to be traced (Fig 11a). In Test VI, focussed on the bottom-
side grid, the behaviour plots concerned the baseline variation 
between various states of water motion, for both the parallel-
axes and the converging-axes datasets (Fig 11b, Fig11c).

4. EXPERIMENTS AND RESULTS

Two  datasets  were  acquired  for  each  of  the  case  studies 
proposed below: one with the cameras having their optical axes 
oriented perpendicular to the bottom of the tank and a baseline 
of 30 cm; the other with the cameras having their optical axes 
oriented at 15° angles to the zenithal axis and a baseline of 60 
cm.  The  ln-ln  diagrams  generated  by  processing  with  the 
RANSAC algorithm and the iterative scheme of non-linear OLS 
(Fig. 5d, Fig. 6d, Fig. 7d, Fig. 8d, Fig. 9d, Fig. 10d) show the 
model's  ability  to  describe  the  physical  phenomenon  of 
refraction-induced optical distortions, as long as turbulence in 
water is not excessive. In fact, if the liquid is in a static state (as 
in  Case  Study  1)  or  in  a  condition  of  slight  motion  or 
stabilisation  (as  in  some  of  the  situations  analysed  in  Case 
Studies 2 and 3),  the observations are disposed with high  R2 

values  around  the  line  representing  the  model  and  low 
dispersion.

4.1 Case Study 1: different water filling levels (Test III – 
parallel-axes dataset)

The first case study presented here is taken from Test III, which 
was focussed on analysing the behaviour of optical distortions 
through various filling levels of the tank at intervals of 5 cm, up 
to a maximum of 45 cm. In this case, the optical axes of the 
cameras were parallel to each other, perpendicular to the bottom 
of the tank, and separated by a distance of 30 cm. The vector 
field of optical deformations tended to take the form of a regular 
elliptical paraboloid. The higher the water level, the greater the 
concavity of the pseudo-parabolas that could be extracted from 
the vertical sections of the vector field (Fig. 5c, Fig. 6c). As 
seen  with  the  comparisons  between  photos  acquired  in  the 
absence of water, the influence of non-submerged targets on the 
behaviour  of  optical  distortions  can  also  be  seen  in  the 
behaviour diagrams of the lateral marker grids (Fig. 11a).

4.2 Case Study 2: different water motion conditions (Test 
VI – parallel-axes dataset)

The second case study under consideration is taken from Test 
VI,  which  focussed  on  observing  the  behaviour  of  optical 
distortions through various possible states of water motion. As 
in the previous case, the cameras had optical axes parallel to 
each  other,  perpendicular  to  the  bottom  of  the  tank,  and 
separated by a distance of 30 cm. Compared to Case Study 1, 
these lower parameters were due to a drastic reduction in the 

number of markers recognised by the script in images captured 
during  manual  stirring  of  the  water  (therefore,  fewer 
observations could be used in mathematical modelling). As can 
be deduced by observing the contour lines projected from the 
optical deformation field diagrams on the xy plane (Fig. 7c, Fig. 
8c), the greater the perturbations, the more irregular the vector 
field  becomes.  The  automated  detection  and  modelling 
procedure had no difficulty with movements caused by the fan – 
at any speed – nor with stabilisation of the water once the cause 
of the disturbance had been removed (Fig. 11b).

4.3 Case Study 3: different water motion conditions (Test 
VI – converging-axes dataset)

The third case study examined is also taken from Test VI and 
again concerns different conditions of water motion. Unlike the 
first two cases, the optical axes of the cameras were converging 
and  oriented  at  15°  angles  to  the  zenithal  axis,  while  the 
baseline was 60 cm. As in Case Study 2, the presence of strong 
perturbations lowered the number of observations that could be 
considered  as  valid  by  the  script  and  thus  useful  for 
mathematical  modelling  purposes.  Again,  the  vector  field  of 
optical deformations tended to lose its regularity depending on 
the intensity of the perturbation exerted (Fig 9c, Fig. 10c). In 
this case, the manual perturbation had reached such a strength 
that the value of the baseline in one of the observed states of 
motion was incalculable. Analogously to Case Study 2, during 
detection  and  modelling  operations,  the  effects  of  the  air 
movement  generated  by  the  fan  or  the  stabilisation  of  water 
after stirring did not hinder the performance of the script (Fig. 
11c).

5. CONCLUSIONS

When sensing submerged or semi-submerged bodies, even in a 
controlled  environment,  mathematical  modelling of  refraction 
effects  on  the  cameras  incurs  into  several  technical  issues 
related to survey conditions (e.g. water depth level and motion 
state).  We  proposed  a  first  approach,  which  addresses  some 
technical bottlenecks encountered during our experiments. We 
recorded the intrinsic parameters of a pair of cameras and set up 
grids  of  markers  in  a  tank,  in  order  to  reconstruct  the  3D 
Ground Truth of these grids and detect the significant points of 
these targets. Having identified a number of markers in every 
image,  the  script  then  calculated  independently  the  external 
parameters  of  each  camera  through  the  PnP  approach.  The 
program was then able to reproject the 3D Ground Truth points 
onto every image and calculate the markers' reprojection error. 
We modelled the effects of the refraction on the displacements 
Δ of  the  markers  with  a  non-linear  radial  distortion  model, 
where the modulo of the distortion increases with the distance d 
from the distortion centre C. The model was thus linearized in 
order to estimate the optimal values of its four parameters (the 
coordinates xC,  yC of  the  distortion  centre,  and  the  two 
parameters K and X) with the standard non-linear Least Squares 
approach.  We thus obtained a  first  assessment  of  the optical 
distortion  field  and  of  its  point  of  minimum  (centre  C). 
Depending  on  the  type  of  test,  the  script  finally  plotted 
behavioural diagrams describing the baseline as a function of 
the water depth level or the liquid motion state. The procedure 
we developed proved to be effective in the presence of a water 
level between 5 and 45 cm depth. It also operated for water in 
stillness, mild motion, or stabilisation conditions. Of course, if 
there is no water in the tank and no marker is submerged, the 
automated process  of  analysis  and modelling cannot  operate, 
because  the  field  of  optical  distortions  is  absent.  Turbulent 
states of water motion also hinder the modelling of the optical 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W7-2024 
Optical 3D Metrology (O3DM), 12–13 December 2024, Brescia, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-129-2024 | © Author(s) 2024. CC BY 4.0 License.

 
135



distortion phenomenon, as they reduce the number of markers 
detected by the script. Both of these issues respectively suggest 
possible future developments: on the one hand, the contribution 
of detected, non-submerged markers to the effects schematised 
by our mathematical model should be investigated further; on 
the other hand, it is certainly desirable to improve our approach 
with  regard  to  images  captured  in  the  case  of  particularly 
turbulent water.
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